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ROC curve analysis is o�en applied to measure the diagnostic accuracy of a biomarker.�e analysis results in two gains: diagnostic
accuracy of the biomarker and the optimal cut-point value.�ere aremanymethods proposed in the literature to obtain the optimal
cut-point value. In this study, a new approach, alternative to these methods, is proposed. �e proposed approach is based on the
value of the area under the ROC curve.�ismethod de	nes the optimal cut-point value as the valuewhose sensitivity and speci	city
are the closest to the value of the area under the ROC curve and the absolute value of the di
erence between the sensitivity and
speci	city values is minimum.�is approach is very practical. In this study, the results of the proposed method are compared with
those of the standard approaches, by using simulated data with di
erent distribution and homogeneity conditions as well as a real
data. According to the simulation results, the use of the proposed method is advised for 	nding the true cut-point.

1. Introduction

�e ROC curve is a mapping of the sensitivity versus 1 −
speci	city for all possible values of the cut-point between
cases and controls. To measure the diagnostic ability of a
biomarker, it is common to use summary measures such as
the area under the ROC curve (AUC) and/or the partial area
under the ROC curve (pAUC) [1]. A biomarker with AUC =
1 discriminates individuals perfectly as diseased or healthy.
Meanwhile, an AUC = 0.5 means that there is no apparent
distributional di
erence between the biomarker values of the
two groups [2].

ROC analysis provides two main outcomes: the diagnos-
tic accuracy of the test and the optimal cut-point value for the
test. Cut-points dichotomize the test values, so this provides
the diagnosis (diseased or not). �e identi	cation of the cut-
point value requires a simultaneous assessment of sensitivity
and speci	city [3]. A cut-point will be referred to as optimal
when the point classi	es most of the individuals correctly
[4, 5].

AUC, sensitivity, and speci	city values are useful for
the evaluation of a marker; however they do not specify
“optimal” cut-points directly. In the literature, related to the
subject, there are many approaches using both sensitivity

and speci	city for cut-point selection [4–9]. One of the
commonly used method is the Youden index (�) method
[5]. �is method de	nes the optimal cut-point as the point
maximizing the Youden function which is the di
erence
between true positive rate and false positive rate over all
possible cut-point values [6, 7]. Another approach is known
as the point closest-to-(0, 1) corner in the ROC plane (ER)
which de	nes the optimal cut-point as the point minimizing
the Euclidean distance between the ROC curve and the
(0, 1) point [4]. A third approach is based on the maximum
achievable value of the chi-square statistic (min�) which is
driven using the cross-tabulations of true disease status and
categorized new variables that separate the biomarker into
two categories according to all possible cut-point values [8].
A more recent approach was proposed by Liu [9], which
de	nes the optimal cut-point as the point maximizing the
product of sensitivity and speci	city (CZ). In the literature,
there are studies comparing optimal metrics derived from
the sensitivity, speci	city, agreement, and distance [10, 11]. In
these studies, it is generally recommended that researchers
should select one that is most clinically relevant.

In this study, a new approach is proposed for the identi-
	cation of the optimal cut-point value in ROC analysis. �e
approach is based on the area under the ROC curve (AUC),
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sensitivity, and speci	city values. It de	nes the optimal cut-
point value as the point minimizing the summation of abso-
lute values of the di
erences between AUC and sensitivity
andAUC and speci	city provided that the di
erence between
sensitivity and speci	city is minimum.

In the following section, 	rst the background method-
ologies of previous methods are summarized, and, then, the
proposed method is introduced. In Section 3, in order to
compare the performance of the previous methods with that
of the proposed one, generated data under the assumption
of normal distribution and gamma distribution models for
the biomarker are used. �en, in Section 4, using data from
a real-world study of heart-failure patients [12], the cut-
points for pulse pressure, plasma sodium, LVEF, and heart
rate in prediction of mortality are calculated by applying the
proposed and the previous methods. Finally, in Section 5,
conclusions are given.

