

 Gil Regev, Ilia Bider, Alain Wegmann

Defining Business Process Flexibility with
the Help of Invariants

Software Process: Improvement and Practice (SPIP),

V12(1), 2007, pp. 65-79
© 2007 Wiley

Defining Business Process Flexibility with the Help of
Invariants

Gil Regev1, Ilia Bider2*, Alain Wegmann1

1Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
{gil.regev, alain.wegmann}@epfl.ch

2IbisSoft, Stockholm, Sweden
ilia@ibissoft.se

Abstract. Enterprise survival is about maintaining an identity that is separate
from other enterprises. We define flexibility as the ability to change without
losing identity. The identity of an enterprise can be analyzed as a set of norms
and beliefs about these norms held by its stakeholders, such as customers, em-
ployees, suppliers and investors. Business processes and their support systems
maintain invariants that are the result of compromises between the often con-
flicting norms and beliefs of these stakeholders. We formalize these invariants
as values in a state space. Identifying a minimum set of invariants provides a
basis for defining flexible processes and support systems. We illustrate the use
of this framework with production business process support systems.

Keywords: Business Process, Flexibility, Stability, Invariant, Regulation.

1 Introduction

Enterprise survival often hinges on the fit between the enterprise’s position in its
environment on the one hand and its business processes and their supporting systems
on the other. Flexibility is an essential property for the maintenance of this fit in
changing environments (Knoll and Jarvenpaa 1994). Changes within the enterprise
and in the enterprise’s environment often introduce misfits between the enterprise and
its environment. Business processes and Business Process Support systems (BPS)
need to be flexible so that changes can be made to them to correct these misfits.

* The work of the second author was supported by the Swedish Agency for Innovation Systems

(Vinnova) under the grant for a project on Integration of Business Process Support with
Knowledge Management. We would also like to thank the anonymous reviewers who helped
us to improve the structure and the language of this article.

Flexibility is usually thought of as the capability to change. It may, however, be
useful to analyze flexibility from the opposite dimension of stability. From this per-
spective we argue that to change something, that something first needs to exist, i.e.
without prior existence, change is not possible. Furthermore, to exist, that something
needs to maintain a set of features that is different from all other things in its envi-
ronment. This set of features enables observers of the thing to define its identity. For
example, for an enterprise to exist, it has to have some features that are different from
other enterprises. These features constitute the enterprise’s identity in the eyes of its
stakeholders. These features need to remain somewhat stable in order for the enter-
prise to maintain its identity. From this point of view, existence is about non-change,
i.e. stability. To maintain these features stable, in a changing environment, the enter-
prise needs to continually adapt. Hence, there is no existence without change. Flexi-
bility is therefore the ability to continuously balance between change and stability
without losing identity.

To maintain its identity an enterprise manages relationships with stakeholders.
Business processes are the methods used by the enterprise to manage these relation-
ships. Business processes often represent a compromise between the conflicting
norms of the different stakeholders of the enterprise. Compromises are needed, for
example, in order to satisfy the differing expectations of customers, investors, suppli-
ers, employees, and government regulators at the same time. In a business process
point of view, we model the compromises maintained by business processes as in-
variants. These invariants represent what is important to maintain unchanged. We
model an invariant as a subset of states in a state space. By defining a minimal set of
invariants that satisfies the stakeholders, we can explore different possibilities for
changing the business process and maintain its essential properties unchanged. We
apply this analysis to three levels, namely the organizational level at which business
process types are defined, the operational level at which business process instances
are executed, and the BPS system level at which requirements for the support system
are defined.

We begin this paper by exploring the issue of flexibility and the difficulties of pro-
viding flexibility in business processes from a theoretical point of view (Section 2).
We continue with exploring ways for defining invariants in a more formal way (Sec-
tion 3). To this end, we first describe concrete examples of business processes ana-
lyzed from the point of view of the invariants they maintain in a state space. We then
propose a set of requirements that could be considered as an invariant for BPS sys-
tems. Next, we overview related research and discuss in what way it differs from
what is proposed in this paper (Section 4). Finally, we give a brief summary of the
main ideas of the paper (setion5).

2 Flexibility

In this section we explore, from a theoretical point of view, the issue of flexibility of
business processes and their support systems. We begin by analyzing the relationship
between flexibility and the maintenance of identity in general. We then discuss organ-
izational flexibility, followed by business process and BPS system flexibility.

Flexibility and Identity

To understand flexibility, we take as a point of departure a dictionary definition of the
term flexible (Merriam-Webster 2005):

1: capable of being flexed: Pliant
2: yielding to influence: Tractable
3: characterized by a ready capability to adapt to new, different, or changing requirements

These definitions suggest that something that is flexible, though yielding to influ-

ence must still resist this influence. It can be argued that most, if not all, of the things
we see exist because they resist change to some extent. An enterprise, for example,
must to some extent resist external influences such as demands by clients to provide
better, less expensive service, price hike demands by suppliers, and regulators de-
mands for stiffer regulations etc. Yielding immediately to all influences will tear up
the enterprise quite rapidly.

From a state space perspective, the states occupied by some object are a subset of
all possible states. This restriction to a subset of states enables observers to identify
an object as separate from its environment. A flexible object can occupy a different
set of states than its original subset of states. This second set is also a subset of all
possible states. Furthermore, in order to be defined by an observer as “the same ob-
ject” the second set of states should not differ too much from the first one. In other
words, what we call flexible is neither so rigid as not to accept change at all nor so
changeable that it falls into pieces when we attempt to change it. Flexibility, there-
fore, is the maintenance of a subset of permissible states in the face of change. This
subset of states is often called structure.

