
Defining Computational Thinking for Mathematics and Science
Classrooms

David Weintrop1,2 • Elham Beheshti3 • Michael Horn1,2,3 • Kai Orton1,2 •

Kemi Jona2,3 • Laura Trouille5,6 • Uri Wilensky1,2,3,4

Published online: 8 October 2015

� Springer Science+Business Media New York 2015

Abstract Science and mathematics are becoming com-

putational endeavors. This fact is reflected in the recently

released Next Generation Science Standards and the deci-

sion to include ‘‘computational thinking’’ as a core scien-

tific practice. With this addition, and the increased presence

of computation in mathematics and scientific contexts, a

new urgency has come to the challenge of defining com-

putational thinking and providing a theoretical grounding

for what form it should take in school science and math-

ematics classrooms. This paper presents a response to this

challenge by proposing a definition of computational

thinking for mathematics and science in the form of a

taxonomy consisting of four main categories: data prac-

tices, modeling and simulation practices, computational

problem solving practices, and systems thinking practices.

In formulating this taxonomy, we draw on the existing

computational thinking literature, interviews with mathe-

maticians and scientists, and exemplary computational

thinking instructional materials. This work was undertaken

as part of a larger effort to infuse computational thinking

into high school science and mathematics curricular

materials. In this paper, we argue for the approach of

embedding computational thinking in mathematics and

science contexts, present the taxonomy, and discuss how

we envision the taxonomy being used to bring current

educational efforts in line with the increasingly computa-

tional nature of modern science and mathematics.

Keywords Computational thinking � High school

mathematics and science education � STEM education �
Scientific practices � Systems thinking � Modeling and

simulation � Computational problem solving

Introduction

By 2020, one of every two jobs in the ‘‘STEM’’ fields

will be in computing

(ACM pathways report 2013)

The release of the Next Generation Science Standards

(NGSS) places a new emphasis on authentic investigation

in the classroom, including eight distinct scientific prac-

tices (NGSS Lead States 2013). While some of these

practices are familiar to veteran teachers, such as ‘‘asking

questions and defining problems,’’ others are less well

understood. In particular, the practice of ‘‘using mathe-

matics and computational thinking’’ reflects the growing

importance of computation and digital technologies across

the scientific disciplines. Similar educational outcomes can

be found in mathematics standards, such as the Common

Core guidelines, which state that students should be able

‘‘to use technological tools to explore and deepen their

& David Weintrop

dweintrop@u.northwestern.edu

1 Center for Connected Learning and Computer-Based

Modeling, Northwestern University, Evanston, IL 60208,

USA

2 Learning Sciences, Northwestern University, Evanston,

IL 60208, USA

3 Computer Science, Northwestern University, Evanston,

IL 60208, USA

4 Northwestern Institute on Complex Systems, Evanston,

IL 60208, USA

5 The Adler Planetarium, Chicago, IL 60605, USA

6 Center for Interdisciplinary Exploration and Research in

Astrophysics (CIERA), Northwestern University, Evanston,

IL 60208, USA

123

J Sci Educ Technol (2016) 25:127–147

DOI 10.1007/s10956-015-9581-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s10956-015-9581-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10956-015-9581-5&domain=pdf

understanding of concepts’’ (National Governors Associa-

tion 2010, p. 7). However, the inclusion of these practices,

in and of itself, offers little guidance for teachers who will

be required to realize them in their classrooms. Much of the

difficulty stems from the fact that the practices collected

under the umbrella term ‘‘computational thinking’’ (Na-

tional Research Council [NRC] 2010; Wing 2006; Papert

1996) have not yet been clearly defined. This is especially

true for their use in scientific or mathematical contexts as

opposed to more general computer science settings. There

is also active debate and discussion around key questions

such as: How is computational thinking related to mathe-

matical thinking, algorithmic thinking, or problem solving?

How does it relate to the field of computer science? To

what extent is computer programming involved? Does

computational thinking always require a computer?

Our aim in this paper is to develop a more nuanced

understanding of computational thinking specifically as it

applies to the mathematic and scientific disciplines and the

needs of high school teachers who are expected to prepare

students for potential careers in these fields. Unlike most of

the discussion on computational thinking to date, which

emphasizes topics from computer science such as abstrac-

tion and algorithms, our approach to defining computational

thinking takes the form of a taxonomy of practices focusing

on the application of computational thinking to mathemat-

ics and science. This approach employs mathematics and

science as meaningful contexts in which to situate the

concepts and practices of computational thinking and draws

on the ways mathematicians and scientists are using com-

putational thinking to advance their disciplines. This more

restrictive context allows us to more clearly characterize

what computational thinking is in mathematics and science.

The taxonomy consists of four main categories: data

practices, modeling and simulation practices, computational

problem solving practices, and systems thinking practices.

We describe each of these practices and their constituent

components, and we describe what it looks like to demon-

strate mastery of each practice. The contribution of this work

is to provide an actionable, classroom-ready definition of

computational thinking that draws on existing computational

thinking scholarship and incorporates concepts specifically

focused on mathematics and science contexts. In doing so,

we provide a framework and shared language that can be

used to bring mathematics and science instruction more in

line with their increasingly computational nature. Further, in

grounding our conception of computational thinking in

mathematics and science, we narrow the scope of computa-

tional thinking away from generalities, providing a sharper

definition that is distinct from computer science, yet still

grounded in authentic, meaningful computational practices

that are essential for students to master.

Why Bring Computational Thinking
to Mathematics and Science Classrooms?

A primary motivation for introducing computational

thinking practices into science and mathematics classrooms

is the rapidly changing nature of these disciplines as they

are practiced in the professional world (Bailey and Bor-

wein 2011; Foster 2006; Henderson et al. 2007). In the last

20 years, nearly every field related to science and mathe-

matics has seen the growth of a computational counterpart.

Examples include Bioinformatics, Computational Statis-

tics, Chemometrics, and Neuroinformatics. This rise in

importance of computation with respect to mathematics,

science, and the broader Science, Technology, Engineer-

ing, and Mathematics (STEM) fields has been recognized

both by those within the STEM education communities and

computer science education organizations (ACM/IEEE-CS

Joint Task Force on Computing Curricula 2013). Bringing

computational tools and practices into mathematics and

science classrooms gives learners a more realistic view of

what these fields are, better prepares students for pursuing

careers in these disciplines (Augustine 2005; Gardner

1983), and helps equip students to be more savvy STEM

citizens in the future. As Foster (2006), director of the

Computation Lab at the University of Chicago, states, ‘‘all

scientists will be adept at applying existing computational

techniques’’ (p. 419). Further, the varied and applied use of

computational thinking by experts in the field provides a

roadmap for what computational thinking instruction

should include in the classroom.

From a pedagogical perspective, the thoughtful use of

computational tools and skillsets can deepen learning of

mathematics and science content (Guzdial 1994; Eisenberg

2002; National Research Council 2011a, b; Redish and

Wilson 1993; Repenning et al. 2010; Sengupta et al. 2013;

Sherin 2001; Wilensky 1995; Wilensky et al. 2014;

Wilensky and Reisman 2006). The reverse is also true—

namely that science and mathematics provide a meaningful

context (and set of problems) within which computational

thinking can be applied (Hambrusch et al. 2009; Jona et al.

2014; Lin et al. 2009; Wilensky et al. 2014). This differs

markedly from teaching computational thinking as part of a

standalone course in which the assignments that students

are given tend to be divorced from real-world problems and

applications. This sense of authenticity and real-world

applicability is important in the effort to motivate diverse

and meaningful participation in computational and scien-

tific activities (Blikstein 2013; Chinn and Malhotra 2002;

Confrey 1993; Margolis and Fisher 2003; Margolis 2008;

Ryoo et al. 2013). This reciprocal relationship—using

computation to enrich mathematics and science learning

and using mathematics and science contexts to enrich

128 J Sci Educ Technol (2016) 25:127–147

123

computational learning—is at the heart of our motivation to

bring computational thinking and science and mathematics

concepts together.

A final motivation for bringing computational thinking

into mathematics and science classrooms is to reach the

widest possible audience and address longstanding issues

of the underrepresentation of women and minorities in

computational fields (National Science Foundation 2013).

Currently, only a fraction of high school students have the

opportunity to take a computer science course due to a lack

of qualified teachers, inadequate facilities, or constraints in

class scheduling. Embedding computational thinking

activities in mathematics and science coursework directly

addresses the issue of students self-selecting into (or out of)

computer science classes, which has been a challenge long

plaguing the effort to reach underserved youth (Margolis

and Fisher 2003; Margolis 2008). It also avoids practical

issues of fitting new classes into overcrowded school

schedules and finding teachers to teach them.

Intended Audiences

One contribution of the work we present here is an

actionable set of guidelines that can be followed to bring

computational thinking into mathematics and science

classrooms quickly and effectively. In choosing to span

mathematics and science broadly, this taxonomy defines a

shared language that can be used across classrooms and

departments to help students understand the crosscutting

nature and broad applicability of computational thinking.

As such, the taxonomy we present in this paper is intended

for a diverse set of educational stakeholders including

teachers, administrators, curriculum designers, assessment

developers, and education researchers. For teachers, our

taxonomy is meant to provide a concrete, clearly delineated

set of practices to guide classroom implementation and

curriculum development. We hope to help teachers

understand how they are already using computational

thinking practices in their classes and to support them in

more fully developing those aspects of their lessons. Our

goal is not to radically change the existing practices of

experienced teachers; instead, we want this taxonomy to

serve as a resource for augmenting existing pedagogy and

curriculum with more sophisticated computational thinking

practices. For administrators and policy makers, the tax-

onomy is meant to help shape expectations and set priori-

ties for mathematics and science education, particularly

when it comes to preparing students for the demands of the

twenty-first century. Understanding the increasingly com-

putational dimensions of these fields might also help

administrators allocate professional development resources

according to teacher needs.

For curriculum developers and other designers of

learning experiences, our hope is that the taxonomy will

serve as a resource to address ‘‘what’’ and ‘‘how’’ questions

that accompany the creation of new educational materials.

With the increased importance of accountability in our

schools, the need for accurate, validated assessments is

essential. By providing a clear definition of what compu-

tational thinking in scientific and mathematical contexts

includes, this taxonomy can be used as a resource for

assessment developers who are tasked with creating the

items that will measure these practices.

Finally, for education researchers, we view this work as

both a theoretical and practical contribution to our under-

standing of the nature of science and mathematics educa-

tion in our increasingly technological age. While the

practices of science and mathematics have greatly changed

over the past 50 years due to advancing technology,

classrooms have not kept pace. By delineating the space of

computational thinking with respect to these fields, we

hope to provide a resource for other educational research-

ers to use in their efforts to modernize science and math-

ematics learning to better prepare students for the

computational future that awaits them.

Background

In this section, we briefly review three literatures that have

informed the taxonomy we present in this paper. First, we

review the literature on computational thinking, situating it

historically, and illustrating relevant recent efforts to

operationalize the concept. We then discuss research

focusing on bringing computational thinking into the

classroom, a goal that is central to our research agenda.

Finally, we review the growing role of computation in

mathematics and science fields.