2. Previous Methods and the Proposed Method

2.1. Minimum � Value Approach (min�). Let� be a contin-
uous biomarker that is assumed to be predictive of an event

� (i.e., � = 1 for diseased or � = 0 for not diseased). At any
given possible cut-point � of�, sensitivity (Se) and speci	city
(Sp) values are as follows:

Se (�) = � (� > � | � = 1) ,
Sp (�) = � (� ≤ � | � = 0) . (1)

Cut-point � separates the data into two groups which forms a
2 × 2 table, as shown in Table 1.

�e minimum � value approach was proposed by Miller
and Siegmund [8] and de	nes the optimal point as cut-point
�̂min� that maximizes the standard chi-square statistic with
one degree of freedom:

	21 (�) = 
 (�V − �)2
(� + ) (� + V) (� + �) ( + V) , (2)

where 
 = � +  + � + V. As it was shown by Rota and
Antolini [11], it can be also written in terms of classi	cation
probabilities:

	21 (�) =
(Se (�) + Sp (�) − 1)2

(((� + V) Se (�) + (� + ) (1 − Sp (�))) /
) (1 − ((� + V) Se (�) + (� + ) (1 − Sp (�))) /
) (1/ (� + V) + 1/ (� + )) . (3)

2.2. Youden Index (�). �e Youden index (�) is a measure
for evaluating the biomarker e
ectiveness. �is measure was
	rst introduced to the medical literature by Youden [5]. � is a
function of Se(�) and Sp(�), such that

� (�) = {Se (�) + Sp (�) − 1} = {Se (�) − (1 − Sp (�))} (4)

over all cut-points �; �̂� denotes the cut-point corresponding
to �. When the value of � is maximum, �̂� is the “optimal” cut-
point value [6, 7].

2.3. �e Closest to (0, 1) Criteria (ER). In this criteria, the
“optimal” cut-point is de	ned as the point closest to the point
(0, 1) on the ROC curve [3, 4].

ER (�) = (√(1 − Se (�))2 + (1 − Sp (�))2) . (5)

Mathematically, the point �̂ER minimizing the ER(�) function
is called the “optimal” cut-point value.

2.4. Concordance Probability Method (CZ). �e concordance
probability method proposed by Liu [9] de	nes the optimal
cut-point as the point maximizing the product of sensitivity
and speci	city.

CZ (�) = Se (�) ∗ Sp (�) . (6)

�is product gets value between 0 and 1. �e concordance
probability of dichotomized measure at cut-point � can be
expressed as the area of a rectangle associated with the ROC
curve. Cut-point �̂CZ maximizing CZ(�) actually maximizes
the area of the rectangle [9].

2.5. �e Proposed Method: Index of Union (IU). Perkins and
Schisterman [4] stated that the “optimal” cut-point should be
chosen as the point which classi	es most of the individuals
correctly and thus least of them incorrectly. From this point
of view, in this study, the Index of Unionmethod is proposed.
�is method provides an “optimal” cut-point which has
maximum sensitivity and speci	city values at the same time.
In order to 	nd the highest sensitivity and speci	city values
at the same time, the AUC value is taken as the starting value
of them. For example, let AUC value be 0.8. �e next step is
to look for a cut-point from the coordinates of ROC whose
sensitivity and speci	city values are simultaneously so close
or equal to 0.8.�is cut-point is then de	ned as the “optimal”
cut-point. �e above criteria correspond to the following
equation:

IU (�) = (|Se (�) − AUC| + ����Sp (�) − AUC
����) . (7)

�e cut-point �̂IU, which minimizes the IU(�) function and
the |Se(�) − Sp(�)| di
erence, will be the “optimal” cut-point
value.

In other words, the cut-point �̂IU de	ned by the IU
method should satisfy two conditions: (1) sensitivity and
speci	city obtained at this cut-point should be simultane-
ously close to the AUC value; (2) the di
erence between
sensitivity and speci	city obtained at this cut-point should
be minimum. �e second condition is not compulsory, but
it is an essential condition when multiple cut-points satisfy
the equation.

In order to illustrate how the IU method de	nes the
“optimal” cut-point, the values obtained from an arti	cial
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Table 1

� ≤ � � > �
� = 0 � 
� = 1 � V

Table 2: Some of the cut-points with their sensitivity and speci	city
values obtained from arti	cial data.