Structure refers to recurrent patterns of the behavior of the system (the different
states/actions and the relation between them) and to the construction (Dietz 2004) of
the system (the sub-systems and their interrelations). As structure must be somewhat
stable, it is by definition averse to change. This is both a blessing and a curse: A
blessing as long as the conditions do not change and therefore as long as change is
not necessary; A curse when change is necessary (Weinberg and Weinberg 1988).

Maintaining flexibility, i.e. both stability and the capability to change, requires an
optimal structure. It should not be too complicated so that it cannot be changed when
needed, nor too simple with respect to the challenges faced by the organization
(Weinberg and Weinberg 1988). In other words, for the structure to be flexible it
needs to not be too stable (i.e. rigid) nor too unstable (and lose its identity).

Organizational Flexibility and Identity

The structure of an enterprise (both behavioral and constructional) can be studied
as a set of norms. A norm can be defined as a set of states that do not differ signifi-
cantly from one another, i.e., a feature that remains relatively stable within some
timeframe, defined by an observer. A norm, as viewed from the point of view of an
observer, is usually called a belief (Regev and Wegmann 2005). Norms and beliefs
interact in sophisticated ways; see for example, (Vickers 1987). For the purpose of
this paper, we simply note that in order to change the norms of an enterprise, the

beliefs of its stakeholders (its observers) need to change as well. For example, before
a business process is changed, it is necessary to convince stakeholders that the current
process is either faulty, or that it can be improved in some way (lower cost, more
output, better conformance to government regulations etc). Without the stakeholders’
acceptance, no process change is likely to occur. Hence, the people responsible for a
process need to change their beliefs about the current process and the potential bene-
fits of a process change.

The identity of an enterprise, for a given stakeholder, consists of a set of beliefs

that the stakeholder has about this enterprise (Regev and Wegmann 2005). As enter-
prises have several stakeholders, some of which have conflicting interests in it, the
enterprise needs to maintain multiple identities. For example, customers and suppliers
of an enterprise have a different set of beliefs about the enterprise from those of the
enterprise’s employees. Employees are by definition more aware of internal norms of
the enterprise. Customers and suppliers will tend to better perceive the norms that the
enterprise exposes to the outside world.

Flexibility can be defined as change that may be made to a set of norms in a given
amount of time, without affecting the beliefs that form the identity of the enterprise
for a given observer. Therefore, to define what needs to change, we first need to
identify what the identity of the enterprise is for its essential stakeholders. We can
then define whether an envisioned change modifies this identity. It is then possible to
decide whether to modify this identity or not. From a state space perspective, this
requires the identification of the subset of states that should not change based on the
viewpoints of a set of essential stakeholders. We call this subset of states, an invari-
ant.

Business Process Flexibility

The commonly accepted definition of a business process is a partially ordered set of
actions performed to reach a well-defined goal. The goal of a business process has
traditionally been considered to be the value provided to the beneficiary of the proc-
ess (e.g. customer), see for example (Hammer and Champy 1993). With this defini-
tion in hand it seems that a business process is flexible if it is able to absorb change
without changing its goal and/or if the goal can be changed with or without changing
the set of actions, as well as their order. However, there are usually more stringent
limits on this flexibility.

To better understand these limits, we use the regulation-based view proposed in
(Regev 2003) and (Regev et al. 2005). In this view a business process is a set of in-
terrelated actions that regulate a set of relationships among stakeholders. Based on
the discussion above, a business process can be seen as a behavioral norm (the par-
tially ordered set of actions) of an enterprise. It is designed in order to maintain an-
other set of norms, the invariant, unchanged.

This definition has several advantages. First, it shows that several stakeholders, not
only the customer, have an interest in a process. Second, using the term regulation
shows that business processes are designed to maintain some equilibrium between the

conflicting requirements of the stakeholders. This equilibrium, the invariant, often
takes the form of a compromise, or an accommodation according to Checkland and
Scholes (1990) between these conflicting requirements. The business process is de-
signed so that this equilibrium is maintained even when occasionally the stakeholders
attempt to change this point of equilibrium. As discussed in (Regev et al. 2005) some
of the actions of a business process can be understood as regulative actions designed
to prevent stakeholders from “abusing” the business process, i.e. from modifying the
carefully constructed equilibrium. This structure obviously is somewhat immune to
change and therefore has limited flexibility.

For example, the process defined in order to sell some product to a customer
(called here the Sales/Collection process) is designed in most commercial enterprises
as a set of actions that ensure that the product required by the customer is delivered to
the customer in exchange for payment. The payment is calculated to ensure that the
stakeholders of the enterprise are all paid, i.e. the suppliers, employees, tax collector,
investors etc. This payment is needed so that they maintain their stake in the enter-
prise within a given norm, e.g. that suppliers continue to provide raw material to the
enterprise. Similarly, products shipped need to match customer orders so that custom-
ers maintain their stake in the enterprise within a given norm, e.g. so that they order
other products from the same enterprise in the future.

In this example, there is obviously a tension between the customer’s desire to get
the product as inexpensive as possible and the suppliers’, investors’ and the organiza-
tion’s employees’ desire to be paid as much as possible. Government regulators also
place requirements on the quality of the manufactured product and the taxes to be
collected. The process has built-in actions to prevent any of these variables deviating
from the prescribed equilibrium. Actions such as quality control, batch numbering
and tax calculation are performed in order to satisfy government regulators. These
regulators are themselves influenced by customers and businesses in an endless cycle
of norm setting as described by Vickers (1987).

Hence, from a regulation point of view, we can notice that this process is designed
to ensure that a compromise, a set of interdependent norms of the enterprise and its
stakeholders, is maintained unchanged. In this view, the goal of the process is the
satisfaction of the process client’s norms, for example, the delivery of the required
product. It is a useful simplification to see a process as satisfying this goal with the
norms, of the other stakeholders, imposing constraints on the satisfaction of this goal.

