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With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement
to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts,
transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity
with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated
with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions,
raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of
biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated
genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic
coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we
need to use combinations of all three to elucidate genome function in human biology and disease.

Quest to Identify Functional Elements in
the Human Genome
Completing the human genome reference
sequence was a milestone in modern biology.
The considerable challenge that remained
was to identify and delineate the structures of
all genes and other functional elements. It
was quickly recognized that nearly 99% of the
∼3.3 billion nucleotides that constitute the
human genome do not code for proteins (1).
Comparative genomics studies revealed that
the majority of mammalian-conserved and
recently adapted regions consist of non-
coding elements (2–10). More recently, ge-
nome-wide association studies have indicated
that a majority of trait-associated loci, including
ones that contribute to human diseases and
susceptibility, also lie outside protein-coding
regions (11–16). These findings suggest that the

noncoding regions of the human genome
harbor a rich array of functionally significant
elements with diverse gene regulatory and
other functions.
Despite the pressing need to identify and

characterize all functional elements in the
human genome, it is important to recognize
that there is no universal definition of what
constitutes function, nor is there agreement
on what sets the boundaries of an element.
Both scientists and nonscientists have an
intuitive definition of function, but each
scientific discipline relies primarily on dif-
ferent lines of evidence indicative of func-
tion. Geneticists, evolutionary biologists,
and molecular biologists apply distinct ap-
proaches, evaluating different and com-
plementary lines of evidence. The genetic
approach evaluates the phenotypic conse-
quences of perturbations, the evolutionary
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approach quantifies selective constraint, and
the biochemical approach measures evidence
of molecular activity. All three approaches
can be highly informative of the biological
relevance of a genomic segment and
groups of elements identified by each
approach are often quantitatively enriched
for each other. However, the methods vary
considerably with respect to the specific
elements they predict and the extent of the
human genome annotated by each (Fig. 1).
Some of these differences stem from the

fact that function in biochemical and genetic
contexts is highly particular to cell type and
condition, whereas for evolutionary mea-
sures, function is ascertained independently
of cellular state but is dependent on envi-
ronment and evolutionary niche. The meth-
ods also differ widely in their false-positive
and false-negative rates, the resolution with
which elements are defined, and the through-
put with which they can be surveyed. More-
over, each approach remains incomplete,
requiring continued method development
(both experimental and analytical) and in-
creasingly large datasets (additional species,
assays, cell types, variants, and phenotypes).
It is thus not surprising that the methods
vary considerably with respect to the specific
elements they identify. However, the extent
of the difference is much larger than simply

technical limitations would suggest, chal-
lenging current views and definitions of
genome function.
Many examples of elements that appear

to have conflicting lines of functional evi-
dence were described before the Encyclo-
pedia of DNA Elements (ENCODE) Project,
including elements with conserved pheno-
types but lacking sequence-level conserva-
tion (17–20), conserved elements with no
phenotype on deletion (21, 22), and ele-
ments able to drive tissue-specific expression
but lacking evolutionary conservation (23,
24). However, the scale of the ENCODE
Project survey of biochemical activity (across
many more cell types and assays) led to a
significant increase in genome coverage and
thus accentuated the discrepancy between
biochemical and evolutionary estimates. This
discrepancy led to much debate both in the
scientific literature (25–31) and in online
forums, resulting in a renewed need to clarify
the challenges of defining function in the
human genome and to understand the
sources of the discrepancy.
To address this need and provide a per-

spective by ENCODE scientists, we review
genetic, evolutionary, and biochemical lines
of evidence, discuss their strengths and lim-
itations, and examine apparent discrepancies
between the conclusions emanating from the
different approaches.

Genetic Approach. Genetic approaches,
which rely on sequence alterations to estab-
lish the biological relevance of a DNA seg-
ment, are often considered a gold standard
for defining function. Mutations can be
naturally occurring and identified by screen-
ing for phenotypes generated by sequence
variants (13, 32) or produced experimen-
tally by targeted genetic methods (33) or
nongenetic interference (34). Transfection
studies that use reporter assays in cell lines
(35, 36) or embryos (37) can also be used to
identify regulatory elements and measure
their activities. Genetic approaches tend to
be limited by modest throughput, although
speed and efficiency is now increasing for
some methods (36, 38–40). The approach
may also miss elements whose phenotypes
occur only in rare cells or specific envi-
ronmental contexts, or whose effects are
too subtle to detect with current assays.
Loss-of-function tests can also be buffered
by functional redundancy, such that double
or triple disruptions are required for a
phenotypic consequence. Consistent with
redundant, contextual, or subtle functions,
the deletion of large and highly conserved
genomic segments sometimes has no dis-
cernible organismal phenotype (21, 22),

and seemingly debilitating mutations in
genes thought to be indispensible have been
found in the human population (41).

