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Defining and quantifying microscale wave breaking 

with infrared imagery 

A. T. Jessup and C. J. Zappa 
Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of Washington, Seattle 

Harry Yeh 

Department of Civil Engineering, University of Washington, Seattle 

Abstract. Breaking without air entrainment of very short wind-forced waves, or microscale wave 
breaking, is undoubtedly widespread over the oceans and may prove to be a significant mechanism 
for enhancing the transfer of heat and gas across the air-sea interface. However, quantifying the 
effects of microscale wave breaking has been difficult because the phenomenon lacks the visible 
manifestation of whitecapping. In this brief report we present limited but promising laboratory 
measurements which show that microscale wave breaking associated with evolving wind waves 
disturbs the thermal boundary layer at the air-water interface, producing signatures that can be 
detected with infrared imagery. Simultaneous video and infrared observations show that the infra- 
red signature itself may serve as a practical means of defining and characterizing the microscale 
breaking process. The infrared imagery is used to quantify microscale breaking waves in terms of 
the frequency of occurrence and the areal coverage, which is substantial under the moderate wind 
speed conditions investigated. The results imply that "bursting" phenomena observed beneath 
laboratory wind waves are likely produced by microscale breaking waves but that not all micro- 
scale breaking waves produce bursts. Oceanic measurements show the ability to quantify micro- 
scale wave breaking in the field. Our results demonstrate that infrared techniques can provide the 
information necessary to quantify the breaking process for inclusion in models of air-sea heat and 
gas fluxes, as well as unprecedented details on the origin and evolution of microscale wave 
breaking. 

1. Introduction 

The role of deep water wave breaking in limiting wave growth 

and as a source of turbulent mixing has motivated a rich and con- 

tinuing history of research on the importance of breaking waves 

in air-sea interaction [Banner and Peregrine, 1993; Thorpe, 1995; 

Melville, 1996]. In general, wave breaking is the process by 

which a portion of the fluid near a wave crest overtakes the form 

of the wave, becomes turbulent as it spills down the forward 

slope, and ultimately leaves behind a decaying turbulent wake. In 

this context, breaking waves that entrain air and thereby produce 

whitecaps are simply the most intense and visibly obvious type of 

a phenomenon that occurs over a wide range of scales. Banner 

and Phillips [ 1974] coined the term "microbreaking" to describe 

the breaking of very short gravity waves without air entrainment, 

noting that microbreaking, or microscale breaking, is far more 

widespread than whitecapping. The widespread occurrence of mi- 

croscale wave breaking suggests that its cumulative effect on the 

fluxes of heat and gas across the air-sea interface may be signifi- 

cant, especially for moderate wind speeds [Banner and Peregrine, 
1993; Melville, 1996]. 

Low visual contrast due to the absence of air entrainment 

makes microscale breaking waves difficult to identify, while their 

small scale makes quantitative measurements especially chal- 
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lenging. The diagram and video image in Figure 1 illustrate the 
typical features of microscale breaking waves. The defining char- 

acteristic is a bore-like crest accompanied by parasitic capillary 
waves distributed along the forward face. Microscale breaking 
waves are typically described as O(0.1-1) m in length and a few 
centimeters in amplitude. In laboratory wind wave studies, Okuda 

[1982] and Ebuchi et al. [1987] identified a "high-vorticity re- 

gion" near the crests of gravity waves with capillary ripples gen- 

erated ahead of the crests. The origin of vorticity within this sur- 

face "roller" has been identified by Longuet-Higgins [ 1992] as 

the accompanying parasitic capillaries, which themselves gener- 

ate fluid rotation (i.e., vorticity) via the surface-tension effect 

[Yeh, 1992, 1995]. Rollers [Longuet-Higgins, 1992], breaking 

wavelets [Csanady, 1990], and steep wind waves accompanied by 

a high-vorticity layer near the crest [Okuda, 1982] are all de- 

scriptions of phenomena which are clearly identified with the mi- 

crobreaking described by Banner and Phillips [1974]. For 

consistency and convenience, we adopt the general description of 

breaking offered above and use "microscale breaking waves" to 

describe very short, wind-generated gravity waves which break 

without entraining air. 