Computational Thinking

To reading, writing, and arithmetic, we should add

computational thinking to every child’s analytical

ability

(Wing 2006, p. 33)

The driving theme behind the recent interest in com-

putational thinking is that knowledge and skills from the

field of computer science have far reaching applications

from which everyone can benefit: ‘‘[computational think-

ing] represents a universally applicable attitude and skill

set everyone, not just computer scientists, would be eager

to learn and use’’ (Wing 2006, p. 33). This argument has

been recurring, in one form or another, over the last half

century. Perlis (1962), the first recipient of the ACM

J Sci Educ Technol (2016) 25:127–147 129

123

Turing Award, said that all undergraduates should learn to

program as part of a liberal education (as cited in Guzdial

2008). Papert (1972, 1980) extended this vision to a full

literacy starting in childhood. Papert (1996) was the first to

use the term computational thinking to refer to the affor-

dances of computational representations for expressing

powerful ideas. Similar calls have regularly been made in

the decades since (diSessa 2000; Kay and Goldberg 1977;

Guzdial and Soloway 2003; Papert 1972, 1980; Wilensky

2001).

The earliest work to put this idea into practice was the

development of the Logo programming language (Feurzeig

et al. 2011; Papert 1980). While Logo was designed most

immediately to teach mathematical concepts, its creators

quickly recognized the far reaching benefits of the skills

learned through programming, arguing that ‘‘computer

presence could contribute to mental processes not only

instrumentally but in more essential, conceptual ways,

influencing how people think even when they are far

removed from physical contact with a computer’’ (Papert

1980, p. 4). Another important perspective on computa-

tional thinking comes from the work of diSessa (2000) and

his book Changing Minds. In particular, diSessa argues that

computers can be the basis for a powerful new form of

literacy that has the potential to be pervasive across sub-

jects, contexts, and domains.

A number of recent definitions have been proposed for

computational thinking without a consensus emerging

(Grover and Pea 2013). Wing proposes a definition that

emphasizes the unique contribution of the field of computer

science to a broad range of human endeavor: ‘‘computa-

tional thinking involves solving problems, designing sys-

tems, and understanding human behavior, by drawing on

the concepts fundamental to computer science’’ (Wing

2006, p. 33). The Royal Society echoes this emphasis on

computer science, defining computational thinking as ‘‘the

process of recognizing aspects of computation in the world

that surrounds us, and applying tools and techniques from

computer science to understand and reason about both

natural and artificial systems and processes’’ (Furber 2012,

p. 29). Highlighting the diversity and inclusive nature of

the debate around computational thinking, in 2010, the

National Research Council convened a meeting on the

scope and nature of computational thinking, producing a

report that listed over 20 high-level skills and practices that

computational thinking might include, such as problem

abstraction and decomposition, heuristic reasoning, search

strategies, and knowledge of computer science concepts

like parallel processing, machine learning, and recursion

(NRC 2010). In this work, we bring a different approach to

defining computational thinking by relying on the appli-

cation of the practices identified above in contexts distinct

from computer science. In doing so, we move away from

relying on decontextualized ideas and practices and instead

draw on real-world instantiations of computational think-

ing in the wild to provide clarity and specificity on what the

term means. Doing so reinforces the argument that these

practices are broadly applicable while providing a con-

crete, actionable definition of computational thinking.

Much of the literature on computational thinking focu-

ses on educational outcomes, including a second meeting

convened by the National Research Council focusing on

the pedagogical aspects of computational thinking. This

effort sought to answer questions such as how computa-

tional thinking relates to existing subjects, what a compu-

tational thinking progression might look like, how to train

teachers in computational thinking practices, and how best

to assess computational thinking (NRC 2011b). The

Computer Science Teachers Association (CSTA) asserts

that ‘‘the study of computational thinking enables all stu-

dents to better conceptualize, analyze, and solve complex

problems by selecting and applying appropriate strategies

and tools, both virtually and in the real world’’ (CSTA

2011, p. 9). Although considerable effort has been put into

advancing our understanding of computational thinking,

there are still challenges to address, particularly in terms of

bringing computational thinking into schools. These chal-

lenges include defining a learning progression and cur-

riculum, assessing student achievement, preparing

teachers, and ensuring equitable access (Grover and Pea

2013). For progress to be made in these areas, it will be

necessary to break computational thinking down into a set

of well-defined and measurable skills, concepts, and/or

practices.

Computational Thinking in K-12 Education

Extensive research over the last three decades has focused

on issues related to teaching and learning skills, concepts,

and practices relevant to computational thinking (Grover

and Pea 2013). There have been a few notable efforts

towards creating frameworks and guidelines for bringing

computational thinking into K-12 education. Barr and

Stephenson (2011), in reporting on work from the com-

puter science education community, provide one approach

by proposing a definition for computational thinking across

all of K-12 education. As part of this effort, they present a

list of computational thinking concepts and map them onto

a variety of conventional school subjects, showing, for

example, what abstraction could look like in a social

studies classroom, or how to use automation in a mathe-

matics lesson. A second effort to provide useful structure

for operationalizing computational thinking in K-12 edu-

cation comes from Brennan and Resnick (2012) who pro-

pose a computational thinking framework consisting of

three dimensions: computational concepts, computational

130 J Sci Educ Technol (2016) 25:127–147

123

practices, and computational perspectives. For each

dimension, they articulate what it looks like to engage in

computational thinking at that level, and provide guidelines

on how to assess computational thinking across the diverse

ways it can be used. In parallel to the effort of creating

frameworks for understanding and evaluating computa-

tional thinking, is the ongoing creation of new learning

environments, tools, and activities designed to promote

computational competencies in K-12 learning contexts.

Such efforts include graphical programming environments

such as Scratch (Resnick et al. 2009) and Alice (Cooper

et al. 2000); computational modeling environments like

STELLA (Richmond et al. 1987) and NetLogo (Wilensky

1999b); electronic prototyping kits such as Arduino and

digital textiles (Buechley et al. 2008); video games

including Quest Atlantis (Barab et al. 2005) and Robo-

Builder (Weintrop and Wilensky 2013); and scaffolded

scientific inquiry environments like WISE (Linn et al.

2003), Genscope (Horwitz et al. 1998), GasLab (Wilensky

1999a); Frog Pond—Evolution (Horn et al. 2014), and

WorldWatcher (Edelson et al. 1999). Other work focuses

not on the technology or medium used for computational

thinking instruction, but on the domain in which it is to be

situated. Computational thinking practices have been

integrated into subjects including history, language arts,

mathematics, art, and science (Blikstein and Wilensky

2009; Eisenberg 2002; Hambrusch et al. 2009; Rubin and

Nemirovsky 1991; Sengupta et al. 2013; Settle et al. 2012,

2013). A complementary approach to bringing computa-

tional thinking in K-12 education is to integrate it in the

coursework of pre-service teachers independent of their

content specialization (Yadav et al. 2011). The growth of

this type of work, the variety of forms it takes, and the

diversity of contexts it has been used in, speaks to the need

for the cross disciplinary computational thinking frame-

work we present herein.

Many researchers have made the argument that the

ability to effectively use computer simulations and inter-

active visualizations is an important aspect of computa-

tional thinking, particularly as it relates to the STEM fields

(NRC 2011b). For example, NetLogo (Wilensky 1999b)

has successfully been used in schools to introduce students

to complex systems and emergent phenomena in many

different fields such as probability and statistics (Abra-

hamson et al. 2006; Abrahamson and Wilensky 2005),

chemical reactions (Stieff and Wilensky 2003; Levy and

Wilensky 2009), kinetic molecular theory (Brady et al.

2015; Wilensky 1999a), population biology (Wilensky and

Reisman 2006), and evolution (Wilensky and Novak 2010;

Wagh and Wilensky 2014). Another example is Concord

Consortium’s Molecular Workbench, which is an interac-

tive modeling platform that enables students to study the

motion of particles and provides a simulation platform for

teaching and learning science through atomic-scale rea-

soning (Tinker and Xie 2008). The Physics Education

Technology (PhET) project is another example of such

learning environments, which provides a large collection of

web-based models and simulations for teaching STEM

content (Perkins et al. 2006; Bryan 2006).

Another notable approach to bringing computational

thinking into K-12 classrooms is the use of online com-

putational resources to enable learning experiences that are

otherwise not possible. For example, the iLab Network

provides experimental facilities via remote online labora-

tories that enable students and educators to use real

instruments, rather than simulations, and to carry out

experiments (Jona and Vondracek 2013). This gives stu-

dents access to a wide variety of scientific phenomena and

control of sophisticated experimental equipment. Activities

include studying radioactivity by taking measurements of

radioactive material with a Geiger counter, and studying

neutron diffraction using a crystal monochromator. Pro-

jects such as these bring together science, technology, and

computational thinking practices in an accessible and

engaging way.

The Growing Role of Computation in Mathematics

and Science

The landscape for science is changing. Recent advances in

high-speed computation and analytical methods have cre-

ated powerful tools for understanding phenomena across all

spectra of human inquiry. In some scientific fields, such as

molecular biology and chemistry, the advent has been

recent but rapid. The 1998 Nobel Prize in Chemistry was

awarded to John A. Pople and Walter Kohn for their

innovative work in the development of computational

methods in quantum chemistry (Pople 2003; Kohn 2003).

Such a prestigious award hailed the acceptance of com-

putation as a valid and rigorous tool for investigating

chemical phenomena. Across a wide variety of domains,

the application of statistical and mathematical approaches

that rely on computation, such as Markov Chain Monte

Carlo methods and artificial neural networks, have proved

essential for opening new avenues of exploration and

yielded advances in numerous fields as diverse as studying

the origins of the universe in computational astrophysics

(Vogelsberger et al. 2014) to understanding the kinetics of

grain growth in material sciences (Anderson et al. 1984;

Srolovitz et al. 1984).

Wing (2006) stated that computational thinking approa-

ches would become fundamental across all disciplines and

that the advances in computing would allow researchers to

envision new problem solving strategies and to test new

solutions in both the virtual and real world. While certain

fields such as physics and engineering have a long-standing

J Sci Educ Technol (2016) 25:127–147 131

123

interdisciplinary partnership with computational method-

ologies, classical approaches to problem solving in biology

and chemistry have historically emphasized deterministic

systems of low complexity, thereby largely ignoring

stochastic and nonlinear problems. The previous strong bias

toward the study of deterministic systems was primarily one

of practicality, with the term ‘‘nonlinear’’ being nearly

synonymously with ‘‘unsolvable’’. However, nature is

inherently nonlinear and may be characterized by chaotic

behavior, as can be observed in climate change (Dijkstra

2013; Manabe and Stouffer 1988), the spread of disease

(Keeling and Grenfell 1997; Olsen and Schaffer 1990),

ecological distress (Lubchenco et al. 1991), and evolution

(Lander and Schork 1994; Turelli and Barton 1994). Both

mathematically and physically, deterministic/linear systems

are the exceptions rather than the rule. In recent years,

computational methods have expanded the range of non-

linear phenomena that can be explored through the use of

mathematical and simulation models. Wolfram (2002) even

proclaimed the emergence of a new kind of science based on

his computational experiments into emergent patterns in

nature, arguing such explorations are not possible without

computation. Scientific fields are undergoing a renaissance

in experimental approaches primarily due to the availability

of more powerful computers, accessibility of new analytical

methods, and the development of highly detailed computa-

tional models in which a diverse array of components and

mechanisms can be incorporated. These advances have, in

turn, created a growing need to educate students in compu-

tational methods and techniques to support the rapidly

changing landscape of research across mathematics and

scientific disciplines.

Methods

To develop our taxonomy of computational thinking

practices for mathematics and science, we drew on multi-

ple resources to identify the characteristic practices that are

most important to both meet the needs of students and to

reflect the work of professionals across a range of mathe-

matics and science disciplines. Figure 1 illustrates the steps

that we followed to create the taxonomy. Throughout the

process, we worked closely with other STEM researchers,

teachers, and curriculum developers. We primarily drew on

three resources for creation and validation of our taxon-

omy: (1) exemplary educational activities involving com-

putational thinking in mathematics and science, (2)

existing concept inventories and standards documents, and

(3) interviews with mathematicians and scientists.