Cut-point Speci	city Sensitivity

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3.095 0.44 0.92

2.986 0.48 0.92

2.727 0.52 0.92

2.527 0.56 0.92

2.478 0.60 0.92

2.416 0.64 0.92

2.331 0.68 0.92

2.284 0.72 0.92

2.262 0.76 0.92

2.243 0.80 0.92

2.191 0.84 0.92

2.079 0.88 0.92

1.985 0.92 0.92

1.944 0.92 0.88

1.897 0.92 0.84

1.836 0.92 0.80

1.741 0.92 0.76

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

data are used. Some of the cut-points (with their sensitivity
and speci	city values) provided by the arti	cial data are given
in Table 2. In this example, the AUC value is calculated as
0.918. For the sake of simplicity, instead of 1 − speci	city
values, speci	city values are given in the table. By using
IU method, one can easily 	nd that sensitivity (0.92) and
speci	city (0.92) values of the cut-point 1.985 are the nearest
ones to the AUC value. Since also the di
erence between
these two values is minimum, this cut-point will be called the
“optimal” cut-point by the IU method.

However, it should be noted that choosing such a cut-
point as the “optimal” cut-point may sometimes fail. For
example, let Se(�) = Sp(�) = AUC = 0.8. �en, the IU(�)
statistic given in (7) will be 0 and also the di
erence between
Se(�) and Sp(�) will be 0. �us according to the de	nition
of optimality given in the IU method, cut-point � will be
accepted as the “optimal” cut-point. However, if there is a
point �∗ for which Se(�∗) = 0.82 and Sp(�∗) = 0.80, then the
total misclassi	cation rate will be 0.38 (which is smaller than
that of the point �, i.e., 0.40). Hence, cut-point �∗ is a better
optimized point than cut-point �, based on the de	nition of
optimality given by Perkins and Schisterman [4].

Geometrically, the idea behind the IU method is very
similar to the idea behind the ER method. As it can be seen
in Figure 1, the IU method also tries to 	nd the closest point
to a point, that is, the point (1 − AUC, AUC). In the ER
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Figure 1: �e receiver operator characteristic curve for pulse
pressure in the prediction of cardiovascular death [12].

method, this point is taken as (0, 1). However, instead of
using the Euclidean distance as in the ER method, the IU
method uses the absolute di
erences between the diagnostic
accuracy measures and the AUC value. More speci	cally,
the IU method searches for the point that minimizes the
half perimeter of the ABCD rectangle seen in Figure 1.
�is rectangle is constructed by connecting the intersections
points of the lines of � = 1 − AUC, � = AUC, � = 1 − Sp(�),
and � = Se(�).

3. Simulation Study

As it was shown by Rota and Antolini [11] although some of
these methods are mathematically related, they do not nec-
essarily identify the same true cut-point. �at is, depending
on the design of the study (balanced or unbalanced), the
methodsmay identify di
erent cut-points. According to their
results, in the balanced homoscedastic scenario, the methods
identi	ed the same point; in the remaining scenarios (i.e.,
unbalanced homoscedastic and balanced/unbalanced het-
eroscedastic scenarios), the methods identi	ed di
erent cut-
points. �ese results emphasize the importance of correctly
de	ning the true cut-point in all possible scenarios.

Let us assume that a speci	c biomarker (�) in diseased
and nondiseased populations is normally distributed, �1 ∼
 (�1, �1 = 1) for diseased subjects and�0 ∼ 
 (0, �0 = 1)
for nondiseased subjects. Under these assumptions, sensitiv-
ity and speci	city can be written as

Se (�) = � (�1 ≥ �) = Φ (�1 − �) ,
Sp (�) = � (�0 ≤ �) = Φ (�) ,

(8)

where Φ denotes the standard normal distribution function.
�eoptimal cut-point occurs at the intersection of the normal
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Figure 2:�e empirically estimated objective functions IU(�) under
di
erent underlying distributions: light to dark colors represent the
scenarios with the classi	cation accuracies from poor to high one.
�e homoscedastic gamma distribution scenario with a balanced
design (�0 = �1 = 100) is represented.

probability density functions of diseased and nondiseased
subjects (i.e., �opt = �1/2) [7, 13]. For example, if �1 is taken
as {0.51, 1.05, 1.68, 2.56}, the corresponding true cut-points
will be �opt = {0.25, 0.52, 0.84, 1.28} [11, 13].�ese values of �1
guarantee a wide variety of classi	cation accuracies, ranging
from a poor to a high one [7, 11, 13]. �e identi	cation of
the true theoretical cut-point for the IU method under this
scenario is given in the Appendix.