Since breaking waves of all scales disrupt the diffusive sub- 

layer which regulates the flux of gas across the air-sea interface, 

near-surface turbulence generated by wave breaking has been 

proposed as a significant mechanism for air-water gas transfer. 

Kitaigorodskii [1984] submitted that the gas transfer rate is de- 

termined primarily by large-scale breaking waves that produce 

whitecaps. Csanady [1990], on the other hand, argued that gas 

transfer is controlled by microscale breaking waves, especially 

23,145 



23,146 JESSUP ET AL.: QUANTIFYING MICROSCALE WAVE BREAKING WITH IR IMAGERY 

u 

Parasitic _ • Bore-Like Crest 

Capillaries f•b• 
High-Vodicity Region 
Which Becomes Turbulent 

Figure 1. (top) The characteristic feature of a microscale breaking wave is a bore-like crest with parasitic capillary 
waves riding along the forward face; U is the wind speed, and C b is the crest speed of the microscale breaking 
wave. (Adapted from Ebuchi et al. [ 1987].) (bottom) Video image of a microscale breaking wave with a wavelength 
of roughly 0.1 m. 

under conditions of moderate wind speed. Here we present new 

and intriguing measurements showing that microscale breaking 

waves produce thermal surface signatures that are consistently 

detected by infrared imaging techniques. Evidence from the lit- 

erature suggests that the microscale breaking waves responsible 

for these thermal events are the source of the turbulent "bursting" 

structures observed beneath laboratory wind waves. The concep- 

tual model we present, which explains our infrared observations, 

suggests that thermal detection of microscale wave breaking may 

serve as a de facto definition of the phenomenon itself. Our re- 

sults demonstrate that infrared techniques can provide the infor- 

mation necessary to quantify microscale breaking in order to 

determine its role in the exchange of heat and gas across the air- 

sea interface. Furthermore, infrared techniques should provide 

unprecedented details on the origin and evolution of microscale 

wave breaking. 

2. Infrared Signature of Microscale Wave 
Breaking 

Under most circumstances, a net upward heat flux from the 

ocean occurs primarily by molecular conduction through a ther- 

mal boundary layer, or skin layer, at the ocean surface. As a re- 

sult, the "skin temperature" at the top of this layer is a few tenths 

of a degree Celsius cooler than the bulk temperature immediately 

below the skin layer [Katsaros, 1980; Robinson et al., 1984]. The 

conceptual model in Figure 2 portrays the disruption of this cool 

skin layer by a microscale breaking wave. Turbulence generated 

by the breaking process momentarily disrupts the skin layer and 

transports warmer water from below to the free surface such that 

the skin temperature within the resulting turbulent wake is ap- 
proximately equal to the bulk temperature. As the turbulent wake 

subsides, the surface cools, and the skin temperature returns to its 

original value at a rate which increases with increasing ambient 

heat flux [Jessup et al., 1995]. Detection of infrared radiation 

provides a remote measurement of the skin temperature since the 

optical depth, about 10 pm, is at least one order of magnitude less 

than the skin layer thickness. An infrared imager therefore is ide- 

ally suited to detect and quantify the renewal of surface water by 

individual microscale breaking events. 

In the course of a recent laboratory study focusing on large- 

scale breaking [Jessup et al., 1995, 1997] limited measurements 

of wind-generated waves (in the absence of large-scale breaking) 

revealed the infrared signature of microscale breaking waves. Be- 

cause this experiment at the Canada Centre for Inland Waters 

(CCIW) in Burlington, Ontario, was not specifically designed to 

study microscale wave breaking, the quantitative measurements 

U 

Cb A Qo 
Skin Layer • .... 