Step 1 The first step in the creation of our taxonomy was

to review existing computational thinking literature, iden-

tifying the skills and practices that are repeatedly cited as

being central. This investigation began with the two

National Research Council publications on computational

thinking (NRC 2010, 2011b) and branched out from there,

reviewing literature cited in those reports along with work

that builds off the ideas presented in the two reports.

Because we see computational thinking as being heavily

informed by the fields of engineering and computer science,

we also gathered and analyzed computer science, engi-

neering, and technology content frameworks such as the CS

Principles project (Astrachan and Briggs 2012), the Com-

puter Science Curricula 2013 report (ACM/IEEE-CS Joint

Task Force on Computing Curricula 2013), and the NAEP

Technology and Engineering Literacy Framework (Driscoll

2013). In reviewing these documents, our goal was to map

out what the existing literature identified as central to

computational thinking with a focus on applications to

mathematics and science. Throughout this initial step, we

sought to understand the broader landscape of computa-

tional thinking before narrowing our focus to mathematics

and science disciplines. This review produced a preliminary

set of ten core computational thinking skills (Table 1),

which were used as a starting point for our taxonomy.

Step 2 The second step in creating the taxonomy was to

collect and classify a variety of activities designed to

introduce computational thinking into high school mathe-

matics and science classrooms. The primary corpus of the

activities analyzed was the materials produced as part of

‘‘Reach for the Stars,’’ an NSF funded program that links

STEM graduate students who use computation in their

research with high school teachers to develop classroom-

ready activities based on their research.1 These lessons

span a variety of concepts across chemistry, physics,

biology, astronomy, earth sciences, networks, and pro-

gramming. Thirty lesson plans from this collection were

selected and coded for elements of computational thinking

(12 in physics, 8 in chemistry, 3 in biology, and 7 in

mathematics). We also included four lessons from a high

school mathematical modeling class designed by a teacher

collaborating on the project.

Two researchers independently reviewed each of the 34

activities, looking for specific practices that seemed rele-

vant to computational thinking based on our findings from

step 1. This resulted in a combined set of 208 computa-

tional thinking ‘‘facets’’ from our activity corpus. Table 2

provides a short excerpt of a portion of the coding of one of

our lessons to serve as an example of this process. The

lesson being analyzed is a physics activity that uses a

virtual roller coaster to allow students to explore the forces

and momentum that govern motion.2 The activity has

students design experiments, gather data, analyze their

1 https://gk12northwestern.wikispaces.com/Lesson?Plans.
2 https://gk12northwestern.wikispaces.com/Roller?Coaster?Activity.

132 J Sci Educ Technol (2016) 25:127–147

123

results as they explore the relationship between potential,

kinetic, and dissipated energies.

Using the set of 208 computational thinking in mathe-

matics and science facets, two researchers independently

open-coded each facet according to the computational

thinking practices involved (Column 3 of Table 2). The

process started with the set of codes derived from our

initial review of the literature (step 1). These skills were

often too broad or not tailored for mathematics and science

contexts, resulting in the division and refinement of these

categories into more specific skills, as well as the intro-

duction of new codes when a facet did not fit within the

exiting set of practices. Upon completion of the initial

coding, the two researchers iteratively revised the new

Fig. 1 Process followed to create the CT in Mathematics and Science Practices taxonomy

Table 1 Initial set of computational thinking skills

Initial set of computational thinking skills

1. Ability to deal with open-ended problems 6. Creating abstractions for aspects of problem at hand

2. Persistence in working through challenging problems 7. Reframing problem into a recognizable problem

3. Confidence in dealing with complexity 8. Assessing strengths/weaknesses of a representation of data/representational

system

4. Representing ideas in computationally meaningful

ways

9. Generating algorithmic solutions

5. Breaking down large problems into smaller problems 10. Recognizing and addressing ambiguity in algorithms

Table 2 Example of a portion of the initial coding and final coding for the roller coaster physics lesson

Activity Computational thinking facet Computational thinking practice

involved

Finalized taxonomy

practice

Roller coaster builder

Design a roller coaster

Graph of the coaster’s kinetic

and potential energies over

time

Students build models of roller coasters that can

be run, generating data about the coaster’s

energy

Gain insight/understanding from

computer-based

simulations/models

Using computational

model to understand a

concept

Constructing

computational models

Students record energy measurements at four

points of the track and store the data in a table

Make effective measurements

from a simulation run

Collecting data

It takes multiple iterations to build a successful

roller coaster that finishes the track and does

not crash

Iterative approach to a solution Using computational

models to find and test

a solution

Troubleshooting and

debugging

Translating on screen graphs of potential/kinetic

energy into tabular form

Assessing strengths and

weaknesses of a representation

Manipulating data

Visualizing data

J Sci Educ Technol (2016) 25:127–147 133

123

codes, resulting in the first full version of our taxonomy,

which consisted of 45 distinct computational thinking in

mathematics and science practices.

Step 3 The initial set of practices was then shared with

the larger research group on the project, which collectively

undertook another round of revisions and categorized the

individual practices into distinct categories. Much of this

work focused on collapsing similar skills into new, unified

categories. Also, to obtain external validity, we consulted

with the ‘‘Reach for the Stars’’ graduate students who had

developed the lesson plans and the in-service teachers who

were participating in the project. The resulting product was

a revised list of 27 practices thematically grouped into five

high-level categories: Data and Information (6 practices),

Modeling and Simulation (5 practices), Computation (5

practices), Problem Solving (7 practices), and Systems

Thinking (4 practices). Each of these practices was linked

with a specific example of it being used in one of the

source lesson plans. Table 3 illustrates two examples of

these codes and their corresponding computational think-

ing facet from the lesson plans.

Step 4 The taxonomy was then presented to 16 high

school mathematics and science teachers during a summer

professional development workshop. As part of the work-

shop, teachers collaboratively used the taxonomy to design

new activities for their classrooms. The feedback from the

teachers on the taxonomy was generally positive, but

concerns were raised, such as a request we move from the

terms skills to the broader and more actionable practices to

reinforce what it means to use these concepts as well as to

reflect larger changes in the mathematics and science

standards landscape. The teachers were especially wary of

the Computation category, which included skills such as

applying conditional logic, using recursion and iterative

logic, and choosing efficient data structures, as they feared

it was too close to computer science and too far from the

content they taught in their classrooms.

Along with gathering feedback from teachers, the tax-

onomy was also presented to computational thinking

experts and STEM curriculum designers. These experts

raised concerns around the problem solving category,

which included practices such as decomposing problems

into subproblems and reframing problems into known/fa-

miliar problems, as they thought the practices were too

general and not unique to STEM or computational thinking

contexts. This feedback led to another round of revisions,

during which we consolidated the Computation and prob-

lem solving categories to address the practical and theo-

retical concerns raised. The final result of this process was

the four-category taxonomy consisting of 22 distinct

practices we present in the following section.

Step 5 Throughout the taxonomy generation process,

interviews with STEM professionals whose work relies

heavily on computation were conducted. Fifteen interviews

were carried out with academic faculty from mathematics

and science disciplines, STEM researchers in industry, and

graduate students pursing degrees in STEM disciplines.

This included interviews with biochemists, physicists,

material engineers, astrophysicists, computer scientists,

and biomedical engineers. The goal of these interviews was

to validate the taxonomy and the emerging categories as

they were taking shape, as well as to provide supplemental

data on the nature of computational thinking as it happens

in authentic scientific settings. In analyzing these inter-

views, we looked for similarities and differences in com-

putational practices across disparate forms of scientific

research. From there, we identified and characterized the

computational thinking practices that the scientific

researchers employed in their work. For example, we found

that testing and debugging was a common practice among

the scientific researchers that had not been clearly captured

in the taxonomy. Through the interviews, we learned that

the practice of debugging could be characterized differ-

ently for distinct forms of research. For instance, for a

theoretical researcher ‘‘testing’’ might involve the process

of verifying a solution to an unknown problem, whereas for

an experimental researcher, testing might involve the pro-

cess of computationally validating an experiment before

the actual trial. Thus, the description of debugging in the

taxonomy needs to reflect this diversity. A full analysis of

these data is presented in a forthcoming paper (Beheshti

et al. In Preparation).

The Computational Thinking in Mathematics
and Science Practices Taxonomy

Our taxonomy is broken down into four major categories:

data practices, modeling and simulation practices, com-

putational problem solving practices, and systems thinking

practices. Each of these categories is composed of a subset

of five to seven practices (Fig. 2). Following the example

set by the NGSS, we have chosen to call these ‘‘practices’’

as opposed to ‘‘skills’’ or ‘‘concepts’’ in order ‘‘to empha-

size that engaging in scientific investigation requires not

only skill but also knowledge that is specific to each

practice’’ (NGSS Lead States 2013, p. 30). Although we

present our taxonomy as a set of distinct categories, the

practices are highly interrelated and dependent on one

another. In practice, they are often used in conjunction to

achieve specific scientific and mathematical goals. In this

section, we describe each of the four major categories,

including its constituent practices and our rationale for its

inclusion in the taxonomy. In the section that follows the

presentation of the taxonomy, we present three classroom

activities to demonstrate what the practices look like in use.

134 J Sci Educ Technol (2016) 25:127–147

123

Data Practices

All sciences share certain common features at the

core of their problem solving and inquiry approaches.

Chief among these is the attitude that data and evi-

dence hold a primary position in deciding any issue

(Duschl et al. 2007, p. 27)

Data lie at the heart of scientific and mathematical

pursuits. They serve many purposes, take many forms, and

play a variety of roles in the conduct of scientific inquiry.

The nature of how data are collected, created, analyzed,

and shared is rapidly changing primarily due to advance-

ments in computational technologies. ‘‘New technologies

enable new scientific investigations, allowing scientists to

probe realms and handle quantities of data previously

inaccessible to them’’ (NGSS Lead States 2013, p. 32). The

importance of being able to use these new technologies to

manage and make meaning from the large amounts of data

they produce is becoming a defining feature of scientific

work in the twenty-first century and thus critical to com-

putational thinking in mathematics and science (Foster

2006). The increasingly computational nature of working

with data in scientific and mathematical fields underscores

the importance of developing computational thinking data

practices in the classroom.

Data skills have long been a part of scientific and

mathematical standards and classroom curricula (NCTM

2000; NGSS Lead States 2013). Instruction around the use

of data often focuses on developing student understanding

of the role of data in investigating questions and using

data to construct answers (Hancock et al. 1992; Lehrer

and Romberg 1996). Part of the challenge is teaching

students that data do not come with inherent structure that

lead directly to an answer, but instead that order must be

imposed and answers drawn from the data available

(Lehrer et al. 2002). The use of data in classrooms also

includes introducing the basics of statistics and proba-

bility so the data can be used to draw conclusions

(Shaughnessy 2007) as well as developing fluency with

both conventional and novel data visualizations (diSessa

2004). Increasingly, classrooms have incorporated tech-

nology as part of data collection and analysis instruction

using tools specifically designed for educational contexts

such as Tinkerplots (Konold and Miller 2005), Fathom

(Finzer et al. 2001), SimCalc (Roschelle et al. 2000), and

NetLogo (Wilensky 1999b) as well as incorporating

Table 3 Two examples of computational thinking in mathematics and science practices with their associated activities and computational facet

Category Code Activity Computational facet

Data and

information

Manipulating

data

Network science and hip hop artistsa: this activity

introduces students to network sciences

Students normalize musician’s names before entering

them into a spreadsheet. Students then sort the data by

different criteria to answer questions about the dataset

Modeling

and

simulation

Assessing

model and

simulations

Projectile motion labb: this activity has students

generate data using the equations that describe

motion with Microsoft Excel

Students are asked how valid they think the model is—

students identify missing factors like air resistance

a https://gk12northwestern.wikispaces.com/Hip?Hop?Networks?Lesson
b https://gk12northwestern.wikispaces.com/Projectile?Lab

Fig. 2 Computational thinking

in mathematics and science

taxonomy

J Sci Educ Technol (2016) 25:127–147 135

123

standard data analysis tools like Microsoft Excel, SPSS,

R, and STATA.