Evolutionary Approach. Comparative ge-
nomics provides a powerful approach for
detecting noncoding functional elements
that show preferential conservation across
evolutionary time. A high level of sequence
conservation between related species is
indicative of purifying selection, whereby
disruptive mutations are rejected, with the
corresponding sequence deemed to be
likely functional. Evidence of function can
also come from accelerated evolution across
species or within a particular lineage, re-
vealing elements under positive selection for
recently acquired changes that increase fit-
ness; such an approach gains power by in-
corporating multiple closely related genomes
because each species provides information
about sequence constraint. Multispecies
comparisons have been used in studies
of diverse clades, ranging from yeast to
mammals. Methods that detect sequences
likely under selection have had success
in recognizing protein-coding regions,
structural RNAs, gene regulatory regions,
regulatory motifs, and specific regulatory
elements (3, 42–48). The comparative ge-
nomics approach can also incorporate in-
formation about mutational patterns that
may be characteristic of different types
of elements.
Although powerful, the evolutionary ap-

proach also has limitations. Identification
of conserved regions depends on accurate
multispecies sequence alignments, which re-
main a substantial challenge. Alignments are
generally less effective for distal-acting regu-
latory regions, where they may be impeded
by regulatory motif turnover, varying spacing
constraints, and sequence composition biases
(17, 49). Analyzing aligned regions for con-
servation can be similarly challenging. First,
most transcription factor-binding sequences
are short and highly degenerate, making
them difficult to identify. Second, because
detection of neutrally evolving elements
requires sufficient phylogenetic distance, the
approach is well suited for detecting mam-
malian-conserved elements, but it is less
effective for primate-specific elements and
essentially blind to human-specific elements.
Third, certain types of functional elements
such as immunity genes may be prone to
rapid evolutionary turnover even among
closely related species. More generally, align-
ment methods are not well suited to capture
substitutions that preserve function, such
as compensatory changes preserving RNA
structure, affinity-preserving substitutions

low medium
(ENCODE, by level of activity)

high

Whole genome

Genetic evidence?
(generates phenotype)

Evolutionary evidence
(mammalian conservation)

Protein-coding

Biochemical evidence

Fig. 1. The complementary nature of evolutionary, bio-
chemical, and genetic evidence. The outer circle represents
the human genome. Blue discs represent DNA sequences
acted upon biochemically and partitioned by their levels of
signal [combined 10th percentiles of different ENCODE data
types for high, combined 50th percentiles for medium, and
all significant signals for low (see Reconciling Genetic, Evo-
lutionary, and Biochemical Estimates and Fig. 2)]. The red
circle represents, at the same scale, DNA with signatures of
evolutionary constraint (GERP++ elements derived from
34mammal alignments). Overlaps among the sequences
having biochemical and evolutionarily evidence were com-
puted in this work (Fig. 3 and SI Methods). The small purple
circle represents protein-coding nucleotides (Gencode). The
green shaded domain conceptually represents DNA that
produces a phenotype upon alteration, although we lack
well-developed summary estimates for the amount of ge-
netic evidence and its relationship with the other types. This
summary of our understanding in early 2014 will likely evolve
substantially with more data and more refined experimental
and analytical methods.
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within regulatory motifs, or mutations whose
effect is buffered by redundancy or epistatic
effects. Thus, absence of conservation cannot
be interpreted as evidence for the lack
of function.
Finally, although the evolutionary ap-

proach has the advantage that it does not
require a priori knowledge of what a DNA
element does or when it is used, it is un-
likely to reveal the molecular mechanisms
under selection or the relevant cell types or
physiological processes. Thus, comparative
genomics requires complementary studies.