Thickness 6 ...['•-'%-. ' I I' 

_ •s• • Wake 
•_•- Turbulence I I 
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AT = Tw-Ts 
Bulk-Skin • Intact Skin Layer 
Temperature .... Disturbed Skin Layer 
Difference -- -- Bulk Water 

O (0.1 øC) 

Figure 2, Conceptual model of disruption of the cool skin layer 
by a microscale breaking wave which leads to the thermal signa- 

ture detectable by infrared imaging. The cool skin is disrupted 
and replaced by warmer bulk fluid from below. The bulk- skin 

temperature difference, AT, across the cool skin layer of thickness 

/5 is supported by the net heat flux, Qo [Saunders, 1967]. 
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Figure 3. Simultaneous (top) video and (bottom) infrared images of wind waves in the University of Washington 

wave tank. Thermal features in the infrared images, taken with an Agema model 880 LW imager, are clearly asso- 

ciated with the wave crests labeled A-C in the video images and thus qualify as microscale breaking waves ac- 

cording to the conceptual model of Figure 2. Note that the crests labeled 1 and 2 have no detectable thermal 

signature, implying that not all waves are breaking. The bulk water temperature T w was 25.8øC, the air - water tem- 

perature difference ATaw was -7.3øC, the relative humidity RH was 53%, the frequency of the dominant wave 
was 3.44 Hz (measured at the test section), and the wind speed U was 6.3 m s -1. 

available at this time are for a narrow range of conditions. Fur- 

thermore, the video recordings made at CCIW were inadequate to 

present visual details of the microscale breaking process. To pro- 

vide quality flow visualization for this report, we have supple- 
mented the CCIW measurements with video and infrared 

measurements taken under comparable conditions in a wind wave 

tank at the University of Washington (UW). The CCIW wave 

tank measured 10 m long, 0.3 m wide, and 0.4 m deep, while the 
UW tank measured 10 m x 1.2 m x 0.9 m. 

Figure 3 shows a sequence of simultaneous, colocated video 

and infrared images of wind waves taken at the UW facility. The 

sensors were directed at the surface at an incidence angle of 30 ø , 

the image size is roughly 0.6 m x 0.3 m, and the time between 

images is 0.16 s. The infrared measurements were made using an 

infrared imager (Agema model 880 LW) operating at wavelengths 

of 8-12 lam. The manufacturer' s specification of noise equivalent 

temperature difference is 0.05 øC. The wind speed was 6.3 m s -1 
at a fetch of 5 m, and the wind direction in the figure is from top 

to bottom. Wave crests appear as dark, roughly horizontal lines in 

the video image. A crescent-shaped patch of higher temperature 

appears at the top of the first infrared image; this patch corre- 

sponds to the wave front labeled A in the first video image. This 

patch grows and propagates down the tank as wave front A con- 

tinues to disrupt the thermal boundary layer. Fainter warm 

patches corresponding to the crests that follow A in the video im- 

ages (labeled B and C) are also evident in the infrared images. 

These signatures are typical of the infrared manifestations of mi- 

croscale breaking that we have observed. As in this example, we 

have noticed that successive crests tend to break periodically in a 

manner suggestive of wave breaking in groups [Donelan et al., 
1972]. Note that the individual crests labeled 1 and 2 in the video 

images do not show a corresponding thermal signature, implying 

that only a portion of the waves qualify as microscale breaking 

events. This observation suggests that the infrared signature of 

wave-induced skin layer disruptions may be used to define micro- 

scale wave breaking. Also apparent in the bottom of the infrared 

images are dark streaks aligned with the wind direction. These 

features generally persist much longer than the wave period and 

may be an indication of secondary circulation related to the waves 

[ Gernrnrich and Hasse, 1992]. 