In our analysis of computational thinking lessons for

mathematics and science classrooms, data analysis practices

were present in 27 of the 34 lessons analyzed. Additionally,

the experts we interviewed frequently referenced the impor-

tance of computational thinkingwith respect to the collection,

management, and analysis of data in their work. The impor-

tance of this category was highlighted in an interview with a

materials scientist, who when asked about his research

responded: ‘‘In almost everything, it’s just raw numerical

data.’’ He then went on to explain how he computationally

defines his research questions, uses supercomputing clusters

to generate data, processes and organizes data, and finally

uses software packages to generate visualizations of his

findings. In every step of his work, computational thinking

practices are essential. Below are the five computational

thinking practices that comprise the Data category.

Collecting Data

Data are collected through observation and measurement.

Computational tools play a key role in gathering and

recording a variety of data across many different scientific

and mathematical endeavors. Computational tools can be

useful in different phases of data collection, including the

design of the collection protocol, recording, and storage.

Students who have mastered this practice will be able to

propose systematic data collection protocols and articulate

how those protocols can be automated with computational

tools when appropriate.

Creating Data

In many cases, scientists and mathematicians use compu-

tational tools to generate data. This is the case when inves-

tigating phenomena that cannot be easily observed or

measured or that aremore theoretical in nature. For example,

to understand galaxy evolution, astronomers generate data

using computer simulations as it is not possible to observe

and measure a galaxy’s evolution in situ because the pro-

cesses occur over billions of years. In this way, computa-

tional tools allow for data creation at scales that would

otherwise be impossible. Students who have mastered this

practice will be able to define computational procedures and

run simulations that create data they can use to advance their

understanding of the topic under investigation.

Manipulating Data

In mathematical and scientific fields, it is essential to

manipulate data in order to make meaning of them. Com-

putational tools make it possible to efficiently and reliably

manipulate large and complex datasets. Data manipulation

includes sorting, filtering, cleaning, normalizing, and

joining disparate datasets. These manipulations serve for

both analysis and communication. Students who have

mastered this practice will be able to manipulate datasets

with computational tools, reshaping the dataset to be in a

desired or useful configuration so that it can support further

investigation.

Analyzing Data

The true power of data lies in the information that can be

gleaned from them through analysis. There are many

strategies that can be employed when analyzing data for

use in a scientific or mathematical context, including

looking for patterns or anomalies, defining rules to cate-

gorize data, and identifying trends and correlations. Com-

putational tools have become essential for conducting data

analysis, as they make it possible to analyze data in a more

reliable, effective manner and to conduct analysis on larger

datasets than would otherwise be possible. Using compu-

tational tools to analyze data is becoming an especially

important practice as we now live in an era of data-inten-

sive science (sometimes referred to as ‘‘big data’’), where

datasets routinely have billions of individual data points.

Students who have mastered this practice will be able to

analyze a given set of data and make claims and draw

conclusions based on the finding from their analysis.

Visualizing Data

Communicating results is an essential component of any

knowledge-building endeavor, and computational tools can

greatly facilitate that process. In mathematics and science,

creating visualizations is a powerful strategy for both

analyzing and sharing data. There are a growing number of

software tools available for designing and implementing

data visualizations (Borner 2015). These tools include both

conventional visualizations such as graphs and charts, as

well as dynamic, interactive displays that allow the

observer to interact with the data being displayed. Students

who have mastered this practice will be able to use com-

putational tools to produce visualizations that convey

information gathered during analysis.

Modeling and Simulation Practices

The sciences do not try to explain, they hardly even

try to interpret, they mainly make models.

(von Neumann 1955, p. 628)

The ability to create, refine, and use models of phe-

nomena is a central practice for scientists and

136 J Sci Educ Technol (2016) 25:127–147

123

mathematicians (NGSS Lead States 2013). In mathematics

and science, models can include flowcharts, diagrams,

equations, chemical formulae, computer simulations, and

even physical models (Harrison, and Treagust 2000). By

definition, models are simplifications of reality that fore-

ground certain features of a phenomenon while approxi-

mating or ignoring other features. As such, ‘‘all models are

wrong, but some are useful’’ (Box and Draper 1987,

p. 424). The usefulness of a model comes from its

explanatory and/or predictive power and much research has

found model-based learning to be an effective pedagogical

strategy (for a review, see Louca and Zacharia 2012).

Science education is considered to be inseparably inter-

twined with the development of epistemic and representa-

tional practices (Kaput 1998; Lehrer and Schauble 2006;

Wilensky and Papert 2010; Wilkerson-Jerde et al. 2015),

yet these practices are rarely made explicit as part of

instruction. Similar calls have been made of mathematics

education. The NGSS and Common Core Mathematics

Standards place a new emphasis on not only using models,

but also creating models and critically interrogating their

limitations and simplifying assumptions.

Computational models and simulations can make sci-

entific concepts more accessible and enhance student

understanding of phenomena (Buckley et al. 2004; Klopfer

2003; Parnafes 2007; Schwarz et al. 2007; White and

Frederiksen 1998; Wilensky 1997; Wilkerson-Jerde and

Wilensky 2015). By computational models, we refer to

non-static representations of phenomena that can be sim-

ulated by a computer. The pedagogical power of compu-

tational models comes not just from students using existing

models, but also from enabling students to design, build,

and assess models of their own (Brady et al. 2015; Gilbert

2004; Penner 2000; White 1993; Wilensky 1995, 2003;

Wilensky and Reisman 2006; Wilkerson-Jerde et al. 2015).

Further, computational models make it possible to inves-

tigate questions and test hypotheses that would otherwise

be too expensive, dangerous, difficult or entirely not pos-

sible to carry out (NRC 2011a). As with non-computational

models, it is important for students to be able to think

critically about computational models to understand their

capabilities and limitations.

Of the 34 computational thinking in mathematics and

science activities we analyzed, 23 included the use of

computational models in various capacities including as

tools for problem solving (7) and as tools for exploring

concepts (17). Additionally, these activities had learners

design, construct, and evaluate models as part of their

educational activities. Our modeling and simulation cate-

gory consists of five computational thinking in mathemat-

ics and science practices.

Using Computational Models to Understand a Concept

Computational models that demonstrate specific ideas or

phenomena can serve as powerful learning tools. Students

can use computational models to deepen their understand-

ing of mathematical and scientific concepts, such as the

interdependence within ecosystems, how objects move in a

frictionless environment, and probabilistic distributions of

random events. Such tools help support the inquiry process

by recreating phenomena in environments that support

systematic investigation and give the user far more control

than would be possible in the natural world. Students who

have mastered this practice will be able to advance their

own understanding of a concept by interacting with a

computational model that demonstrates the concept.

Using Computational Models to Find and Test Solutions

Computational models can also be used to test hypotheses

and discover solutions to problems. They make it possible

to test many different solutions quickly, easily, and inex-

pensively before committing to a specific approach. This is

especially helpful for phenomena whose outcomes depend

on multi-dimensional ‘‘parameter spaces.’’ This is an

important technique, commonly used when investigating

problems in scientific fields and beyond. Students who have

mastered this practice will be able to find, test, and justify

the use of a particular solution through the use of a com-

putational model as well as be able to apply the information

gained through using the model when appropriate.

Assessing Computational Models

A key practice in using a computational model effectively

is to understand how the model relates to the phenomenon

being represented. This understanding is guided by a

variety of questions including: Which aspects of the phe-

nomenon have been faithfully modeled and which aspects

have been simplified or ignored? What assumptions have

the creators of the model made about the world and how do

those assumptions affect its behavior? What layers of

abstraction have been built into the model itself and how do

these abstractions shape the fidelity of the model? Thinking

about these questions is an important part of validating and

calibrating a model with respect to the real-world phe-

nomena being represented. Students who have mastered

this practice will be able to articulate the similarities and

differences between a computational model and the phe-

nomenon that it is modeling, this includes raising issues of

threats to validity as well as identifying assumptions built

into the model.

J Sci Educ Technol (2016) 25:127–147 137

123

Designing Computational Models

Part of taking advantage of computational power in the

scientific disciplines is designing newmodels that can be run

on a computational device. The process of designing amodel

is distinct from actually implementing it; designing a model

involves making technological, methodological, and con-

ceptual decisions. There are many reasons that might

motivate designing a computational model, including

wanting to better understand a phenomenon under investi-

gation, to test out a hypothesis, or to communicate an idea or

principle to others in a dynamic, interactive way. When

designing a computational model, one is confronted with a

large set of decisions including defining the boundaries of

the system, deciding what should be included and what can

be ignored, and conceptualizing the behaviors and properties

of the elements included in the model. Throughout the

design process, one must ensure that the resulting model will

be able to accomplish the goal that initially motivated the

model design process. Students who have mastered this

practice will be able to design a computational model, a

process that includes defining the components of the model,

describing how they interact, deciding what data will be

produced by themodel, articulating assumptions beingmade

by the proposed model, and understanding what conclusions

can be drawn from the model.

Constructing Computational Models

An important practice in scientific and mathematical pur-

suits is the ability to create new or extend existing compu-

tational models. This requires being able to encode the

model features in a way that a computer can interpret.

Sometimes this takes the form of conventional program-

ming, but in other cases, frameworks and tools support the

user in defining behaviors or features through manipulating

graphical interfaces or defining sets of rules to be followed.

Being able to implement modeling ideas is critical for

advancing ideas beyond the work done by others and com-

plements the previous practice of designing computational

models. Students who have mastered this practice will be

able to implement new model behaviors, either through

extending an existing model or by creating a new model

either within a given modeling framework or from scratch.

Computational Problem Solving Practice

Applied computer science is now playing the role

which mathematics did from the seventeenth through

the twentieth centuries: providing an orderly, formal

framework and exploratory apparatus for other

sciences.

(Djorgovski 2005)

As with much of human endeavor, problem solving is

central to scientific and mathematical inquiry. While

problem solving can take many forms, in this work, we

focus on problem solving practices that are especially

effective for working with computational tools and derived

from the field of computer science. This perspective builds

on work looking at problem solving practices generally

(Newell and Simon 1972; Pólya 1954), the power of

computational tools to foster the development of such

strategies (Clements and Gullo 1984; Palumbo 1990;

Papert 1980), and work that brings problem solving and

computational tools into scientific domains (Guzdial 1994;

Hambrusch et al. 2009; Sengupta et al. 2013; Wilensky

2001; Wilensky et al. 2014).

This category, more so than the others, builds on prac-

tices and strategies from the field of computer science, and

is intended to capture the field’s contribution to contem-

porary scientific and mathematical work and the impor-

tance for today’s students to develop this skillset (ACM

Pathways 2013; Augustine 2005; Guzdial and Soloway

2003; Henderson et al. 2007). Research has found that

enabling students to explore scientific and mathematical

phenomena using computational problem solving practices

such as programming, algorithm development, and creating

computational abstractions can help learners develop deep

understandings of mathematical and scientific phenomena

(Jackson et al. 1994; Sherin et al. 1993; Taub et al. 2015;

Wilensky 1995; Wilkerson-Jerde 2014).