Because it needs to maintain unchanged a disparate set of norms, a business proc-
ess has a limited amount of flexibility. The Sales/Collection process, for example,
cannot be changed so that payment is not required anymore, or that the product is not
delivered, or that the actions defined so that the correct product is delivered to the
customer are removed. These and many other changes will make the Sales/Collection
process ineffective in maintaining the norms of the enterprise and its stakeholders.

The constraints imposed on the process by each stakeholder’s norms render the
process rather inflexible, but at the same time the participation of the stakeholders in
the process, as well as their norms, render the process possible and flexible in another
dimension. Indeed, the stakeholders’ norms provide the foundations on which the
process is built. For example, a Sales/Collection process cannot exist without suppli-
ers, investors, employees etc. Investors enable flexibility by providing capital when

needed to the organization, but they also require a return on investment. This limits
the flexibility of the business process with respect to discounts that can be offered to
customers.

Other reasons for the inflexibility of business processes are the need for stability of
the organization and its stakeholders. People in organizations need some stability
after having learned a new process. Processes that change too often (i.e. faster than
their stakeholders can accept) are ineffective, no matter what useful innovations they
introduce. Organizations need to capitalize on a process, i.e. get a return on this in-
vestment. A proposal to change a recently changed process is likely to be met with
resistance from finance departments intent on reaping the rewards from the recent
change. Change is sometimes painful for people and almost always expensive for the
organization. People in organizations do not always realize that a change is possible.
Hence, an organization that goes through a business process change usually attempts
to avoid going through another process change for some time.

Because it is difficult and even dangerous to change business processes continu-
ally, it is sometime necessary to change just the occurrence of one execution of a
business process. In other words, it is necessary to occasionally deviate from the
norm governing the business process. This kind of change is necessary when, for
example, a customer requests some special treatment when purchasing a product. The
Sales/Collection process instance for that customer may be modified without altering
the general process type.

We therefore distinguish between organizational change, i.e. changes that can be
made to a business process type (the norm that describes the actions to be executed,
their sequence and the expected outcome of the process) and changes to a business
process instance without making durable changes to the process type; see also (Soffer
2004).

Business Process Support systems need to be flexible enough so that they can ac-
cept both changes to business process types and business process instances at a rea-
sonable cost. Ideally, business process instance changes should have minimal cost.

3 Towards a Formal Definition of Invariants

As follows from the previous sections, flexibility can be thought of as the ability to
change without losing “identity”. Therefore, defining a degree of flexibility can be
achieved more easily through stating what should not be changed rather than what
can be changed. Identity, as we have seen, can be studied as a set of norms, or invari-
ants. The question arises about how to define an invariant that should be preserved at
any cost in some strict manner. The question is not easy to answer, as the method for
defining identity should be quite “flexible” in the sense that it should allow various
degrees of flexibility to be defined.

As we distinguish a number of different types of flexibility in connection with
business processes and support systems, it is difficult to expect that invariants for
different flexibility types could be defined in the same way. In the following subsec-
tions, we will try to develop a path for defining invariants for two kinds of flexibility,

namely, process instance flexibility, and process support system flexibility. We do not
suggest that these approaches are the only ones that can be used for specifying these
particular invariants. In addition, we do not intend to fully develop a formal represen-
tation of such invariants in this paper. Our goal is much simpler, specifically, to dem-
onstrate that there are some ways for defining invariants. And therefore the approach
for specifying a degree of flexibility through invariants deserves to be taken into
consideration.

Invariants for Process Types

As was stated above, the process instance flexibility is the possibility for a process
instance to deviate from the standard established for a particular process type. In the
terms of the identity theory, we need to define an invariant for a process type that
should be preserved for any process instance that belongs to this type.

Let us start with an informal discussion to demonstrate what kind of deviations
should/could be “permitted.” We will compare two standard processes that can be
found in all industrial organizations, see (Denna et al. 1995) namely, Acquisi-
tion/Payment and Sales/Collection. Acquisition/Payment is aimed at buying raw ma-
terials from suppliers, and Sales/Collection is aimed at selling goods to customers and
receiving money in return. The instances of these two process types should be kept
separate. Even when we allow the maximum possible flexibility, an instance of the
Sales/Collection type, for example, should not begin to look like an instance of the
Acquisition/Payment process.

Let us discuss in what way we can define an invariant of the Sales/Collection proc-
ess so that it will differ from Acquisition/Payment. For example, we can try to define
the process in terms of actions (steps) to be completed. Clearly, the Sales/Collection
process includes actions such as package merchandise, ship it, and receive payments.
However, these actions may be found in some instances of the Acquisition/Payment
process as well. For example, if the enterprise receives wrong goods from a supplier,
the enterprise would need to package and ship them back, as well as to obtain a re-
fund (return payment) from the supplier.

As the kind of actions defined in a process is not enough, maybe the order of the
actions will help us to define an invariant. Unfortunately, if we want to be able to
define a high degree of flexibility, this will not help as the order is difficult to fix
even inside one and the same process type. For example, for the Sales/ Collection
process with a high degree of flexibility both orders

• ship merchandise
• receive payment

and

• receive payment
• ship merchandise

are quite thinkable. The first is normal for sales to known and trusted customers. The
second one is normal for sales to unknown or non-trusted customers.

The example above shows that defining an invariant for a process type is not a
trivial matter, the task requires choosing a proper theoretical view on the concept of
business process: the one that is, as much as possible, independent from the notions
of action and action order. According to the most general definition, a business proc-
ess is a partially ordered set of actions performed to reach a well-defined goal. There
are several approaches to the formalization of this concept, the workflow thinking,
which is based on the action flow, being the most widespread. Our classification that
distinguishes four different views on business processes is given in (Bider 2005), and,
for lack of space, it is not repeated in this paper. The formal definition of an invariant
will certainly depend on the view chosen, thus we need to choose a particular view
before proceeding with formalizing the idea of invariants. In this paper, we use the
state-oriented view on business processes (Khomyakov and Bider 2000, Bider 2002),
as it is less dependent on actions and their ordering than the other views known to us.