We performed a simple thresholding analysis to demonstrate 

the capability of infrared techniques to quantify the fraction of 

surface area affected by these microscale breaking events. The 

analysis was performed on infrared imagery similar to that in Fig- 
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Figure 4. Example of detection technique based on the mean sur- 
face temperature, <T>, and the bulk- skin temperature difference 
for the entire run, AT. The image on the left is the same as the 

fifth infrared image in Figure 3 except that the horizontal scale is 
now 0.4 m. Areas with a temperature greater than the lower 

threshold (< T> + 0.20AT) are outlined in the middle image, while 

the right image shows areas with temperature greater than the 
higher threshold (<T> + 0.33AT). Note that the higher threshold 
identifies the three individual events labeled A-C in Figure 3. 

ure 3 but taken in the wind-wave facility at CCIW. The four runs 

of experimental data analyzed here consist of images taken at a 

rate of 25 Hz for a period of 300 s each. The wind speed was con- 

stant at approximately 5 m s -1 at a fetch of 6 m. The heat flux was 
varied by controlling the air - water temperature difference while 

the relative humidity remained steady at 64%. Temperature 

thresholds based on the mean surface temperature, <T>, and the 

bulk- skin temperature difference, AT, were used to identify the 

disrupted area (taking into account the slow decrease in <T> over 

the course of the run due to cooling). The mean bulk- skin tem- 

perature difference, AT, was computed as the mean difference 

between the maximum and mean temperatures within the images 

over the course of the run. For this analysis, thresholds of 0.20AT 
and 0.33AT above the mean were chosen to outline the features 

that correspond to areas of skin layer disruption due to microscale 

breaking events. 

After a series of standard morphological operations to reduce 

noise effects, a time series of the fraction of the area affected by 

microscale breaking, At. was computed from the sequence of in- 

dividual images; At, denotes the fraction of the image whose tem- 

perature was above the specified threshold. Figure 4 shows the 

results when the two thresholds are applied to the fifth image of 

Figure 3. The lower threshold (<T> + 0.20AT) detects one large 

event, whereas the higher threshold (<T> + 0.33AT) successfully 

separates three events identified with the three individual crests in 

Figure 3. Although this simple definition of fractional area aver- 

ages out the effect of multiple events in various stages of devel- 

opment within a single image, At, nonetheless provides a measure 

of the areal extent of microscale breaking. 

Figure 5 shows time series of At, computed using the chosen 

thresholds for one run measured during the CCIW laboratory ex- 

periment. Both time series show large, rapid fluctuations, as well 

as more slowly varying features. The frequency of the fluctua- 

tions depends on the recovery rate of the skin layer, the occur- 

rence of multiple breaking events within the image, and the time 

between the events. For the run shown in Figure 5, the mean frac- 

tion of disrupted area is 0.35 for the lower threshold and 0.19 for 

the higher threshold, indicating that a significant fraction of the 

surface is disrupted on a continuous basis. For the four runs at 

0.8 

0.6 

0.4 

0.2 

0.0 I 

Detection Threshold: <T> + 0.20AT I 
Mean Fractional Area: 0.35 
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I I I I 

50 100 150 200 250 

Time / s 

1.0 I Detection Threshold: <T> + 0.33AT 0.8 Mean Fractional Area: 0.19 
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0.4 • 0.2 

0.0 I I I I 
0 50 100 150 200 250 
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Figure 5. Time series of At,, the fractional area of microscale wave breaking, detected when using (top) the lower 
threshold (mean At, = 0.35) and (bottom) the higher threshold (mean At, = 0.19). Data were taken during an experi- 
ment at the Canada Center for Inland Waters (CCIW); T w = 26.8øC, ATaw =-1.7øC, RH = 65%, fp = 3.28 Hz 
(measured 1 m downwind of the test section), and U = 5.0 m s -1. 
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Figure 6. Comparison of normalized power spectra of surface displacement and fractional area Ab for the run in 
Figure 5 using the same threshold levels. The dominant frequency of At, provides a measure of the frequency of oc- 
currence of microscale wave breaking and is roughly one-third the dominant wave frequency. 
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constant wind speed and relative humidity considered here, the 
average At, did not change (within _+ 0.01) as the air- water tem- 
perature difference was varied from-1.7øC to -9.1øC (corre- 
sponding to an increase in AT from 0.16øC to 0.36øC). 