Now assume that� is gamma distributedwith the follow-
ing parameters: �1 ∼  (!1 = 2.5, "1) for diseased subjects
and �0 ∼  (!0 = 1.5, "0 = 1) for nondiseased subjects. If,
for instance, "1 is taken as {0.79, 1.22, 1.97, 3.82}, the corre-
sponding cut-points for each method will be di
erent; that
is, for min� approach, �min� = {0.80, 1.73, 2.54, 3.51}, for
Youden index, �� = {1.12, 1.79, 2.45, 3.42}, for the concor-
dance probability, �CZ = {1.35, 1.81, 2.41, 3.38}, and, for the
point closest-to-(0, 1) corner, �ER = {1.38, 1.82, 2.36, 3.24}
[11]. For the Index of Union, the corresponding cut-points are
estimated by the empirical estimation method given in Liu’s
work [9] as �IU = {1.42, 1.78, 2.41, 3.30} (Figure 2).

In order to compare the performance of the cut-point
selection methods with the performance of the method
proposed in this study, a simulation study is conducted with
di
erent scenarios. �ese scenarios are the same as the ones
given in Rota and Antolini’s work [11]. �e 	rst scenario is
normal homoscedastic scenario with balanced design where
all of the methods theoretically identify the same true cut-
point.�e second one is the nonbalanced normal case, where
all of the methods except the min� approach identify the
same cut-point. �e last scenario is gamma case where all of
the methods identify di
erent cut-points.

In all scenarios, 1000 samples were generated with sample
sizes 50, 100, and 200 for each group and with sample size
�1 = 50, �0 = 100; �1 = 50, �0 = 150; and �1 = 50, �0 = 200

(�1 is the number of diseased subjects and �0 is the number
of nondiseased subjects).

For each sample, the optimal cut-points �̂min�, �̂�, �̂CZ, �̂ER,
and �̂IU for the minimum � value, the Youden index, the con-
cordance probability, the point closest-to-(0, 1) corner, and
the Index of Union are estimated, respectively. �e relative
bias and mean square error (MSE) values of each method
are computed by �[(�̂ − �)/�] and �[(�̂ − �)2], respectively. (�
denotes the true cut-point and �̂ denotes the estimated cut-
point by the method.)

In order to estimate the standard deviation and the
con	dence interval (CI) for the optimal cut-point, the boot-
strap resampling technique is applied [14]. To calculate the
bootstrap estimate �̂�, random sampling with replacement
is used to draw 200 bootstrap samples within each of the
1000 generated samples. Moreover, to construct a 95% CI for
the optimal cut-point, the basic percentile method is applied
by taking the 2.5 and 97.5 percentiles of the �̂� bootstrap
distribution.

�e bootstrap estimator of the standard deviation (SD�)
for the estimated cut-point is calculated by taking the stan-
dard deviation of the 200 cut-point estimates. Within each of
the simulation scenarios, the CIs are subsequently evaluated
by computing coverage probability and mean length.

All simulations are done by using R program with the
version of 3.2.0. To determine the estimates for Youden
index and the point closest-to-(0, 1) corner, the pROC library
is used [15]. For de	ning the estimates of the rest of the
methods, an R code is written by the author and it can be
available upon request.

3.1. Simulation Results. Table 3 shows the results for the
balanced design under normal homoscedastic distributions.
�e relative bias values of the previously proposed methods
are similar to the results of Rota and Antolini’s work [11]
except the relative bias of Youden index. In particular for
poor classi	cation accuracy scenarios (i.e., �opt = 0.25 and
0.52), Youden index has worse performance in the estimation
of the optimal cut-point than their results. However, this
discrepancy is not seen in the comparison of MSEs. �at
is, the MSEs of all methods are similar to that of Rota and
Antolini’s work [11].

When comparing the relative bias and MSE values of the
IU method with that of the other methods, it can be easily
seen that the IU method has mostly similar performance
with the point closest-to-(0, 1) corner method and has better
performance than the other methods (i.e., lower relative bias
and lower MSE values).