The main concept of the state-oriented view is a state of the process instance that
can be defined as a position in some state space. A state space is considered multidi-
mensional, where each dimension represents some important parameter (and its pos-
sible values) of the business process. Each point in the state space represents a possi-
ble result of the execution of a process instance. If we add the time axis to the state
space, then a trajectory (curve) in the space-time will represent a possible execution
of a process instance in time. A process type is defined as a subset of allowed trajec-
tories in space-time. Thus, in terms of the state-oriented view, the invariant for the
process type can be defined as an intension of such a subset, i.e., a logical formula
that differentiates the trajectories that belong to the set from those that do not belong
to it.

Before further outlining possible ways of defining invariants, let us illustrate the
basic notions of the state-oriented thinking on the already introduced example of the
Sales/Collection process. Figure 1 represents a possible structure of a state space for
Sales/Collection. This figure is a screen capture from a production system built by
IbisSoft in the late 1980s based on the state-oriented thinking (see (Andersson et al
2005, Bider 1997, Bider 2002) and an explanatory note at the end of this section).
The following main numerical dimensions can be distinguished for the
Sales/Collection process based on Figure 1:

• There are a number of pairs of product-related dimensions <ordered, deliv-

ered>, one pair for each product being sold. The first dimension represents the
number of ordered items of a particular product. The second one represents the
number of already delivered items of this product. The number of such pairs of
dimensions is not fixed but is less than or equal to the size of the company’s
product assortment. Denote product dimensions as X1,…,Xn (ordered) and
Y1,…,Yn (delivered), each index representing a product category from the as-
sortment. In Figure 1, dimensions X1,…, Xn

 are represented by column Ordered
(see arrow X), dimensions Y1,…, Yn are represented by column Deliv (see arrow
Y).

• In addition, there are two numeric dimensions concerning payment: invoiced
(amount of money invoiced) and paid (amount of money already received from
the customer). These dimensions are denoted as Zin, and Zpa. In Figure 1, di-
mension Zin is represented by the field labeled Invoiced (see arrow Zin), and Zpa
is represented by the field labeled Paid (see arrow Zpa).

In the example in Figure 1, the purchase order comprises 9 suitcases and 20 computer
bags. For the suitcases, Xi is equal to 9, Yi is also equal to 9 (all ordered suitcases have
already been delivered), and index i is equal to Suitcase. For the computer bags, Xi is
equal to 20, Yi is also equal to 20 (all ordered bags have already been delivered), and i
is equal to Computer bags.

Figure 1 State space of Sales/Collection process represented as a screen, from

(Khomyakov and Bider 2000).

With the dimensions set as above we can set at least one commonsense restriction on
the set of trajectories of the Sales/collection process. This restriction is connected to
the “static” goal of the Sales/Collection process from the point of view of the selling
enterprise, and it can be expressed as follows:

“An instance of Sales/Collection is considered to be properly finished when all or-
dered goods have been delivered to the customer and the agreed sum of money has
been collected from the customer.”

We call such goal static because it does not set any restrictions on how the finished
state of the process can be achieved. For example, it does not state how the goods
should be (have been) delivered: in one step or in several steps, the next working day
or over a year. Neither does it state how the money should be (have been) received:
before delivering the goods, in time or after a reminder.

Formally, the static goal defined above can be expressed in the following way.
Each trajectory of the Sales/Collection process should end at the surface in the state
space defined by the equations:

(a) xn = yn, zin = k1x1 + … + knxn + t + f , zpa = zin, where xn – is a position of the
process instance along axis Xn,, yn – is a position of the process instance along
axis Yn,, zin – is a position of the process instance along axis Zin,, k1, …, kn rep-
resent prices of the products ordered, t represents VAT, f represents freight,
and zpa – is a position of the process instance along axis Zpa

Note that the expression (a) includes VAT collection as a mandatory part of the prod-
uct price. This shows that the Sales/Collection process type is designed in such a way
as to satisfy several stakeholders, including the government, see discussion in Section
2, and (Regev et al. 2005)

Does expression (a) set enough restrictions on the trajectories of Sales/Collection to
be used as a “minimum” invariant of this process type? For example, can this formula
differentiate Sales/Collection from Acquisition/Payment? The static goal of the Ac-
quisition/Payment process is receiving all ordered goods and paying the agreed price.
Actually, formula (a) may be used to represent the Acquisition/Payment process if
interpreted from the point of view of the buying company. If we consider negative
values for ordered and delivered as goods being bought by the enterprise instead of
sold, and negative numbers for invoiced and paid as money paid by the enterprise, the
goal of the Acquisition/Payment process can also be expressed as the surface defined
by the same formula (a) above. If we abstract the nature of the exchanged goods, the
only difference between the processes is that Sales/Collection requires non-negative
values for X1,…, Xn, whereas Acquisition/Payment requires non-positive values for
X1,…, Xn.

As follows from the above deliberation, defining a static goal for the process helps
at least to differentiate Sales/Collection from Acquisition/Payment. Is a static goal
definition enough to serve as a process type invariant? Not quite, because a statement
of a static goal does not guarantee that a particular instance will try to reach the goal,
and, even less, that the goal will be reached. We need some constraints on the trajec-
tory itself. Can we define these constraints by limiting the points through which the
instance trajectory can travel? Can we, for example, state that for the Sales/Collection
process, xn (ordered) should always be greater or equal to yn (delivered)?