In order to evaluate how often the detected events occurred, 

we computed power spectra from the time series of At, derived 
from the threshold analysis described above. The dominant fre- 

quency of At, provides a measure of the frequency of occurrence 
of the disturbances due to microscale breaking, even though mul- 

tiple events may be detected in a single image. Figure 6 compares 
the normalized power spectra of Ab with the normalized spectrum 
of the surface displacement measured 1 m downwind of the im- 
aged area. The dominant frequency of A b is roughly one-third the 
dominant wave frequency for all four runs at this wind speed of 
5 m s -1. Similarly, power spectra of the surface temperature for a 

ahead of the sloped line corresponding to breaking crest E, indi- 
cating the occurrence of a region of very small or no drift. 

Recent measurements aboard R/P Flip provided an opportunity 
to observe microscale wave breaking in a field setting. Figure 8 

shows two nighttime sequences of infrared images depicting ex- 
amples of the disruption of the thermal boundary layer by micro- 
scale wave breaking. These disruptions produced temperature 

changes of 0.1 øC, which were comparable to AT measured inde- 
pendently. The imager was mounted 8 m above the still-water 
level and directed toward the surface at an incidence angle of 30 ø . 

The image size is roughly 1 m x 0.75 m, and the time between 
images is 0.12 s. The wind speed measured at a height of !0 m, 
U]o, was roughly 6.6 m s -] during the top sequence and 5.7 m s -] 
during the bottom; the wind direction for both is from top to bot- 
tom. The significant wave height (SWH) measured 2.28 m in the 

single point at random locations also show a frequency roughly top sequence and 2.14 m in the bottom, with peak swell frequen- 
one third of the wave frequency, implying that one wave out of cies, f•s, of 0.070 Hz and 0.074 Hz respectively. The microscale 
three breaks. breaking events have been thresholded and outlined in a manner 

Details on the origin and evolution of the surface disruption 
near the crest of microscale breaking waves are revealed by oper- 

ß 

ating the imager in a "line scan" mode which provides a scan 
, 

along the same line at a rate of 2500 Hz. An example of the high 
temporal and spatial resolution available using this rapid sampling 
capability is shown in the infrared space-time plot in Figure 7, 
which also shows corresponding video images. The vert•ical axis 
is the distance along the tank over which the imager scans, and 
the white line in each video frame corresponds to the location of 

the scan line. The horizontal axis in the space-time plot spans a 

duration of 0.9 s, with each vertical line denoting the time of a 

video frame. T'ne propagation down hhe tank of the microscale 
breaking crests labeled E and F in the video images corresponds 
to the" light•colored; steeply sloping bands labeled E and F in the 
infrared space-time plot. The slopes of these bands determine the 
SPee d o-f the thermal features which, at 0.5 m s -1, matches the 
phase Speed ofth e dominant wave. Fine streaky signatures of sur- 
face drift features move at a much slower velocity (3% to 4% of 

ß 

the wind speed U) and correspond to the motion of the patchy 
features near the bottom of the infrared images in Figure 3. Note 

that the slope of the surface drift features tends toward zero just 

similar to that used in Figure 4. The top sequence depicts the 
evolution of a single event labeled J followed by the inception of 
a second event labeled K, while the bottom sequence shows mul- 

tiple events throughout. In both cases the microscale breaking ap- 
peared to occur as the orbital motion of long waves augmented 
the surface drift. This description is suggestive of the mechanism 

proposed and measured in the laboratory by Phillips and Banner 
[1974] in which the increased surface drift due to longer•waves 
leads to microscale wave breaking. 

3. Discussion 

Organized, turbulent structures, or bursts, in the air and water 

associated with wind waves which do not produce air entrainment 

have been documented in a variety of laboratory studies over the 

past two decades. Toba et al. [1975] describe d a downward, sub- 
surface flow associated with the surface convergence near the 

bore-like crests of steep wind waves. These downward bursts 
have been related to flow separation and reattachment'in the air 
that occur near the wave crests [Kawamura and Toba, 1988]. 