While relatively few of the lesson plans we analyzed

would fit into a conventional computer science curriculum,

many of the activities include concepts that draw on central

practices from the field, including developing algorithms (5

lessons), programming (12 lessons), and working with

computational abstractions (8 lessons). Additionally, many

of the scientists and mathematicians we interviewed ref-

erenced practices from this category including program-

ming, using computational abstractions, and the

importance of being able to choose effective computational

tools. From this analysis, the resulting Computational

problem solving category consists of seven practices

intended to lay the groundwork in support of preparing

learners for the critical thinking with computation that is

becoming central to modern science and mathematics.

Preparing Problems for Computational Solutions

While some problems naturally lend themselves to com-

putational solutions, more often, problems must be

reframed so that existing computational tools—be they

physical devices or software packages—can be utilized. In

the sciences, a vast array of computational tools can be

138 J Sci Educ Technol (2016) 25:127–147

123

employed for a given pursuit; the challenge is to map

problems onto the capabilities of the tools. Strategies for

doing this include decomposing problems into subprob-

lems, reframing new problems into known problems for

which computational tools already exist, and simplifying

complex problems so the mapping of problem features onto

computational solutions is more accessible. Students who

have mastered this practice will be able to employ such

strategies toward reframing problems into forms that can

be solved, or at least progress can be made, through the use

of computational tools.

Computer Programming

The ability to encode instructions in such a way that a

computer can execute them is a powerful skill for inves-

tigating and solving mathematical and scientific problems.

Programs ranging from ten-line Python scripts to multi-

million-line C?? libraries can be valuable for data col-

lection and analysis, visualizing information, building and

extending computational models, and interfacing with

other existing computational tools. This practice consists of

understanding and modifying programs written by others,

as well as composing new programs or scripts from scratch.

This category includes understanding programming con-

cepts such as conditional logic, iterative logic, and recur-

sion as well as creating abstractions such as subroutines

and data structures. While it is not reasonable to expect all

students to be programming experts, basic programming

proficiency is an important component of twenty-first

century scientific inquiry. Students who have mastered this

practice will be able to understand, modify, and create

computer programs and use these skills to advance their

own scientific and mathematical pursuits.

Choosing Effective Computational Tools

A single task can often be solved a number of different

ways using a variety of different computational tools. In

such cases, there is often a single tool, or at least a small

subset of tools, for the job. Being able to identify the

strengths and weaknesses of various possible tools for the

problem at hand can be the most important decision in a

project. Choosing an effective computational tool includes

considering the functionality it provides, its scope and

customizability, the type of data the tools expects and can

produce, as well as questions that extend beyond the soft-

ware itself, such as, whether or not there is an active user

community that could assist with difficulties you might

encounter. Students who have mastered this practice will

be able to articulate the pros and cons of using various

computational tools and be able to make an informed,

justifiable decision.

Assessing Different Approaches/Solutions to a Problem

When there are multiple approaches to solving a problem

or multiple solutions to choose from, it is important to be

able to assess the options and make an informed decision

about which route to follow. This practice is distinct from

the previous practice in that it concerns how computational

tools, once chosen, will be used, and how they fit in with

the larger process of approaching and solving problems.

This is important in science and mathematics, as there is

often more than one possible course of action. Even if two

different approaches produce the same, correct result, there

are other dimensions that should be considered when

choosing a solution or approach, such as cost, time, dura-

bility, extendibility, reusability, and flexibility. Students

who have mastered this practice will be able to assess

different approaches/solutions to a problem based on the

requirements and constraints of the problem and the

available resources and tools.

Developing Modular Computational Solutions

When working toward a specific scientific or mathematical

outcome, there are often a number of steps or components

involved in the process; these steps, in turn, can be broken

down in a variety of ways that impact their ability to be

easily reused, repurposed, and debugged. Elements of a

solution can be large, complicated and uniquely designed

for the problem at hand, or they can be small, modular, and

reusable. Developing computational solutions in a modu-

lar, reusable way has many implications for both the

immediate problem and future problems that may be

encountered. By developing modular solutions, it is easier

to incrementally construct solutions, test components

independently, and increase the likelihood that components

will be useful for future problems. Students who have

mastered this practice will be able to develop solutions that

consist of modular, reusable components and take advan-

tage of the modularity of their solution in both working on

the current problem and reusing pieces of previous solu-

tions when confronting new challenges.

Creating Computational Abstractions

Creating an abstraction requires the ability to conceptualize

and then represent an idea or a process in more general

terms by foregrounding the important aspects of the idea

while backgrounding less important features. The ability to

create and use abstractions is used constantly across

mathematical and scientific undertakings, be it creating

computational abstractions when writing a program, gen-

erating visualizations of data to communicate an idea or

J Sci Educ Technol (2016) 25:127–147 139

123

finding, defining the scope or scale of a problem, or cre-

ating models to further explore or understand a given

phenomenon. Creating computational abstractions is

essential for solving multiple problems that have structural

similarity but differ in surface detail. These practices are

one central way computational power can be brought to

bear on mathematic and scientific problems. Students who

have mastered this practice will be able to identify, create,

and use computational abstractions as they work toward

scientific and mathematical goals.

Troubleshooting and Debugging

Troubleshooting broadly refers to the process of figuring

out why something is not working or behaving as expected.

There are a number of strategies one can employ while

troubleshooting a problem, including clearly identifying

the issue, systematically testing the system to isolate the

source of the error, and reproducing the problem so that

potential solutions can be tested reliably. In computer

science, this activity is often referred to as ‘‘debugging,’’

and there are a number of strategies and tools designed

specifically to help with figuring out why a program or

other computational tool is not behaving as expected. In

STEM fields, the ability to troubleshoot a problem is

important, as unexpected outcomes and incorrect behavior

are frequently encountered, especially when working with

computational tools. Students who have mastered this

practice will be able to identify, isolate, reproduce, and

ultimately correct unexpected problems encountered when

working on a problem, and do so in a systematic, efficient

manner.

Systems Thinking Practices

Instead of looking at one thing at a time, and noting

its behavior when exposed to one other thing, the

sciences now look at a number of different and

interacting things and note their behavior as a whole

under diverse influences.

(Laszlo 1996, p. 4)

So many of the important problems that we face today

are complex, involving multiple variables, numerous direct

and indirect effects, and are comprised of many, interde-

pendent parts. ‘‘The ability to think systemically is an

important habit of mind that supports not only the scientific

background of the developing STEM workforce, but also

future scientifically literate citizens. In a global society

where future large-scale, scientifically based decisions will

need to be made, it is important for the general populous to

develop a systems thinking orientation toward the world’’

(Duschl and Bismack 2013, p. 120). The systems thinking

approach is fundamentally different from traditional forms

of problem solving and focuses on understanding how

systems change over time (Forrester 1968). The systems

thinking approach has had two distinct foci, with one focus

on aggregate systems dynamics (Forrester 1968; Sterman

2000) and the other on agent-based dynamics (Epstein and

Axtell 1996; Grimm et al. 2005; Wilensky and Resnick

1999; Wilensky and Rand 2015). Both kinds of systems

exhibit emergent behaviors (Bar-Yam 2003; Jacobson and

Wilensky 2006; Sterman 2000; Wilensky and Resnick

1999). With the emergence of so many challenges related

to big data, many systems thinking methods have become

critical components of computational thinking approaches

practiced across scientific disciplines. Traditional analyses

focus on breaking down problems into their constituent

parts and looking separately at the individual pieces. Sys-

tems thinking analyses, in contrast, focus on an inclusive

examination of how the system and its constituent parts

interact and relate to one another as a whole (Assaraf and

Orion 2005).

Many fundamental (and difficult) scientific concepts are

best, and perhaps only, understood through a systems lens.

Good examples include natural selection and population

dynamics in ecology, the human respiratory system from

biology, and the ideal gas laws in chemistry and physics

(Hmelo et al. 2000; Stieff andWilensky 2003;Wilensky and

Reisman 2006). Other types of systems, such as those

encountered in physics, economics, and even history,

involve cross-cutting concepts related to systems thinking

such as feedback, emergence, stocks, and flows (Goldstone

andWilensky 2008; Penner 2000;Wilensky and Rand 2015;

Zuckerman and Resnick 2003). Recommendations for the

systems perspective are now represented in four separate

NRC reports—Taking Science to School (NRC 2007), A

Framework for K-12 Science Education (NRC 2012a), Ed-

ucation for Life and Work (NRC 2012c) and Discipline-

Based Education Research (NRC 2012b) as well as the Next

Generation Science Standards (NGSS Lead States 2013).

While this knowledge is not necessarily bound to compu-

tational thinking, computational tools enable new ways to

explore, understand, and represent these ideas (Bar-Yam

2003; Sterman 2000; Wolfram 2002). Computation there-

fore serves as a powerful medium to make these ideas

accessible to learners (Klopfer 2003; Wilensky 2001).

In our analysis of computational thinking activities

designed for high school mathematics and science classes,

eight lessons included developing practices associated with

systems thinking. These findings were reinforced by the

interviews we conducted with scientists and mathemati-

cians, as they frequently cited concepts from complex

systems and practices associated with investigating and

understanding systems through computation as being

important in their field. While many of the computational

140 J Sci Educ Technol (2016) 25:127–147

123

practices that we describe above are valuable for investi-

gating systems, this section introduces five computational

thinking practices that focus on systems thinking.

Investigating a Complex System as a Whole

A system can be viewed as a single entity composed of

many interrelated elements; for some questions, it is more

effective to investigate how the system works as a whole as

opposed to studying each individual element or set of

elements. Investigating a complex system as a whole relies

on the ability to define and measure inputs and outputs of

the system. This is especially critical in the sciences

because so many phenomena are the result of very large-

scale, complex interactions. Being able to black box the

details of the underlying systematic interactions and focus

on the system as a whole makes it possible to understand

the characteristics of the system in aggregate, which is

sometimes exactly the data needed for the problem at hand.

Computational tools such as models and simulations are

especially useful in such investigations, as they can auto-

mate pieces of an investigation, take precise measurements,

and model systems for further analysis and hypothesis

testing. Another powerful approach to facilitate students in

learning about complex systems as whole can come from

the use of representations (including feedback, stocks and

flows, agents, and agent rules) that depict systems in a

nonlinear fashion. Students who have mastered this prac-

tice will be able to pose questions about, design and carry

out investigations on, and ultimately interpret and make

sense of, the data gathered about a system as a single entity.

Understanding the Relationships within a System

Whereas some questions can best be answered by focusing

on a system as a whole, other questions require under-

standing how the components within a system interact.

Thus, it is important to be able to identify the different

elements of a system and articulate the nature of their

interactions. Computational tools are useful for conducting

such inquiry as they can provide learners with controls for

isolating different elements, investigating their behaviors,

and exploring how they interact with other components of

the system. Students who have mastered this practice will

be able to identify the constituent elements of a system,

articulate their behaviors, and explain how interactions

between elements produce the characteristic behaviors of

the system.

Thinking in Levels

Systems can be understood and analyzed from different

perspectives, ranging from a micro-level view that

considers the smallest elements of the system to a macro-

level view that considers the system as a whole. Thinking

about a system from the standpoint of its individual actors

and components can lead to insights about how micro-level

behaviors lead to emergent macro-level patterns. On the

other hand, being able to black box the details of the

underlying systematic interactions and focus on the system

as a whole makes it possible to understand the emergent

characteristics of the system in aggregate, which can yield

a different set of insights from a micro-level analysis.

Computational tools can facilitate the investigation of the

system from both perspectives, and, as Levy and Wilensky

(2008) show, from productive mid-levels between the two.

Students who have mastered this practice will be able to

identify different levels of a given system, articulate the

behavior of each level with respect to the system as a

whole, and be able to move back and forth between levels,

correctly attributing features of the system to the appro-

priate level.