We could impose strict conditions on the trajectory only in the case were we have
full control over the process. This is never the case in the business reality. Influence
of external forces (environment) can make it possible for a process instance to land in
virtually any part of the state space. Consider, for example, that due to a human error
10 green suitcases, instead of 9, were delivered in the process instance from Figure 1.
If the error is discovered, the number of delivered items (10) becomes more than the
number of ordered items (9). Some error correcting mechanism needs to be built in
the process in order for each instance having a chance to reach the static goal. Such
mechanism is needed for business processes to fulfil their regulative roles as dis-
cussed in (Regev et al. 2005).

How can we express this correcting mechanism in the terms of invariants? Con-
sider an analogy from the domain of physical process control. Suppose we believe we
have navigated a ship to a certain place in the ocean, and due to the wind and currents
have actually missed the place. The only thing to do in this situation is to turn around

and re-set the course. Thus, the limitation on the valid trajectory is not about where
you can get to, e.g. by chance, but about where you aim to go, i.e. your goal. Always
aiming towards the goal constitutes an “error-correcting mechanism” of navigating a
ship to a certain point.

Applying the logic of physical process control to business processes, we need to
require that the process instance be always aimed at its goal. To express this fact for
physical processes, the derivatives are used when the process trajectory is described
in the form of differential equations. The latter formalism is not particularly suitable
for the business processes. What can we use instead to specify the direction and speed
of movement of a business process instance?

In the state-oriented view on business processes (Khomyakov and Bider 2000), the
idea of a process plan is used to express the direction and speed of movement of a
process instance. The plan is a list of actions to be executed to move the process in-
stance forward. The plan defines actions that should be completed with possible pa-
rameters, resources assigned, and time set for completing the execution, see example
in Figure 1. The action defines along which axes the plan will move the process in-
stance, parameters may define for how long and how fast (using deadlines, for exam-
ple).

Figure 2 A process plan that complements the state from Figure 1

Let us assign to each action (allowed in the frame of a given process type) axes of
process state and direction of movement along them. For example:

• shipping to customer– positive movement alongside axes Y1,…, Yn
• receiving a customer return – negative movement alongside axes Y1,…, Yn
• invoicing customer – positive movement alongside axis Zin
• getting paid by customer– positive movement alongside Zpa axis
• crediting customer – negative movement alongside Zin axis
• returning money – negative movement alongside Zpa axis

After that, we can formulate two requirements that would be reasonable to impose on
the plan of any business process instance:

1. Actions in the plan should always represent movements from the current point in

the state space in the direction to the goal.
2. The plan should include at least one action.

These requirements ensure constant movement towards the goal. Note that both re-
quirements are fully satisfied for the plan in Figure 2. Together with the static goal
and actions specification these requirements constitute a “most flexible” invariant of a

process type. Of course, in real life more strict rules can be applied like “never ship
until money is received”. This can be included in the planning rules as discussed in
(Khomyakov and Bider 2000).

The definition of an invariant as suggested above includes two limits: lower (mini-
mum), and upper (maximum) limits. The minimum requires that an invariant consist
of having a goal plus being always directed to the goal. The maximum limit requires
that constraints on the trajectory should not be defined in terms of positions in the
state space, but in the terms of movements.

Movement constraints can be expressed as restrictions on the direction of move-
ment (planned actions), speed of movement (deadlines in the plan), or as general
restrictions on the whole trajectory. An example of the later kind is a time limit for
finishing a process instance. This can be a general limit for all instances (e.g., next
day delivery), or a limit negotiated for each instance with a customer. To have the
latter for the Sales/Collection process on Figure 2, an additional parameter, delivery
date, needs to be introduced. Having such a parameter instead of a general rule gives
more flexibility, as in the case of a serious trouble, the delivery date can be renegoti-
ated with the customer. Note that introducing a new parameter changes the shape of
the state-space. We consider the shape of the state-space to be a characteristic of the
process type, rather than a process instance. Changes in a process type, such as add-
ing or removing a dimension, fall outside the scope of this section.

Breaking the rule of allowing only movement constraints will lead to either too
much or too little flexibility, or, most probably, to both. Too much, for example,
means allowing actions that are not directed towards the goal to be completed. Too
little, for example, means allowing a process instance to be stuck in a dead-end point
of the state-space.

Note: Figures 1, 2 above, and 3 below represent screenshots from a business proc-
ess support system called DealDriver developed in 1989-1990. The case represented
in the screenshots is artificial but, in essence, it does not differ from any real case
recorded in the system logs. For more details see (Andersson et al. 2005, Bider 1997,
Bider 2002).

Architectural Invariants for Business Process Support Systems

As was stated in the previous section, we consider system flexibility as the ability to
acquire new or changed functionality with a minimum cost. In this section, we con-
sidered a special kind of invariant that concerns this kind of flexibility, which we call
architectural invariants. An architectural invariant represents a number of basic con-
cepts that should be implemented in a Business Process Support system (BPS). Al-
though we call this kind of invariant architectural, we do not refer to any technical
means of implementing these concepts. In an architectural invariant, concepts are
defined at a high abstraction level, and different systems can implement these con-
cepts with the help of different technical and user-interface means.

For architectural invariants, we also introduce the notions of minimum, and maxi-
mum invariants, but in a slightly different sense than in the previous subsection. A
minimum invariant lists the minimum number of basic concepts that should be im-

plemented in the system in order for it to have the right to be called a BPS. A maxi-
mum invariant lists the maximum number of basic concepts that can be implemented
in the system in order for it to still be called a BPS. A maximum invariant does not
prohibit adding a new functionality, it only requires that all new functionalities should
be represented in terms of allowed basic concepts.

To be able to discuss architectural invariants of BPS we need to agree on what a busi-
ness process support system is. In general, we can regard any computer system that
helps to run a business as a BPS system. With such a definition, an accounting sys-
tem, or even a word processor can be viewed as a kind of BPS system. For the sake of
this discussion, however, we would like to have a more narrow definition. After that,
we can define architectural invariants that will help to differentiate BPS systems from
any other business applications, including, an accounting system and word processor.
We define a BPS system from two perspectives, a business perspective, and theoreti-
cal one. Both perspectives represent the same belief on what a BPS system is, though,
in different terms.