For the balanced design under normal homoscedastic
distributions, the bootstrap standard deviation, coverage
probability, and mean length of the 95% bootstrap CI for
the cut-point are shown in Table 4. As in Table 3, the results
given in Table 4 are similar to that of Rota andAntolini’s work
[11]. �at is, the SD� of the minimum � value approach is
still greater with respect to that of the other methods and
the better classi	cation accuracies provide the narrower 95%
bootstrapCIs.�e IUmethod achieves the smallest SD� value
and the narrowest CIs in most of the scenarios. �e coverage
probabilities are close to the nominal level for all methods.
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Table 3: Relative bias and mean square error (MSE) of all methods. �e normal homoscedastic balanced scenarioa.

�opt Sample sizes Minimum � value Youden index
Concordance
probability

Point closest-to-(0-1)
corner

Index of Union

�1 = �2 Relative bias MSE Relative bias MSE Relative bias MSE Relative bias MSE Relative bias MSE

0. 25

50 0.0080 0.5622 0.3088 0.2358 0.0432 0.0696 0.0357 0.0513 0.0306 0.0191

100 0.1303 0.4604 0.3129 0.1675 0.0588 0.0428 0.0526 0.0315 0.0505 0.0116

200 −0.0174 0.3652 0.1510 0.1158 0.0145 0.0259 0.0221 0.0195 0.0262 0.0074

0.52

50 0.0068 0.2307 0.1161 0.1266 0.0066 0.0676 0.0112 0.0427 0.0172 0.0265

100 −0.0314 0.1752 0.0732 0.0783 0.0072 0.0392 0.0084 0.0258 0.0035 0.0201

200 −0.0073 0.1190 0.0438 0.0490 0.0078 0.0242 0.0119 0.0145 0.0109 0.0153

0.84

50 0.0040 0.1263 0.0563 0.0822 −0.0026 0.0557 −0.0038 0.0369 −0.0016 0.0341

100 0.0140 0.0839 0.0476 0.0538 0.0023 0.0372 0.0024 0.0219 0.0020 0.0268

200 −0.0036 0.0631 0.0282 0.0362 0.0039 0.0237 0.0029 0.0128 0.0042 0.0214

1.28

50 0.0011 0.0872 0.0292 0.0676 0.0015 0.0563 0.0032 0.0410 0.0033 0.0467

100 0.0018 0.0558 0.0269 0.0444 0.0025 0.0368 0.0029 0.0245 0.0030 0.0336

200 −0.0028 0.0343 0.0170 0.0248 0.0017 0.0205 0.0013 0.0119 0.0021 0.0200
a�1 ∼ � (	1, 1), �0 ∼ � (0, 1), and 	1 was taken as 0.51, 1.05, 1.68, and 2.56, respectively.

�e relative bias and MSE results for the unbalanced
design under normal homoscedastic distributions are shown
in Table 5. Since the true cut-point for the minimum �
value approach depends on the prevalence of the disease
in the sample, di
erent optimal cut-points are used for the
comparisons [11]. �e relative bias values of all methods are
similar to those of Rota and Antolini’s work [11], except for
the minimum � value approach in the lowest classi	cation
accuracy scenario (i.e., �opt = 0.25). For this scenario the
relative bias for the minimum � value approach is larger than
the bias given in their work. For poor and poor-moderate
classi	cation accuracy (i.e., �opt = 0.25 and 0.52), the MSE
is the lowest for the IU method, and, for moderate-high and
high classi	cation accuracy (i.e., �opt = 0.84 and 1.28), both
the point closest-to-(0, 1) corner method and the IU method
get the lowest MSE values.

For the unbalanced design under normal homoscedastic
distributions, the bootstrap standard deviation, coverage
probability, and mean length of the 95% bootstrap CI for the
cut-point are given in Table 6. For this scenario, the lowest
SD� and mean length of the 95% bootstrap CI values are
obtained by the point closest-to-(0, 1) corner method and the
IU method. As in the comparison of the relative bias and
MSE values of the methods (Table 5), for poor and poor-
moderate classi	cation accuracy (i.e., �opt = 0.25 and 0.52),
the IUmethod gets the lowest SD� and mean length, and, for
moderate-high and high classi	cation accuracy (i.e., �opt =0.84 and 1.28), both the point closest-to-(0, 1) corner in the
ROC plane and the IU method get the lowest values. �e
coverage probabilities are close to the nominal level for all
methods.