Communicating Information about a System

A central challenge when investigating a system is figuring

out how best to communicate what you have learned about

it. This is often challenging due to the size and complexity

of the system under investigation. Because systems often

consist of many interrelated parts and can include numer-

ous interacting elements, conveying information about the

system can be difficult, but is also essential for the infor-

mation gleaned from the system to be understood and used

by others. Communicating information about a system

often involves developing effective and accessible visual-

izations and infographics3 that highlight the most important

aspects of what has been learned about the system in such a

way that it can be understood by someone who does not

know all the underlying details. This practice includes the

ability to prioritize features of a system, design intuitive

ways to represent it, and identify what can be left out of the

visualization without compromising the information being

conveyed. Students who have mastered this practice will be

able to communicate information they have learned about a

system in a way that makes the information accessible to

viewers who do not know the exact details of the system

from which the information was drawn.

3 By infographic, we mean a visual abstraction that communicates

information. It includes conventional formats such as graphs, charts,

and maps, but also includes interactive, dynamic visualizations

designed with the express goal of communicating information to the

viewer.

J Sci Educ Technol (2016) 25:127–147 141

123

Defining Systems and Managing Complexity

Anything can be viewed as a system; the size andmembership

of the system depends on where you define its boundaries.

You can have very small systems that include only a narrow

set of entities, like a classroom system consisting of a teacher

and students, or you can have systems that includemillions of

entities, like a group of galaxies or the human genome. The

larger the system is, in terms of number of entities, types of

entities, frequency of interactions, and diversity of behavior,

themore complex it becomes. The decision ofwhere to set the

boundaries of the system is critical for any investigation that

follows as it determines what questions you can answer as

well as the size and complexity of the system. Further, in

order to leverage computational tools in working with sys-

tems, one must explicitly delineate the boundaries of the

systems that are under investigation. It is important to be able

to define a system in a way that is useful and productive. This

includes creating a system that includes all the necessary

elements to be able to accomplish the desired goal while

limiting its size, complexity, and scope. Students who have

mastered this practice will be able to define the boundaries of

a system so that they can then use the resulting system as a

domain for investigating a specific question as well as to

identify ways to simplify an existing system without com-

promising its ability to be used for a specified purpose.

Computational Thinking in Mathematics
and Science in Practice

As part of our effort to bring computational thinking into

mathematics and science classrooms, we are developing a

series of computational thinking enhanced lesson plans for

high school mathematics, biology, chemistry, and physics

classrooms. These activities are informed by our taxonomy,

introduced in professional development workshops, and

taught by teachers without formal backgrounds in compu-

tational thinking or computer science. The activities have

been designed to be easily adopted and incorporated into

existing mathematics and science curricula. Here we present

three lessons that demonstrate the computational thinking in

mathematics and science (CT-MS) practices outlined in our

taxonomy.4

Video Games: Physics Phact or Phiction?

This activity is designed for high school physics class-

rooms and has students investigate the laws of physics that

govern video games. Depending on the selected game,

students calculate the gravitational constant (e.g., in Angry

Birds) and/or conservation of energy and momentum (e.g.,

in Asteroids). The lesson begins with students creating a

20- to 30-s screencast of themselves playing the game, then

use Physics Tracker (Brown 2013), a video transcription

and computational analysis tool, to collect data (CT-MS

Practice: Data Collection). Within Physics Tracker, the

students visualize the data, plotting time, position, velocity,

acceleration, and other germane physical parameters (CT-

MS Practice: Data Visualization). They then use Tracker’s

analysis tools to identify the best fit between the data and

their mathematical functional form (CT-MS Practice: Data

Analysis). Students derive the properties that define the

behavior of the world, such as finding the gravitational

constant in Angry Birds (CT-MS Practice: Using Compu-

tational Models to Find/Test Solutions). Having answered

this question, students assess the video game as a model,

identify differences with the real world, and communicate

why those design choices help the usability of the game

(CT-MS Practices: Assessing Computational Models,

Communicating Information about a System).

DNA Sequencing from the Ground Up

This activity is designed for high school biology class-

rooms and has students imagine that they are scientists in

the 1990s faced with the task of sequencing the entire

human genome. Students start with a simple case of putting

back together a verse of a familiar song that has been

broken into pieces and randomly arranged. After reflecting

on this puzzle and the strategies that they developed to

reassemble the lyrics (CT-MS Practice: Assessing Differ-

ent Approach/Solutions to a Problem), students go on to a

more difficult challenge: reconstructing an unknown pass-

word with an unfamiliar combination of letters and num-

bers. They then apply their technique from the password

puzzle to derive an efficient, robust, and general algorithm

for sequencing things (CT-MS Practices: Preparing Prob-

lems for Computational Solutions, Creating Computational

Abstractions). After determining their technique for

assembling the full DNA sequence, the students write their

procedure in pseudocode, intended to be the first step

toward expressing the algorithm in a manner that a com-

puter could interpret and execute (CT-MS Practice: Pro-

gramming). Classmates then swap algorithms, attempt to

implement them, and provide suggestions for improvement

in terms of clarity and efficiency (CT-MS Practice:

Assessing Different Approaches/Solutions to a Problem).

At the end of the lesson, the students are asked to consider

why computers were so essential in accomplishing the task

of sequencing the human genome. By having them think

about and experience scaling the problem up from a simple

case to a more complex problem, the students develop an

4 Additional information on the lesson plans, including materials and

software, can be found at http://ct-stem.northwestern.edu

142 J Sci Educ Technol (2016) 25:127–147

123

http://ct-stem.northwestern.edu

appreciation for the processing speed that computers pro-

vide and how computation has revolutionized the questions

we ask and the way we do science.

Gas Laws

In this high school chemistry lesson, students use an

interactive simulation to explore the relationships between

macroscopic properties of gases—pressure, volume, and

temperature—based on how these properties emerge from

microscopic interactions (i.e., the motion of the gas parti-

cles and the interaction with the walls of the container).

The tool is part of the PhET suite of simulations (Adams

et al. 2008a, b) that has been found to help students build

conceptual understandings of the concepts being modeled

(CT-MS Practice: Using Computational Models to

Understand a Concept) and is based on the earlier GasLab

modeling toolkit (Wilensky 1999a). Students explore the

behaviors of gases by running experiments, the result of

which are stored in a spreadsheet (CT-MS Practice:

Creating Data). The students then visualize their data,

graphing it in various formats to find the most compelling

way to explain the relationship between the variables to

classmates (CT-MS Practices: Analyzing Data, Visualizing

Data). The simulation allows the students to investigate

both the microscopic, agent-level behaviors and macro-

scopic, aggregate properties of gases (CT-MS Practice:

Thinking in Levels). At the end of the lesson, students are

asked whether there are aspects of the simulation that are

unrealistic or different from the real world. Students are

also asked to reflect on the difference between exploring

the gas laws with models versus trying to conduct

table experiments (CT-MS Practice: Assessing Computa-

tional Models). To derive the gas laws themselves, the

students must consider the system as a whole, back-

grounding the details of the underlying interactions and

focusing on identifying and measuring inputs to and out-

puts from the aggregate system (CT-MS Practice: Investi-

gating a Complex System as a Whole).

Conclusion

This paper argues for the inclusion of computational

thinking in mathematics and science classrooms. We see

three main benefits for the approach of embedding com-

putational thinking in these contexts: (1) it builds on the

reciprocal relationship for learning between computational

thinking and mathematics and science domains, (2) it

addresses practical concerns of reaching all students, and

having proficient teachers, and (3) it brings science and

mathematics education more in line with current profes-

sional practices in these fields. We have presented a

taxonomy that articulates a definition of ‘‘computational

thinking in mathematics and science’’ and contributes a

language around which standards, curricula, and assess-

ments can develop. In so doing, we address the issue of

ambiguity and a lack of precision that has plagued much of

the discussion surrounding computational thinking. We see

the work presented in this paper as a first step in the process

of bringing computational thinking into mathematics and

science classrooms. Achieving this goal requires the sup-

port of a diverse set of stakeholders to be successful. This

includes teachers becoming comfortable teaching the

material and receiving professional development in com-

putation-based lessons and technology; school administra-

tors allocating resources to support its inclusion; policy

makers prioritizing computational thinking as a part of

mathematics and science education; curriculum and

assessment developers producing computational thinking

materials targeted for science and mathematics classrooms;

and the broader community supporting the effort to bring

computational thinking into these educational spaces. The

inclusion of computational thinking as a core scientific

practice in the Next Generation Science Standards and

similar language in mathematics’ standards are important

milestones, but there is still much work to do toward

addressing the challenge of educating a technologically and

scientifically savvy population and preparing the next

generation of world class scientists.

Acknowledgments This work is supported by the National Science

Foundation under NSF Grant CNS-1138461. However, any opinions,

findings, conclusions, and/or recommendations are those of the

investigators and do not necessarily reflect the views of the

Foundation.

References

Abrahamson D, Wilensky U (2005) ProbLab goes to school: design,

teaching, and learning of probability with multi-agent interactive

computer models. In: Proceedings of the fourth conference of the

European Society for research in mathematics education. San

Feliu de Gixols

Abrahamson D, Janusz RM, Wilensky U (2006) There once was a

9-block: a middle-school design for probability and statistics.

J Stat Educ 14(1). http://www.amstat.org/publications/jse/v14n1/

abrahamson.html

Adams WK, Reid S, LeMaster R, McKagan SB, Perkins KK, Dubson

M, Wieman CE (2008a) A study of educational simulations part

I: engagement and Learning. J Interact Learn Res 19(3):367–419

Adams WK, Reid S, LeMaster R, McKagan SB, Perkins KK, Dubson

M, Wieman CE (2008b) A study of educational simulations part

II: interface design. J Interact Learn Res 19(4):551–557

Anderson MP, Srolovitz DJ, Grest GS, Sahni PS (1984) Computer

simulation of grain growth—I: kinetics. Acta Metall

32(5):783–791

Assaraf OB-Z, Orion N (2005) Development of system thinking skills

in the context of earth system education. J Res Sci Teach

42(5):518–560

J Sci Educ Technol (2016) 25:127–147 143

123

http://www.amstat.org/publications/jse/v14n1/abrahamson.html
http://www.amstat.org/publications/jse/v14n1/abrahamson.html

Astrachan O, Briggs A (2012) The CS principles project. CM Inroads

3(2):38–42

Augustine NR (2005) Rising above the gathering storm: energizing

and employing America for a brighter economic future. National

Academies Press, Washington, DC

Bailey D, Borwein JM (2011) Exploratory experimentation and

computation. Not Am Math Soc 58(10):1410–1419

Barab S, Thomas M, Dodge T, Carteaux R, Tuzun H (2005) Making

learning fun: Quest Atlantis, a game without guns. Educ Technol

Res Dev 53(1):86–107

Barr V, Stephenson C (2011) Bringing computational thinking to

K-12: what is Involved and what is the role of the computer

science education community? ACM Inroads 2(1):48–54

Bar-Yam Y (2003) Dynamics of complex systems. Perseus Publish-

ing, New York

Beheshti E, Weintrop D, Horn MS, Orton K, Jona K, Wilensky U (In

Preparation) Computational thinking in the wild: how scientists

and mathematicians use computational thinking in their work.