From the business perspective, we consider a BPS to be a system that facilitates
business process-orientation as a way of working. The latter means genuine coopera-
tion between all process participants independently of which department they belong
to, and whether a particular process instance follows the standard pattern or deviates
from it. It also means motivated involvement of process participants who understand
their own roles in the process and the roles of others, including management. Busi-
ness process orientation as a way of working also means that the experience gathered
from previously completed processes is directly used in operational practice. To fa-
cilitate the process-oriented way of working, a BPS system should provide the fol-
lowing functions that are specific for this kind of business support systems:

1. Give to each process participant easy access to the state of affairs in any particular

process instance. This includes information on what has been achieved so far, how
it has been achieved, and what will be done in the nearest future.

2. Give to each process participant easy access to all process instances he/she is par-
ticipating in, including information on what he/she is supposed to do in the frame
of each process instance and when.

3. Provide participants with effective communication channels along the process
instance lines.

4. Provide easy access to the organization’s experience, e.g., already finished proc-
esses, so that it can be analyzed, and participants can learn by example.

From the theoretical perspective, we consider a BPS to be a system that helps people
to ensure that business process instances comply with a set of invariants defined by a
given business process type. This means navigating business process instances to-
wards their goals while complying with the relevant norms of the business process
stakeholders. As we deal with the general issues of flexibility, we require that flexi-
bility with respect to process instances is supported by the system, i.e. the system
helps the stakeholders to understand which deviations from the invariants are reason-
able.

We believe that, at a minimum, we need three functions:

1. The possibility to point out where we are.
2. The possibility to lay our course forward to the goal from current position.
3. The possibility to register our movements and track them backward if needed.

The first two requirements from the list above logically follow from the discussion in
the previous section. The last requirement needs some explanation. Tracking satisfies
various needs. For example, it gives us material for analysis, and it can be used for
investigating process performance, behavior of external environment, etc. However, it
is also needed for the sake of operational control over process instances, which we
consider to be the primary objective of a BPS. One such need is connected to the
problem of identification of the current position in the state space, which can very
seldom be measured exactly. When we ship goods in an instance of Sales/Collection,
we normally consider them to be delivered and change our position along the Y-axes
correspondingly. If we have a reliable delivery channel, this approximation will work
in the majority of cases. However, if the customer contacts us and complains that
some goods are missing, we need to track the process back to find out which of the
deliveries made went wrong and when, as well as where to find the missing goods.
Also regulation bodies (e.g. government) often require backtracking of business proc-
esses for auditing purposes or when problems such as accidents occur.

In terms of the state oriented view of business processes, the above list can be formu-
lated as requirements for implementing a number of basic concepts:

1. Having a representation of the state space and a position in it of any instance at any

point of time. This can be done, for example, in the form of a screen similar to the
one presented in Figure 1.

2. The possibility to plan each process instance independently from all others. This is
needed to be able to lay out a course that keeps a process instance in the frame de-
fined by the process type invariant. A plan may have a form as in Figure 2.

3. The possibility to register all events, e.g., actions executed in the frame of a given
process instance. In addition, we need means to browse positions in the state space
after each registered event. Registered events may, for example, be represented as
a list of already completed actions, see Figure 3. A position in the state space in the
past can be shown in the same way as it is done for the current state, e.g., as in
Figure 1. Browsing to this point can be done, for example from a menu on the
event list as shown in Figure 3.

The above requirements can be thought of as the minimum possible invariant of a
BPS system. Implementing only this minimum in a BPS leaves a considerable amount
of manual work, e.g.:

• Removing completed actions from the plan
• Registering a completed action in the event list, and calculating and regis-

tering the results achieved by this action in the state space

• Laying a new course by planning additional actions
• Manually executing actions outside of the BPS system

Implementing only the minimum also means that the responsibility of keeping a proc-
ess instance inside the frame set by an invariant is still left to the people participating
in the process. They need to impose the restriction based on explicit or implicit rules,
manuals etc.

Figure 3 Events from the process instance in Figure 1

A minimum BPS can be compared with a simple word-processor (Notepad, for ex-

ample) that allows writing any text but does not provide any means for checking
spelling and grammar. Let us consider what kind of extra help can be obtained from a
system for navigation purposes. The following assistance in navigation is thinkable:

1. Assistance in registering events and movements in the state space. This, for exam-

ple, can be done when an action in the plan is chosen to be reported as executed. It
can then be automatically removed from the plan, and inserted into the event list.
In addition, some help can be provided when calculating a new position in the state
space.

2. Automated course laying – assistance in planning new actions and assigning re-
sources to them. This feature should assure that any instance remains in the frame
of the invariant set for the given process type. According to (Khomyakov and
Bider 2000, Bider 2002), three types of planning rules can be differentiated: obli-
gations, prohibitions, and recommendations. The first two types of rules help to
impose the invariant. The third one is meant to guide the people to keep any in-
stance as close as possible to the most desirable trajectory.

3. Assistance in executing actions outside of the BPS system; for example, automati-
cally shipping a software product via email.

In some circumstances all three functions above can be fully automated, which makes
it possible to put a process instance under autopilot for some time. As soon as condi-

tions change, and human assistance is required, the system can request such assis-
tance by planning an action in which a human being should participate.

Consider adding the concepts of three “assisting” functions above to the minimum
invariant suggested earlier to define the maximum invariant for BPS. In this case, no
features can be added to the system unless they can be expressed in the terms of the
six concepts included in the maximum invariant. How much flexibility will we be left
with then? Actually, with quite a lot, and we will show this with two examples below.