As it was shown in Rota and Antolini’s work [11], under
a gamma distribution assumption with a balanced design,
the theoretical true cut-points �min�, ��, �CZ, and �ER are
all di
erent. For all classi	cation accuracy scenarios, the
theoretical true cut-points for the IU method are obtained
based on the idea given in the article of Liu [9] (Figure 2).

�e relative bias values of all methods are similar to those of
Rota and Antolini’s work [11]. �e MSE gets its lowest value
in the point closest-to-(0, 1) corner and the IUmethod for all
classi	cation accuracy scenarios (Table 7).

For this design (under gammadistributions), the SD� and
mean length of 95% CI values for the point closest-to-(0, 1)
corner method and the IU method are lower than the other
investigated approaches (Table 8). �e coverage probabilities
are close to the nominal level for all methods.

In all simulation scenarios, the IU method shows a
better performance in the estimation of the optimal cut-point
with respect to the other methods. �e bootstrap standard
deviation andmean length of the 95% bootstrap CI values for
the IU method are also minimum among all methods. �us,
for all simulation scenarios, although, in gamma scenarios,
the methods do not lead to a common cut-point, in order
to identify the optimal cut-point, the IU method is a better
alternative than the previous proposed methods.

3.2. Cross-Validation of the Optimal Cut-Point. In order to
evaluate the signi	cance of the optimally selected cut-point,
twofold cross-validation process [16] is used. �e procedure
is as follows:

(1) Generating datawith the same properties given in this
manuscript

(2) Applying all methods to the data and estimating cut-
points for all methods

(3) Splitting data into two equal subsets, that is, subset I
and subset II

(4) Applying all methods to subset I and estimating cut-
points for all methods

(5) Assigning each observation in subset II to either one
of two groups by using the cut-point obtained in the
previous step
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Table 9: �e true cut-point estimates obtained by all the methods: some of cut-points and the AUC values for pulse pressure, LVEF, plasma
sodium level and heart rate in prediction of mortality.

Pulse pressure LVEF Plasma sodium Heart rate

Point (Se, Sp) Point (Se, Sp) Point (Se, Sp) Point (Se, Sp)

Youden index 30 (83.7, 79.7) 0.264 (62.8, 84.7) 137 (93.0, 48.3) 99 (32.6, 91.5)

ER 30 (83.7, 79.7) 0.295 (76.7, 69.5) 135 (72.1, 66.9) 85 (62.8, 58.5)

Min � value 24 (98.3, 53.5) 0.235 (46.5, 94.9) 130 (39.5, 92.4) 115 (16.3, 99.2)

CZ 30 (83.7, 79.7) 0.295 (76.7, 69.5) 135 (72.1, 66.9) 85 (62.8, 58.5)

Some cut-o

points with their
sensitivity and
speci	city values

⋅ ⋅ ⋅
24 (53.5, 98.3)
27 (81.4, 79.7)
30 (83.7, 79.7)
34 (83.7, 77.1)
37 (100, 39.0)

. . .

⋅ ⋅ ⋅
0.272 (65.1, 81.4)
0.282 (67.4, 76.3)
0.290 (69.8, 75.4)
0.295 (76.7, 69.5)
0.303 (81.4, 61.0)

⋅ ⋅ ⋅

⋅ ⋅ ⋅
133 (53.5, 82.2)
134 (60.5, 76.3)
135 (72.1, 66.9)
136 (81.4, 57.6)
137 (93.0, 48.3)

⋅ ⋅ ⋅

⋅ ⋅ ⋅
84 (67.4, 53.4)
85 (62.8, 58.5)
86 (58.1, 61.9)
87 (51.2, 68.6)

⋅ ⋅ ⋅
Index of Union 30 (83.7, 79.7) 0.295 (76.7, 69.5) 135 (72.1, 66.9) 85 (62.8, 58.5)

AUC 0.892 0.809 0.777 0.647

Note. Point: cut-point; Se: sensitivity; Sp: speci	city; AUC: the area under the curve.