Okuda [1982] found a water side region of high vorticity near 
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Figure 7. Example of measurements using the infrared imager to scan a single line oriented along the tank at a rate 
of 2500 Hz. (top) Sequence of video images showing the location of the line scan and three individual wave crests 
labeled E-G propagating along the tank. (bottom) Space-time plot of surface temperature spanning the time of the 
video images. The scan lines corresponding to the three video images are indicated. The disruption of the skin layer 
by each breaking crest appears as a sloping line which corresponds to Co = 0.5 m s -•. The warmer temperatures 
above these lines indicate that the skin layer is disrupted by the breaking crests; T w = 25.1øC, ATaw =-6.5øC, RH = 
49%, fp = 3.24 Hz (measured at the test section), and U = 8.1 m s -•. 

crests that were occasionally accompanied by downward, subsur- 
face bursts on the forward face. 

Yoshikawa et al. [1988] used temperature as a passive tracer 
to detect these downward flows of water originating from the sur- 
face by combining fast response temperature measurements (at 

depths of 0.015, 0.035, and 0.072 m) and velocity measurements 
(at 0.072 ,m) in the near-surface layer under wind waves. The 
source of the tracer for the detection of downward flows was the 

cool skin layer, which was present owing to a net upward heat 
flux dominated by evaporation. Event-like temperature fluctua- 
tions of several millidegrees were coincident at all depths and oc- 
curred at intervals of the order of 10 s. These thermal intrusions 

were characterized by a rapid decrease in temperature followed 

by a more gradual recovery. The lifetime of roughly 10 s for the 

related with increased downward and downwind velocity fluctua- 
tions which persisted for a similar duration. Yoshikawa et al. 

[1988] asserted that these low-frequency, large-scale features 
were due to downward bursts associated with individual wind 

waves, but the specific mechanism remained unresolved. The 

shallower thermistors showed far more rapid fluctuations, which 
suggests that the large-scale features detected by the deepest 
thermistor and the velocity sensor might be due to larger breaking 
events, or perhaps due to the additive effect of wave breaking in 
groups. These laboratory measurements provide direct evidence 

that fluid within the thermal sublayer is renewed by a turbulent 
process observed beneath wind waves. 

The downward bursts reported by Yoshikawa et al. [1988] 
clearly were associated with individual waves and in all likeli- 

thermal events was much longer than the dominant wave period, hood were produced by microscale wave breaking. While our ob- 
which ranged from 0.24 to 0.36 s. The thermal events were cor- servations indicate that not all waves are microscale breakers (as 
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Figure 8. Nighttime sequences of infrared imagery demonstrating observations of microscale wave breaking 

aboard R/P Flip in September of 1995. The microscale breaking events within both sequences have been thre- 
sholded and outlined. These disruption events produce temperature changes of 0.1 øC, which are comparable to an 

independently measured AT. (top) Evolution of a single event labeled J followed by the inception of a second event 

labeled K; U]0 = 6.6 m s -], SWH = 2.28 m, ft, s = 0.070 Hz. (bottom) Example of multiple microscale breaking 
events; U•0 = 5.7 m s -•, SWH = 2.14 m, ft, s = 0.074 Hz. In both cases, the microscale breaking occurred as the or- 
bital motion of long waves augmented the surface drift. 

illustrated in Figure 9a), the frequency of microscale breaking we 
measure (about one-third the dominant wind-wave frequency) is 

significantly greater than the frequency of large-scale temperature 
intrusions reported by Yoshikawa et al. [1988]. The skin layer dis- 
ruptions detected by the infrared imager represent renewal of the 
surface in the sense that the fluid parcels within 10 pm of the 

water surface overturn and are replaced by fluid parcels from be- 

low. Microscale wave breaking, for example, likely produces 
small-scale eddies that are sufficiently energetic to bring about 

surface disruption, as illustrated in Figure 9b. At times, however, 
a downward "bursting" motion may emerge as a result of a more 

intense microscale breaking event, as depicted in Figure 9c. We 
conclude that the reason for the difference between our results 

and those of Yoshikawa et al. [1988] is that not every microscale 

breaking wave produces a strong downward burst. 
Komori et al. [ 1993] investigated the shear-induced turbulence 

under wind waves by considering it as the primary surface re- 

newal mechanism for gas transfer, combining near-surface veloc- 

ity measurements in both the air and water with gas flux 
measurements. Subsurface bursts near the wind wave crests, as 

well as more frequent "surface renewal motions," were observed 

to coincide with organized motions in the air. Komori et al. 