Personal Calendar. An ultimate goal of a BPS system is helping people to run their
business, be it official, company or private. Having a personal calendar that reminds
people of the tasks to be completed would be quite a natural feature. However, at first
glance, the maximum invariant we defined does not allow the introduction of per-
sonal calendars. This is true if we insist on a direct interpretation of such a feature.
Nevertheless, indirectly, personal calendars already exist among the concepts of our
invariant. A BPS system should support the planning of actions in the frame of vari-
ous process instances and the assignment of resources to them, including human re-
sources. A view of all actions planned for a particular person in all currently running
process instances, in fact, constitutes a personal calendar for this person, see, for
example Figure 4. This view provides the second function defined in the business
perspective discussed above.

Figure 4 Personal calendar seen as a special view on business process in-
stances

Internal Communication along Process Instances. For many business processes,
achieving the goal of a process instance requires the participation of several people. It
is natural to expect that a BPS should support their cooperation and communication.
Should we introduce a separate communication channel in the system not prescribed
by the maximum invariant above? Actually, a BPS invariant indirectly contains a
concept of one type of communication channels, i.e. the one that concerns asynchro-
nous communication along the business process instances. As was stated in the in-
variant, the system should support planning and resource assignment. Let us allow
planning “communication” actions, like attention, help needed, etc., to our col-
leagues. They will receive these actions in their personal calendars (see Figure 4) in
the same way as all other actions, such as shipping. Moreover, each communication
action will be connected to a particular process instance, which allows us to be con-
cise when writing our messages. Placing a message in the frame of a particular proc-
ess instance gives the addressee all information on the current state, history and future
of this instance. Therefore, we do not need to repeat it in the message itself. Planning
communication actions constitutes an effective communication channel along the
process instance lines. See function 3 in the business perspective discussion above.

As we demonstrated in the examples above, imposing the BPS invariant described
in this section leaves enough flexibility as far as adding new functionality is con-
cerned. The question may arise about why we need such an invariant in the first
place. Why not allow adding functionality in any way the stakeholders want? The
answer is simple, if we allow for an uncontrollable development of a fairly complex
system such as a BPS, it soon will become an internal mess that will be difficult to
maintain, support, and even understand from the users’ point of view. In this case, we
can expect loss of identity. Setting an invariant enforces the development of a stable
core of code on which each new piece of functionality is based.

Architectural invariants represent the norms and beliefs of system architects and
software engineers who belong to the stakeholders of any business activity heavily
dependent on a software system. It is important to take these norms and beliefs into
consideration just as one would for the norms and beliefs of any other stakeholder.
Having an unstable system is as dangerous as having an inflexible (rigid) one. In a
worst-case scenario, any of the extremes can lead to a company going out of business.

The six functions included in our BPS invariant were derived from the state-
oriented view on business processes. Nevertheless, we believe that they will be the
same even if we change the view used for building a BPS system, say to a workflow
view. The technical architecture and user interface will change, but on the deeper
abstract level, the functionality provided by the system should remain the same.

Note: Figure 4 represents a screenshot from our new BPS system, called ProBis,
for more details see (Andersson et al. 2005).

4 Related Work

The business process movement emerged out of the need to overcome the rigidity that
characterized so called traditional enterprises. Hence, most work done on flexibility
assumes that it is about accepting and/or generating change. See for example (Ham-

mer and Champy 1993) where radical change is advocated. It has been recognized
that this focus on change is often non-beneficial for enterprises because it requires
more change than what they can accommodate (Hammer 1996). Despite this focus on
change, it is also recognized that early Workflow Management Systems (WFMS)
lacked flexibility and therefore much research has been targeted into making these
systems flexible (Ellis et al. 1995). Again, the focus is on change rather than stability.
In the information systems field, too, research into flexibility assumes that it is about
change only; see for example (Knoll and Jarvenpaa 1994). In these works, rigidity is
often seen as negative. The focus is on maximum capability to change. Our work is
different: our focus is on stability as a major component of flexibility. In this work,
stability is seen not only as inevitable but as a necessary aspect of flexibility and
survival. With our insistence on norms, our work does bear resemblance to Organiza-
tional Semiotics and its applications to business processes. See for example (Shish-
kov et al. 2002).

We would like to point out that there is a difference between our approach to busi-
ness process instance flexibility and the way in which workflow-related research
treats the flexibility issues. The most common way for introducing flexibility in
workflow is by moving from the rigid predefined control flow to allowing some de-
viations (Blumenthal and Nutt 1995, Bogia 1995, van der Aalst 2001]. This, for
example, can be achieved by permitting a process instance to deviate on particular
paths. This way is quite appropriate when we want to localize flexibility to certain
areas of the state space. Our approach is based on invariants and allows flexibility to
be defined in more general terms. For example, the minimum invariant we defined is
not localized and it allows finding a way out from practically any possible situation.
We believe that our approach is more suitable for the processes that require substan-
tial flexibility, for example, those that are connected with complex decision making.

It is also worthwhile to mention that recent trends in Software Engineering, e.g.,
agile and eXtreme Programming, e.g. (Beck 1999) mostly focus on change, and do
not give enough attention to the stable structures behind the scenes. As follows from
Section 3 of this paper, we focus on creating stable structures in software, as well as
in business. This does not mean that we reject the ideas of agile development. We
accept them with the addition that agile development of any complex system (e.g.
BPS) is impossible without having or developing a stable structure, which can be
expressed with the help of structural invariants.