Blikstein P (2013) Digital fabrication and ‘‘making’’ in education: the

democratization of invention. In: Walter-Herrmann J, Büching C

(eds) FabLabs: of machines, makers and inventors, Transcript

Publishers, Bielefeld, pp 1–21

Blikstein P, Wilensky U (2009) An atom is known by the company it

keeps: a constructionist learning environment for materials

science using agent-based modeling. Int J Comput Math Learn

14(2):81–119

Borner K (2015) Atlas of knowledge: anyone can map. MIT Press,

Cambridge

Box GE, Draper NR (1987) Empirical model-building and response

surfaces. Wiley, New York

Brady C, Holbert N, Soylu F, Novak M, Wilensky U (2015)

Sandboxes for model-based inquiry. J Sci Educ Technol

24(2):265–286

Brown D (2013) Tracker: video analysis and modeling tool (Version

4.82). http://www.cabrillo.edu/*dbrown/tracker

Brennan K, Resnick M (2012). New frameworks for studying and

assessing the development of computational thinking. Presented

at the American Education Researcher Association, Vancouver,

Canada.

Bryan J (2006) Technology for physics instruction. Contemp Issues

Technol Teach Educ 6(2):230

Buckley BC, Gobert JD, Kindfield ACH, Horwitz P, Tinker RF,

Gerlits B et al (2004) Model-based teaching and learning with

BioLogicaTM: what do they learn? how do they learn? how do

we know? J Sci Educ Technol 13(1):23–41

Buechley L, Eisenberg M, Catchen J, Crockett A (2008) The LilyPad

Arduino: using computational textiles to investigate engagement,

aesthetics, and diversity in computer science education. In:

Proceedings of the SIGCHI conference on Human factors in

computing systems. ACM, New York, pp 423–432

Chinn CA, Malhotra BA (2002) Epistemologically authentic inquiry

in schools: a theoretical framework for evaluating inquiry tasks.

Sci Educ 86(2):175–218

Clements DH, Gullo DF (1984) Effects of computer programming on

young children’s cognition. J Educ Psychol 76(6):1051

Computer Science Teachers Association (2011) K-12 computer

science standards. http://csta.acm.org/Curriculum/sub/K12Stan

dards.html

Confrey J (1993) The role of technology in reconceptualizing

functions and algebra. Paper presented at the 17th Annual

Meeting of the North American Chapter of the International

Group for the Psychology of Mathematics Education, Asilomar

Cooper S, Dann W, Pausch R (2000) Alice: a 3-D tool for

introductory programming concepts. J Comput Sci Coll

15(5):107–116

Dijkstra HA (2013) Nonlinear climate dynamics. Cambridge Univer-

sity Press, Cambridge

diSessa AA (2000) Changing minds: computers, learning, and

literacy. MIT Press, Cambridge

diSessa AA (2004) Metarepresentation: native competence and

targets for instruction. Cogn Instr 22(3):293–331

Driscoll DP (2013) Technology and engineering literacy framework

for the 2014 National Assessment of Educational Progress. US

Department of Education, Washington DC

Duschl RA, Bismack AS (2013) Standards for science education:

quantitative reasoning and modeling concepts. In: Duschl RA,

Bismack AS (eds) Reconceptualizing STEM education: the

central role of practices. University of Wyoming, Laramie, WY

Duschl RA, Schweingruber HA, Shouse AW (2007) Taking science

to school: learning and teaching science in grades K-8. National

Academies Press, Washington, DC

Edelson DC, Gordin DN, Pea RD (1999) Addressing the challenges of

inquiry-based learning through technology and curriculum

design. J Learn Sci 8(3/4):391–450

Eisenberg M (2002) Output devices, computation, and the future of

mathematical crafts. Int J Comput Math Learn 7(1):1–44

Epstein J, Axtell R (1996) Growing artifical societies: social science

from the bottom up. Brookings Institution Press, Washington

Feurzeig W, Papert S, Lawler B (2011) Programming-languages as a

conceptual framework for teaching mathematics. Interact Learn

Environ 19(5):487–501

Finzer W, Erickson T, Binker J (2001) Fathom [computer software].

KCP Technologies, Emeryville

Forrester JW (1968) Principles of systems. Pegasus Communications,

Waltham, MA

Foster I (2006) 2020 computing: a two-way street to science’s future.

Nature 440(7083):419

Furber S (2012) Shut down or restart? The way forward for

computing in UK schools. Technical report, The Royal Society,

London

Gardner DP (1983) A nation at risk: the imperative for educational

reform. U.S. Department of Education, Washington, DC

Gilbert JK (2004) Models and modelling: routes to more authentic

science education. Int J Sci Math Educ 2(2):115–130

Goldstone RL, Wilensky U (2008) Promoting transfer by grounding

complex systems principles. J Learn Sci 17(4):465–516

Google: Exploring Computational Thinking. (n.d.). Retrieved 25 Oct

2010. http://www.google.com/edu/computational-thinking/

index.html

Grimm Volker, Revilla Eloy, Berger Uta, Jeltsch Florian, Mooij Wolf

M, Railsback Steven F, Thulke Hans-Hermann, Weiner Jacob,

Wiegand Thorsten, DeAngelis Donald L (2005) Pattern-oriented

modeling of agent-based complex systems: lessons from ecol-

ogy. Science 310:987–991

Grover S, Pea R (2013) Computational thinking in K-12: a review of

the state of the field. Educ Res 42(1):38–43

Guzdial M (1994) Software-realized scaffolding to facilitate pro-

gramming for science learning. Interact Learn Environ

4(1):001–044

Guzdial M (2008) Paving the way for computational thinking.

Commun ACM 51(8):25–27

Guzdial M, Soloway E (2003) Computer science is more important

than calculus: the challenge of living up to our potential.

SIGCSE Bull 35(2):5–8

Hambrusch S, Hoffmann C, Korb JT, Haugan M, Hosking AL (2009)

A multidisciplinary approach towards computational thinking for

science majors. In: ACM SIGCSE bulletin, vol 41, pp 183–187

Hancock C, Kaput JJ, Goldsmith LT (1992) Authentic inquiry with

data: critical barriers to classroom implementation. Educ Psychol

27(3):337

144 J Sci Educ Technol (2016) 25:127–147

123

http://www.cabrillo.edu/%7edbrown/tracker
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://www.google.com/edu/computational-thinking/index.html
http://www.google.com/edu/computational-thinking/index.html

Harrison AG, Treagust DF (2000) A typology of school science

models. Int J Sci Educ 22(9):1011–1026

Henderson PB, Cortina TJ, Wing JM (2007) Computational thinking.

In: ACM SIGCSE bulletin, vol 39. ACM, pp 195–196

Hmelo CE, Holton DL, Kolodner JL (2000) Designing to learn about

complex systems. J Learn Sci 9(3):247–298. doi:10.1207/

S15327809JLS0903_2

Horn MS, Brady C, Hjorth A, Wagh A, Wilensky U (2014) Frog

pond: a code-first learning environment on evolution and natural

selection. ACM Press, New York, pp 357–360

Horwitz P, Schwartz J, Kindfield ACH, Yessis LM, Hickey DT,

Heidenberg A, Wolfe EW (1998) Implementation and evaluation

of the GenScopeTM learning environment: issues, solutions, and

results. In: Guzdial M, Kolodner J, Bruckman A (eds) Proceed-

ings of the 3rd annual international conference of the learning

sciences. Association for the Advancement of Computers in

Education, Charlottesville

Jackson SL, Stratford SJ, Krajcik J, Soloway E (1994) Making

dynamic modeling accessible to precollege science students.

Interact Learn Environ 4(3):233–257

Jacobson MJ, Wilensky U (2006) Complex systems in education:

scientific and educational importance and implications for the

learning sciences. J Learn Sci 15(1):11–34

Jona K, Vondracek M (2013) A remote radioactivity experiment.

Phys Teach 51(1):25

Jona K, Wilensky U, Trouille L, Horn MS, Orton K, Weintrop D,

Beheshti E (2014) Embedding computational thinking in

science, technology, engineering, and math (CT-STEM). Pre-

sented at the Future Directions in Computer Science Education

Summit Meeting, Orlando

Kaput JJ (1998) Representations, inscriptions, descriptions and

learning: a kaleidoscope of windows. J Math Behav 17(2):

265–281

Kay A, Goldberg A (1977) Personal dynamic media. Computer

10(3):31–41

Keeling MJ, Grenfell BT (1997) Disease extinction and community

size: modeling the persistence of measles. Sci 275(5296):65–67

Klopfer E (2003) Technologies to support the creation of complex

systems models: using StarLogo software with students. Biosys-

tems 71(1–2):111–122

Kohn W (2003) Nobel lectures, chemistry 1996–2000. World

Scientific Publishing Co, Singapore, p 213

Konold C, Miller CD (2005) TinkerPlots: dynamic data exploration.

Computer software. Key Curriculum Press, Emeryville, CA

Lander ES, Schork NJ (1994) Genetic dissection of complex traits.

Sci 265(5181):2037–2048

Laszlo E (1996) The systems view of the world: a holistic vision for

our time, 2nd edn. Hampton Press, Cresskill, NJ

Lehrer R, Giles N, Schauble L (2002) Data modeling. In: Lehrer R,

Schauble L (eds) Investigating real data in the classroom:

expanding children’s understanding of mathematics and science.

Teachers College Press, New York, pp 1–26

Lehrer R, Romberg T (1996) Exploring children’s data modeling.

Cognition Instruct 14(1):69–108

Lubchenco J, Olson AM, Brubaker LB, Carpenter SR, Holland MM,

Hubbell SP et al (1991) The sustainable biosphere initiative: an

ecological research agenda: a report from the Ecological Society

of America. Ecology 72(2):371–412

Lehrer R, Schauble L (2006) Cultivating model-based reasoning in

science education. In: Sawyer RK (ed) The Cambridge handbook

of the learning sciences. Cambridge University Press, New York,

pp 371–388

Levy ST, Wilensky U (2008) Inventing a ‘‘Mid Level’’ to make ends

meet: reasoning between the levels of complexity. Cogn Instr

26(1):1–47

Levy ST, Wilensky U (2009) Crossing levels and representations: the

connected chemistry (CC1) curriculum. J Sci Educ Technol

18(3):224–242

Lin CC, Zhang M, Beck B, Olsen G (2009) Embedding computer

science concepts in K-12 science curricula. In: Proceedings of

the 40th ACM technical symposium on computer science

education. ACM, New York, pp 539–543

Linn MC, Clark D, Slotta JD (2003) WISE design for knowledge

integration. Sci Educ 87(4):517–538

Louca LT, Zacharia ZC (2012) Modeling-based learning in science

education: cognitive, metacognitive, social, material and episte-

mological contributions. Educ Rev 64(4):471–492

Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled

ocean–atmosphere model. J Clim 1:841–866

Margolis J (2008) Stuck in the shallow end: education, race, and

computing. The MIT Press, Cambridge

Margolis J, Fisher A (2003) Unlocking the clubhouse: women in

computing. The MIT Press, Cambridge

National Governors Association Center for Best Practices, Council of

Chief State School Officers (2010) Common core state standards

for mathematics. National Governors Association Center for

Best Practices, Council of Chief State School Officers, Wash-

ington, DC

National Research Council (2007) Taking science to school: learning

and teaching science in grades K-8. National Academies Press,

Washington, DC

National Research Council (2010) Report of a workshop on the scope

and nature of computational thinking. The National Academies

Press, Washington, DC

National Research Council (2011a) Learning science through com-

puter games and simulations. The National Academies Press,

Washington, DC

National Research Council (2011b) Report of a workshop of

pedagogical aspects of computational thinking. The National

Academies Press, Washington, DC

National Research Council (2012a) A framework for K-12 science

education: practices, crosscutting concepts, and core ideas.

National Academies Press, Washington, DC

National Research Council (2012b) Discipline-based education

research: understanding and improving learning in undergradu-

ate science and engineering. National Academies Press, Wash-

ington, DC

National Research Council (2012c) Education for life and work:

developing transferable knowledge and skills in the 21st century.