(6) Applying all methods to new subset II and estimating
cut-points for all methods

(7) Assigning each observation in subset I to either one
of two groups by using the cut-point obtained in the
previous step

(8) Applying all methods to the combination of these two
subsets and estimating cut-points for all methods

(9) Taking the di
erence between the cut-points obtained
at the second step and at the last step

�is procedure is applied for 4 scenarios (2 normal and 2
gamma scenarios with the sample size �0 = �1 = 50)
given in the manuscript. �e results are shown in Figure 1
in SupplementaryMaterial available online at https://doi.org/
10.1155/2017/3762651. According to the results, for each
method, the di
erence between the optimal cut-points esti-
mated before and a�er cross-validation is around 0 and the
IU method gets the smallest mean absolute di
erence in all
four scenarios.

4. Application

A real data obtained from a study in cardiology is used as
an example. Yildiran et al. [12] investigated an association
between pulse pressure and 2-year cardiovascular death in an
entire heart-failure population. �ey prospectively enrolled
225 (188 male, 37 female) heart-failure patients with NYHA
functional classes I–IV, mean age 56.5 [12].

�ey recorded detailed histories of the 225 patients,
including demographic characteristics, cardiovascular (CV)
risk factors, and medication usage. �e patients were divided
into 4 NYHA classes in accordance with their medical
histories and the 	ndings upon physical examination and
then into 2 groups according to their NYHA class (mild
heart failure [classes I-II] and advanced heart failure [classes
III-IV]). Levels of serum lipids, glucose, high-sensitivity C-
reactive protein, blood urea nitrogen, creatinine, sodium, and

potassium were measured by routine laboratory methods.
Blood pressures were measured by sphygmomanometer in
accordance with published guidelines. Pulse pressure was
calculated as the di
erence between systolic and diastolic
blood pressure, and the patients were divided accordingly
into 4 quartiles (PP of <35, 35–45, 46–55, or >55mmHg) [12].

�ey used ROC analysis to de	ne the cut-point values for
pulse pressure, LVEF, plasma sodium value, and heart rate
in predicting CV death. In this analysis, 170 patients who
had all four measurements at the same time (55 patients’
measurements were missing) were included. To get optimal
cut-point values, they used ER approach [12].

SupplementaryWeb-Only Table 1 reports some descrip-
tive statistics of these four measurements. Pulse pressure,
LVEF, and plasma sodium levels are signi	cantly lower in
dead patients (�1 = 43) than in alive patients (�0 = 117)
and heart rate is signi	cantly higher in dead patients than
in alive patients. According to the results of the Shapiro-
Wilk nonparametric normal distribution test, heart rate and
plasma sodium are both normally distributed in both groups,
LVEF is normally distributed in dead patients and is not
normally distributed in alive patients, and pulse pressure is
not normally distributed in both groups. For nonnormal dis-
tributed variables, the distribution of LVEF in alive patients
is le�-skewed and the distributions of pulse pressure in both
groups are right-skewed. Since the numbers of patients in two
groups are not close enough, the design is unbalanced and the
ratio between the numbers of patients is similar to the 50 : 100
scenario in the simulation protocol.

In this study, the data obtained from the study by Yildiran
et al. [12] is used and all the methods including the IU
method are applied to this data. �e corresponding results
are given in Table 9. �e upper part of Table 9 shows the cut-
points obtained by using the previously proposed methods.
To de	ne the cut-point with the IU method, some of
cut-points with their sensitivity and speci	city values and
AUC value are given. According to this table, the IU method

https://doi.org/10.1155/2017/3762651
https://doi.org/10.1155/2017/3762651
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(b) �e receiver operator characteristic curve for plasma sodium in the
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Figure 3: �e receiver operator characteristic curves for LVEF, plasma sodium, and heart rate in the prediction of cardiovascular death [12].

gives the same cut-points with the ER method for di
erent
AUC values (Figure 3).

5. Conclusions

De	ning the optimal cut-point is very important when a
continuous variable is considered as a diagnostic marker.
Getting optimal classi	cation level depends on the point
chosen for diagnosis. �e criteria for optimality can change

according to the aim of the study. However, as a general
rule, minimizing the total misclassi	cation rates is a good
approach. With IU method, since the di
erence between
sensitivity and speci	city values is minimum, this condition
is met most of the time.