5 Conclusions

Business process flexibility is most often seen from the point of view of maintaining
the capability to change easily and quickly. In this paper we propose to view business
process flexibility from the point of view of what needs to remain unchanged. We
have identified the unchanging aspects of an enterprise as originating from the need
to maintain a constant identity for a set of stakeholders. We analyze business process
and support system flexibility on three levels. The uppermost level concerns the iden-
tity of the enterprise and results in possible changes to business process types. The
second level concerns possible changes to business process instances. The third level

concerns changes to the business process support systems. In each level, possible
changes are dependent on the definition of the identity of that level by different
stakeholders. We propose to view business processes as maintaining invariants in a
state space. For a given business process, defining the minimal set of invariants that
satisfies the stakeholders of the enterprise, enables many possible alternatives to be
explored. This results in flexibility for both business processes and the associated
requirements for their support system.

To investigate whether the idea of invariants can be used in practice, we undertook
several steps in the direction of finding formal ways of defining invariants. We
showed how Business Process and Business Process Support system invariants could
be defined based on the state-oriented view on business processes. These first steps
seem promising. However, it is too early to say how well our approach suits the task
of defining invariants for practical purposes. For example, when defining business
process invariants, we employed a dichotomy approach: the trajectory either belongs
to a set or not. In practice, more granularity might be needed to differentiate the tra-
jectories that are closer to a recommended standard from those that deviate substan-
tially from the standard. In terms of our state-oriented model, the granularity can be
achieved via the planning rules of type recommendations (Khomyakov and Bider
2000, Bider 2002). Currently, we are conducting the research aimed at the formal
expression of recommendation and the ways of implementing them in a BPS system.

6 References

1. Andersson T., Bider I., Svensson R. 2005. Aligning people to business processes.
Experience report. Software Process: Improvement and Practice 10(4): 403-413.
DOI: 10.1002/spip.243.

2. Beck K. 1999. Extreme programming explained: embrace change. Addison-Wesley.
3. Bider I. 1997. Developing Tool Support for Process Oriented Management. Data

Base Management. 26-01-30. Auerbach.
4. Bider I. 2002. State-oriented business process modeling: principles, theory and prac-

tice. PhD thesis, KTH (Royal Institute of Technology), Stockholm.
5. Bider I. 2005. Choosing Approach to Business Process Modeling. Practical Perspec-

tive”. Journal of Conceptual Modeling, Issue 34.
http://www.inconcept.com/jcm/January2005/IBider.html

6. Blumenthal R., Nutt G.J. 1995. Supporting Unstructured Workflow Activities in the
Bramble ICN System. Proceedings of the 1995 ACM Conference on Organizational
Computing Systems (COOCS'95). Milpitas, CA. 130-137.

7. Bogia D.P., Kaplan S.M. 1995. Flexibility and Control for Dynamic Workflows in
the WORLDS Environment. Proceedings of the 1995 ACM Conference on Organiza-
tional Computing Systems (COOCS'95). Milpitas, CA. 148-159.

8. Checkland P., Scholes J. 1990. Soft System Methodology in action. Wiley: UK.
9. Denna E., Perry L., Jasperson J. 1995. Reengineering and REAL Business Process

Modeling. Grover V., Kettinger W. Business Process Change: Reengineering Con-
cepts. Methods and Technologies. Idea Group: UK.

10. Dietz J.L.G. 2004. Basic notions regarding business processes and supporting infor-
mation systems. Proceedings of the 5th BPMDS Workshop. Riga, Latvia.

11. Ellis C., Keddara K., Rozenberg G. 1995. Dynamic change within workflow systems.
Proceedings of Conference on Organizational Computing Systems. Milpitas, CA.

12. Hammer M., Champy J. 1993. Reengineering the Corporation: A Manifesto for Busi-
ness Revolution. Nicholas Brealey: UK.

13. Hammer M. 1996. Beyond Reengineering. HarperCollins: NY.
14. Khomyakov M., Bider I. 2000 Achieving Workflow Flexibility through Taming

the Chaos. Proceedings of 6th international conference on object oriented informa-
tion systems (OOIS 2000). Springer: 85-92.

15. Knoll K., Jarvenpaa S.L. 1994. Information technology alignment or “fit” in highly
turbulent environments: the concept of flexibility. Proceedings of the 1994 computer
personnel research conference on Reinventing IS. Alexandria, VA. ACM: 1 – 14.

16. Merriam-Webster Online http://m-w.com/. Accessed February 2005.
17. Regev G. 2003. A Systemic Paradigm for Early IT System Requirements Based on

Regulation Principles: The Lightswitch Approach. Ph.D. Thesis. Ecole Polytechni-
que Fédérale de Lausanne (EPFL). Lausanne, Switzerland.

18. Regev G., Wegmann A. 2005. Where do Goals Come from: the Underlying Princi-
ples of Goal-Oriented Requirements Engineering. Proceedings of the 13th IEEE In-
ternational Requirements Engineering Conference. Paris, France.

19. Regev G., Alexander I.F., Wegmann A. 2005. Modelling the regulative role of busi-
ness processes with use and misuse cases. Business Process Management. 11(6).
Emerald: 695-708.

20. Shishkov B., Xie Z., Liu K., Dietz J.L.G. 2002. Using Norm Analysis to Derive Use
Cases from Business Processes. Proceedings of the 5th Workshop on Organizational
Semiotics (OS 2002). Delft, The Netherlands. 187-195.

21. Soffer P. 2004. On the Notion of Flexibility in Business Processes. Proceedings of
the 5th BPMDS Workshop, Porto, Portugal.

22. van der Aalst W.M.P. 2001. How to Handle Dynamic Change and Capture Manage-
ment Information: An Approach Based on Generic Workflow Models. Computer Sys-
tems, Science, and Engineering. 16(5):295-318.

23. Vickers Sir G. 1987. Policymaking, Communication, and Social Learning. Transac-
tion Books. New Brunswick, NJ.

24. Weinberg G.M., Weinberg D. 1988. General Principles of Systems Design. Dorset
House. New York.

http://m-w.com/