[ 1993] employed classical surface-renewal theory, which predicts 

the gas transfer velocity, kœ, based on the continuous random re- 

newal of the laminar sublayer with the underlying water by tur- 

bulent eddies [Danclaverts, 1951]. The age of fluid elements 

occupying the surface, x, is the timescale for surface renewal, 

which can be interpreted as the time scale for transport processes 

that occur at the air-sea interface. The gas transfer velocity is pro- 

portional to (Ds)U2, where D is the diffusivity of gas in water and 
s = 1/x defines the surface renewal rate. According to theory, 
more intense turbulence increases the surface renewal rate and 

thus enhances the gas transfer. Komori et al. [ 1993] based s on the 

frequency of thresholded velocity fluctuations near the water sur- 

face, resulting in a surface renewal rate that was an order of mag- 

nitude greater than the wave frequency. 

The velocity fluctuations that Komori et al. [ 1993] measured 

likely represent small-scale eddy motions produced primarily by 

microscale breaking waves. However, our measured frequency of 

microscale breaking is an order of magnitude less than the fre- 
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Figure 9. Illustration showing that not all wind waves are microscale breakers and not all microscale breaking 
waves produce bursts. (a) This wave is not a microscale breaker since the "roller" has not evolved into a "bore-like" 

crest which will disrupt the skin layer. (b) Microscale breaking produces small-scale eddies that are sufficiently en- 

ergetic to bring about surface disruption. (c) Downward "bursting" motion may emerge as a result of a more intense 

microscale breaking event. The burst is shown for a reference frame moving with the crest. In general, no skin layer 

disruption will occur for eddies incapable of inducing fluid parcel overturning at the surface. Furthermore, not all 

turbulent eddies are due to microscale breaking events. 

quency of surface renewal motions they used to estimate s. The The work by Csanady [ 1990] to model the effect of microscale 

length scale for the eddies measured by Komori et al. [1993] was wave breaking on gas flux resulted in (1) with n = 1/2 and [5 = o•œ, 
of O(0.01) m compared to the length scale of O(0.1) m for the where o• is a dimensionless constant and e is the fractional surface 

turbulent wakes of microscale breaking waves that we detect (see area covered by wave-induced divergences, that is, where the dif- 

Figure 3). Therefore a probable reason for the difference between fusion boundary layer becomes thin as a result of microscale 

s measured by Komori et al. [ 1993] and the frequency of micro- breaking waves. Csanady [1990] estimated a value of at least 0.20 

scale breaking is the presence of multiple small-scale eddies 

within the turbulent wake of a single microscale breaking event. 

Another potential contributing factor is that not all small-scale 

eddies near the surface correspond directly to microscale breaking 

events. The line scan measurements, like those in Figure 7, do not 

show high-frequency skin layer disruptions in areas unaffected by 

microscale breaking. In all likelihood, not all of the eddies in 
these areas were capable of producing skin layer disruption by 

fluid-parcel overturning at the surface because of the suppression 

of vertical motion by the density discontinuity at the air-water in- 

terface. Our findings highlight that the frequency of microscale 

breaking is distinctly different from the surface renewal rate, s = 

l/x, used in traditional surface renewal models that are based on 

shear-induced turbulence. 

Models of the gas transfer velocity have evolved into a con- 

sistent formulation which may be expressed as 

kL = •u*Sc-n (1) 
where [5 is a dimensionless constant, u. is the water-side friction 

velocity, and Sc is the Schmidt number, given by Sc = v/D (where 

v is the kinematic viscosity of the water). An exponent ofn = 1/2 

is consistent with classical surface-renewal theory. While 
parameterizations of the exchange of heat [Wick et al., 1996] and 

gas [Jiihne et al., 1987] using surface renewal theory have had 
some success, fundamental differences between the classical idea 

of surface renewal and the influence of waves remain to be recon- 

ciled in modeling these air-sea fluxes. For instance, Jiihne et al. 