According to the results given in the tables, the proposed
IU method can be a better alternative for de	ning the cut-
point. When the de	nition of optimal point is stated as the
point that minimizes the misclassi	cation rates or the point
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that equalizes the values of sensitivity and speci	city, the
IU method is better than the other methods in most of
the comparison scenarios. �is conclusion does not change
with the distribution of biomarker or the homogeneity of
variances of biomarkers. �e changes in the sample size
and the AUC values may a
ect but not alter the interpreta-
tion.

�e IU method uses the absolute di
erence between
diagnostic accuracymeasures andAUCvalue instead of using
the Euclidean distance. �e reason behind this idea is to
provide the simplicity in de	ning the point as optimal. With
the IU method, one can easily identify the optimal cut-point
only by checkingwhether the sensitivity and speci	city values
are close enough to AUC value or not. �at is, the complex
calculations are not necessary for the IU method.

When the relative bias and MSE values of the IU method
are compared with the previous methods, it is seen that the
IUmethod is better than the others.�us this method can be
used for de	ning the optimal cut-point value especially when
the sample sizes of the two groups are equal and the AUC
value is high. (i.e., higher than 0.7).

A common practice is to select a cut-point which de	nes
two risk groups for a continuously measured biomarker
[16]. A cut-point for a biomarker is meaningful for the
clinicians when it is clinically interpretable and understand-
able. Clinical meaning for a cut-point can be explained by
using its accuracy, that is, true classi	cation rate. Among
all the methods, only two of them, the Youden index and
the concordance probability, are based on the maximization
of this rate. �us, these methods provide interpretable cut-
points.

�epoint closest to (0, 1) point on the ROC curvemethod
involves a quadratic term and clinical meaning of this term is
unknown. Despite the lack of clinical meaning, it is shown
in the literature that this method is superior to the other
methods in estimating the true cut-point [11].

�e IU method, like the Youden index and the concor-
dance probability, tries tominimize themisclassi	cation rate.
Hence, it also provides an interpretable cut-point. In this
study, it is shown that the IU method performs better than
(or equal to) the point closest to (0, 1) point on the ROC curve
method.�erefore, the use of the IUmethod is advised to get
more interpretable and better optimized cut-point.

�e IUmethod provides a cut-pointwhose sensitivity and
speci	city are equally high. �is means that, in a cut-point
determination process, if sensitivity and speci	city are valued
equally, the IUmethod seems to be the best option among all
other methods.

Appendix

Identification of the True Theoretical
Cut-Point for the IU Method under
the Normal Homoscedastic Distribution Case

Let us consider the normal homoscedastic distribution sce-
nario, where� ∼ 
 (�, �), # = 0, 1 (assuming �1 > �0 =0 and �0 = �1 = 1). �en, the conditional distribution of the

quantitative variable � in group # is $(�) = �(� ≤ � | #)
for# = 0, 1.

In particular, at cut-point �, speci	city Sp(�) = $0(�),
and sensitivity Se(�) = 1 − $1(�). �en the IU function can
be written as one of the following forms (according to the
di
erence in the absolute value):

(i) IU(�) = $0(�) − $1(�) + 1 − 2 ∗ AUC

(ii) IU(�) = 1 − $0(�) − $1(�)
(iii) IU(�) = $0(�) + $1(�) − 1
(iv) IU(�) = 2 ∗ AUC − 1 − $0(�) + $1(�)

�at is, IU(�) = !$0(�) + "$1(�) + % where !, " and % are
arbitrary (!, " = −1 or 1, −1 ≤ % ≤ 1). �us this formulation
is general form of the Youden Index. So, the cut-point which
optimizes the IU function can be obtained by taking the
	rst derivative of IU(�), &IU(�)/&� = !'0(�) + "'1(�), where'(�) = &$(�)/&� are the normal probability density func-
tions for diseased and nondiseased subjects. Since the normal
distribution is symmetric, '0 = −'0 for the standard normal
distribution and thus the root of &IU(�)/&� = 0 is �IU = �1/2.
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