National Academies Press, Washington, DC

Newell A, Simon HA (1972) Human problem solving, vol 104.

Prentice-Hall, Englewood Cliffs, NJ

NGSS Lead States (2013) Next generation science standards: for

states, by states. The National Academies Press, Washington,

DC

Olsen LF, Schaffer WM (1990) Chaos versus noisy periodicity:

alternative hypotheses for childhood epidemics. Sci

249(4968):499–504

Palumbo DB (1990) Programming language/problem solving

research: a review of relevant issues. Rev Educ Res 60(1):65–89

Papert S (1972) Teaching children to be mathematicians versus

teaching about mathematics. Int J Math Educ Sci Technol

3(3):249–262

Papert S (1980) Mindstorms: children, computers, and powerful ideas.

Basic books, New York

Papert S (1996) An exploration in the space of mathematics

educations. Int J Comput Math Learn 1(1):138–142

Parnafes O (2007) What does ‘‘fast’’ mean? understanding the

physical world through computational representations. J Learn
Sci 16(3):415–450

J Sci Educ Technol (2016) 25:127–147 145

123

http://dx.doi.org/10.1207/S15327809JLS0903_2
http://dx.doi.org/10.1207/S15327809JLS0903_2

Penner DE (2000) Cognition, computers, and synthetic science:

building knowledge and meaning through modeling. Rev Res

Educ 25:1

Perkins K, Adams W, Dubson M, Finkelstein N, Reid S, Wieman C,

LeMaster R (2006) PhET: interactive simulations for teaching

and learning physics. Phys Teach 44(1):18

Perlis A (1962) The computer in the university. In: Greenberger M

(ed) Computers and the world of the future. MIT Press,

Cambridge, pp 180–219

Pople J (2003) Nobel lectures, chemistry 1996–2000. World Scientific

Publishing Co, Singapore, p 246

Redish EF, Wilson JM (1993) Student programming in the introduc-

tory physics course: mUPPET. Am J Phys 61:222–232

Repenning A, Webb D, Ioannidou A (2010) Scalable game design and

the development of a checklist for getting computational thinking

into public schools. In Proceedings of the 41st ACM technical

symposium on computer science education. pp 265–269

Resnick M, Silverman B, Kafai Y, Maloney J, Monroy-Hernández A,

Rusk N et al (2009) Scratch: programming for all. Commun

ACM 52(11):60

Richmond B, Peterson S, Vescuso P, Maville N (1987) An Academic

user’s guide to Stella Software. High Performance Systems, Inc,

Lyme, NH

Roschelle J, Kaput J, Stroup W (2000) SimCalc: accelerating student

engagement with the mathematics of change. In: Learning the

sciences of the 21st century: research, design, and implementing

advanced technology learning environments. pp 47–75

Rubin A, Nemirovsky R (1991) Cars, computers, and air pumps:

thoughts on the roles of physical and computer models in

learning the central concepts of calculus. In Underhill RG (ed)

Proceedings of the Thirteenth International Conference for the

Psychology of Mathematics Education—North American Chap-

ter Conference, Virginia, pp 168–174

Ryoo JJ, Margolis J, Lee CH, Sandoval CD, Goode J (2013)

Democratizing computer science knowledge: transforming the

face of computer science through public high school education.

Learn Media Technol 38(2):161–181

Schwarz CV, Meyer K, Sharma A (2007) Technology, pedagogy, and

epistemology: opportunities and challenges of using computer

modeling and simulation tools in elementary science methods.

J Sci Teach Educ 18(2):243–269

Sengupta P, Kinnebrew JS, Basu S, Biswas G, Clark D (2013)

Integrating computational thinking with K-12 science education

using agent-based computation: a theoretical framework. Educ

Inf Technol 18(2):351–380

Settle A, Franke B, Hansen R, Spaltro F, Jurisson C, Rennert-May C,

Wildeman B (2012) Infusing computational thinking into the

middle- and high-school curriculum. In: Proceedings of the 17th

ACM conference on Innovation and technology in computer

science education. ACM, New York, pp 22–27

Settle A, Goldberg DS, Barr V (2013) Beyond computer science:

computational thinking across disciplines. In: Proceedings of the

18th ACM conference on innovation and technology in computer

science education. ACM, New York, pp 311–312

Shaughnessy JM (2007) Research on statistics learning. In: Lester FK

(ed) Second handbook of research on mathematics teaching and

learning. InformationAge Publishing, Charlotte, NC, pp 957–1009.

Sherin BL (2001) A comparison of programming languages and

algebraic notation as expressive languages for physics. Int J

Comput Math Learn 6(1):1–61

Sherin BL, diSessa AA, Hammer D (1993) Dynaturtle revisited:

learning physics through collaborative design of a computer

model. Interact Learn Environ 3(2):91–118

Srolovitz DJ, Anderson MP, Sahni PS, Grest GS (1984) Computer

simulation of grain growth—II: grain size distribution, topology,

and local dynamics. Acta Metall 32(5):793–802

Sterman J (2000) Business dynamics: systems thinking for a complex

world. Irwin/McGraw-Hill, New York

Stieff M, Wilensky U (2003) Connected chemistry: incorporating

interactive simulations into the chemistry classroom. J Sci Educ

Technol 12(3):285–302

Taub R, Armoni M, Bagno E, Ben-Ari M (2015) The effect of

computer science on physics learning in a computational science

environment. Comput Educ 87:10–23

Tinker RF, Xie Q (2008) Applying computational science to

education: the molecular workbench paradigm. Comput Sci

Eng 10(5):24–27

Turelli M, Barton NH (1994) Genetic and statistical analyses of

strong selection on polygenic traits: what, me normal? Genetics

138(3):913–941

Vogelsberger M, Genel S, Springel V, Torrey P, Sijacki D, Xu D et al

(2014) Introducing the illustris project: simulating the coevolu-

tion of dark and visible matter in the Universe. Mon Not R

Astron Soc 444(2):1518–1547

von Neumann J (1955) Method in the physical sciences. In: Bródy F,

Vámos T (eds) The Neumann compendium: world series in 20th

century mathematics, vol 1. World Scientific Publishing Co,

Singapore, p 628

Wagh A, Wilensky U (2014) Seeing patterns of change: supporting

student noticing in building models of natural selection. In:

Proceedings of 2014 constructionism. Vienna, 19–23 Aug

Weintrop D,Wilensky U (2013) RoboBuilder: a computational thinking

game. In Proceeding of the 44th ACM technical symposium on

computer science education. ACM, Denver, pp 736–736

White BY (1993) ThinkerTools: causal models, conceptual change,

and science education. Cogn Instr 10(1):1

White BY, Frederiksen JR (1998) Inquiry, modeling, and metacog-

nition: making science accessible to all students. Cogn Instr

16(1):3–118

Wilensky U (1995) Paradox, programming, and learning probability:

a case study in a connected mathematics framework. J Math

Behav 14(2):253–280

Wilensky U (1997) What is normal anyway? therapy for epistemo-

logical anxiety. Educ Stud Math 33(2):171–202

Wilensky U (1999a) GasLab: an extensible modeling toolkit for

exploring statistical mechanics. In: Roberts N, Feurzeig W,

Hunter B (eds) Computer modeling and simulation in science

education. Springer, Berlin, pp 151–178

Wilensky U (1999b) NetLogo. Center for Connected Learning and

Computer-Based Modeling, Northwestern University, Evanston.

http://ccl.northwestern.edu/netlogo

Wilensky U (2001) Modeling nature’s emergent patterns with multi-

agent languages. In: Proceedings of EuroLogo. Linz, pp 1–6

Wilensky U (2003) Statistical mechanics for secondary school: the

GasLab multi-agent modeling toolkit. Int J Comput Math Learn

8(1):1–41

Wilensky U, Novak M (2010) Teaching and learning evolution as an

emergent process: the BEAGLE project. In: Taylor R, Ferrari M

(eds) Epistemology and science education: understanding the

evolution versus intelligent design controversy. Routledge, New

York

Wilensky U, Papert S (2010) Restructurations: reformulations of

knowledge disciplines through new representational forms. In:

Clayson J, Kalas I (eds) Proceedings of the constructionism 2010

conference. Paris. 10–14 Aug, p 97

Wilensky U, Rand W (2015) An introduction to agent-based

modeling: modeling natural, social and engineered complex

systems with NetLogo. MIT Press, Cambridge

Wilensky U, Reisman K (2006) Thinking like a wolf, a sheep, or a

firefly: learning biology through constructing and testing com-

putational theories—an embodied modeling approach. Cogn

Instr 24(2):171–209

146 J Sci Educ Technol (2016) 25:127–147

123

http://ccl.northwestern.edu/netlogo

Wilensky U, Resnick M (1999) Thinking in levels: a dynamic systems

approach to making sense of the world. J Sci Educ Technol

8(1):3–19

Wilensky U, Brady C, Horn M (2014) Fostering computational

literacy in science classrooms. Commun ACM 57(8):17–21

Wilkerson-Jerde MH (2014) Construction, categorization, and con-

sensus: student generated computational artifacts as a context for

disciplinary reflection. Educ Technol Res Dev 62(1):99–121

Wilkerson-Jerde MH, Wilensky U (2015) Patterns, probabilities, and

people: making sense of quantitative change in complex systems.

J Learn Sci 24(2):204–251

Wilkerson-Jerde MH, Gravel BE, Macrander CA (2015) Exploring

shifts in middle school learners’ modeling activity while

generating drawings, animations, and computational simulations

of molecular diffusion. J Sci Educ Technol 24(2–3):396–415

Wing JM (2006) Computational thinking. Commun ACM 49(3):

33–35

Wolfram S (2002) A new kind of science, 1st edn. Wolfram Media,

Tokyo

Yadav A, Zhou N, Mayfield C, Hambrusch S, Korb JT (2011)

Introducing computational thinking in education courses. In:

Proceedings of the 42nd ACM technical symposium on Com-

puter science education, ACM, pp 465–470

Zuckerman O, Resnick M (2003) System blocks: a physical interface

for system dynamics learning. In: Proceedings of the 21st

international system dynamics conference. Citeseer, pp 810–811.

J Sci Educ Technol (2016) 25:127–147 147

123

	Defining Computational Thinking for Mathematics and Science Classrooms
	Abstract
	Introduction
	Why Bring Computational Thinking to Mathematics and Science Classrooms?
	Intended Audiences
	Background
	Computational Thinking
	Computational Thinking in K-12 Education
	The Growing Role of Computation in Mathematics and Science

	Methods
	The Computational Thinking in Mathematics and Science Practices Taxonomy
	Data Practices
	Collecting Data
	Creating Data
	Manipulating Data
	Analyzing Data
	Visualizing Data

	Modeling and Simulation Practices
	Using Computational Models to Understand a Concept
	Using Computational Models to Find and Test Solutions
	Assessing Computational Models
	Designing Computational Models
	Constructing Computational Models

	Computational Problem Solving Practice
	Preparing Problems for Computational Solutions
	Computer Programming
	Choosing Effective Computational Tools
	Assessing Different Approaches/Solutions to a Problem
	Developing Modular Computational Solutions
	Creating Computational Abstractions
	Troubleshooting and Debugging

	Systems Thinking Practices
	Investigating a Complex System as a Whole
	Understanding the Relationships within a System
	Thinking in Levels
	Communicating Information about a System
	Defining Systems and Managing Complexity

	Computational Thinking in Mathematics and Science in Practice
	Video Games: Physics Phact or Phiction?
	DNA Sequencing from the Ground Up
	Gas Laws

	Conclusion
	Acknowledgments
	References