[1987] reported that kœ increases linearly with the total mean 

square wave slope, which suggests that deficiencies in gas trans- 

fer models and discrepancies among laboratory and field results 

may be overcome by considering wave-related parameters. The 

established importance of waves to gas transfer, combined with 

the surface disruption due to microscale breaking waves demon- 

strated here, implies that microscale wave breaking may indeed 

be a likely mechanism for enhancing kœ. 

for œ based on measurements reported by Jiihne et al. [1987]. 

While the values of A b in Figure 5 are consistent with Csanady' s 
[1990] estimate for e, a meaningful comparison will require 

measurements over a wide range of wind speeds at varying fetch. 

Csanady's [ 1990] instructive modeling work provides a point of 

reference for future descriptions of gas transfer incorporating mi- 

croscale wave breaking. In addition to e, one might expect kœ to 

depend on other parameters that characterize microscale breaking, 

such as the rate of recovery of the affected area and the size and 

intensity distribution of surface disruptions. 

Details of the formation and evolution of a breaking wave crest 

have recently emerged both in theory [Longuet-Higgins, 1992, 

1994; Longuet-Higgins and Cleaver, 1994] and experiment 
[Duncan et al., 1994]. The infrared space-time plot in Figure 7 

indicates that our present infrared capabilities combined with im- 

proved video measurements will provide unprecedented details of 

the microscale breaking process, such as the exact location of ini- 

tial surface disruption. The images in Figure 8 of microscale 

breaking in the presence of swell show that infrared techniques 
can be used to detect enhanced microscale breaking due to long- 

wave/short-wave interaction. Preferential breaking of very short 

gravity waves along the phase of long waves has been suggested 

as the mechanism responsible for modulation of the skin tem- 

perature by swell waves [Jessup and Hesany, 1996]. In the area of 

microwave remote sensing, recent modeling of radar backscatter 

has been based on scattering from either the bore-like crest 

[Trizna and Carlson, 1996] or the parasitic capillaries [Plant, 

1997] of microscale breaking waves. 

4. Concluding Remarks 

Microscale breaking waves disrupt the skin layer and produce 

thermal surface signatures that can be quantified by infrared im- 

aging techniques. As far as we know, these are the first published 

measurements of the infrared signature of microscale breaking 
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waves. The infrared techniques we have outlined provide a new 

and objective measurement method for identifying and quantify- 

ing microscale breaking waves despite their low visual contrast 

and small scale. Furthermore, our observations suggest that the 

infrared signature of microscale wave breaking may serve as a 

practical means of defining the phenomenon itself. 

We have demonstrated the ability to obtain the frequency of 

occurrence and the areal coverage of microscale wave breaking. 

The limited measurements presented here show that the fractional 

area of water surface affected by microscale wave breaking can 

be substantial under a moderately forced laboratory wind wave 

field. The frequency of microscale wave breaking was roughly 
one-third that of the dominant wave. Evidence from the literature 

suggests that downward "bursting" phenomena observed beneath 

laboratory wind waves are likely produced by microscale wave 

breaking. However, the frequency of microscale wave breaking 

we measure is significantly higher than the frequency of bursting 

reported by others, implying that not all microscale breaking 
waves produce these "bursts." Other readily available quantities 

of interest include the rate of recovery, the intensity, and the du- 

ration of microscale wave breaking events. Examples of ocean 

measurements demonstrated that these techniques may also be 

applied in the field. Infrared techniques should provide the quan- 

titative measurements necessary to incorporate microscale wave 

breaking into models of heat and gas flux at the air-sea interface. 

Moreover, extraordinary details on the origin and evolution of 

microscale breaking waves are provided by infrared techniques. 
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