Biochemical Approach. The biochemical
approach for identifying candidate func-
tional genomic elements complements the
other approaches, as it is specific for cell
type, condition, and molecular process.
Decades of detailed studies of gene reg-
ulation and RNA metabolism have defined
major classes of functional noncoding
elements, including promoters, enhancers,
silencers, insulators, and noncoding RNA
genes such as microRNAs, piRNAs, struc-
tural RNAs, and regulatory RNAs (50–53).
These noncoding functional elements are
associated with distinctive chromatin struc-
tures that display signature patterns of
histone modifications, DNA methylation,
DNase accessibility, and transcription
factor occupancy (37, 54–66). For exam-
ple, active enhancers are marked by specific
histone modifications and DNase-accessible
chromatin and are occupied by sequence-
specific transcription factors, coactivators
such as EP300, and, often, RNA poly-
merase II. Although the extent to which
individual features contribute to function
remains to be determined, they provide
a useful surrogate for annotating candidate
enhancers and other types of functional
elements.
The ENCODE Project was established with

the goal of systematically mapping functional
elements in the human genome at high res-
olution and providing this information as an
open resource for the research community
(67, 68). Most data acquisition in the project
thus far has taken the biochemical ap-
proach, using evidence of cellular or enzy-
matic processes acting on a DNA segment to
help predict different classes of functional
elements. The recently completed phase
of ENCODE applied a wide range of bio-
chemical assays at a genome-wide scale to
study multiple human cell types (69). These
assays identified genomic sequences (i)
from which short and long RNAs, both
nuclear and cytoplasmic, are transcribed;
(ii) occupied by sequence-specific tran-
scription factors, cofactors, or chromatin

regulatory proteins; (iii) organized in ac-
cessible chromatin; (iv) marked by DNA
methylation or specific histone modifications;
and (v) physically brought together by long-
range chromosomal interactions.
An advantage of such functional genomics

evidence is that it reveals the biochemical
processes involved at each site in a given
cell type and activity state. However,
biochemical signatures are often a conse-
quence of function, rather than causal. They
are also not always deterministic evidence of
function, but can occur stochastically. For
example, GATA1, whose binding at some
erythroid-specific enhancers is critical for
function, occupies many other genomic sites
that lack detectable enhancer activity or
other evidence of biological function (70).
Likewise, although enhancers are strongly
associated with characteristic histone mod-
ifications, the functional significance of such
modifications remains unclear, and the
mere presence of an enhancer-like sig-
nature does not necessarily indicate that

a sequence serves a specific function (71, 72).
In short, although biochemical signatures
are valuable for identifying candidate reg-
ulatory elements in the biological context
of the cell type examined, they cannot be
interpreted as definitive proof of function
on their own.

What Fraction of the Human Genome Is
Functional?
Limitations of the genetic, evolutionary, and
biochemical approaches conspire to make
this seemingly simple question difficult to
answer. In general, each approach can be
used to lend support to candidate elements
identified by other methods, although focus-
ing exclusively on the simple intersection set
would be much too restrictive to capture all
functional elements. However, by probing
quantitative relationships in data from the
different approaches, we can begin to gain
a more sophisticated picture of the nature,
identity, and extent of functional elements
in the human genome.
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Fig. 2. Summary of the coverage of the human genome by ENCODE data.The fraction of the human genome covered by
ENCODE-detected elements in at least one cell line or tissue for each assay is shown as a bar graph. All percentages are
calculated against the whole genome, including the portion that is not uniquely mappable with short reads and thus is
invisible to the analysis presented here (see Fig. S1). A more detailed summary can be found in Fig. S2. For transcripts,
coverage was calculated from RNA-seq–derived contigs (104) using the count of read fragments per kilobase of exon per
million reads (FPKM) and separated into abundance classes by FPKM values. Note that FPKMs are not directly comparable
among different subcellular fractions, as they reflect relative abundances within a fraction rather than average absolute
transcript copy numbers per cell. Depending on the total amount of RNA in a cell, one transcript copy per cell corresponds to
between 0.5 and 5 FPKM in PolyA+ whole-cell samples according to current estimates (with the upper end of that range
corresponding to small cells with little RNA and vice versa). “All RNA” refers to all RNA-seq experiments, including all
subcellular fractions (Fig. S2). DNAse hypersensitivity and transcription-factor (TFBS) and histone-mark ChIP-seq coverage was
calculated similarly but divided according to signal strength. “Motifs+footprints” refers to the union of occupied sequence
recognition motifs for transcription factors as determined by ChIP-seq and as measured by digital genomic footprinting,
with the fuscia portion of the bar representing the genomic space covered by bound motifs in ChIP-seq. Signal strength for
ChIP-seq data for histone marks was determined based on the P value of each enriched region (the –log10 of the P value is
shown), using peak-calling procedures tailored to the broadness of occupancy of each modification (SI Methods).
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Case for Abundant Junk DNA. The pos-
sibility that much of a complex genome
could be nonfunctional was raised decades
ago. The C-value paradox (27, 73, 74) refers
to the observation that genome size does not
correlate with perceived organismal com-
plexity and that even closely related species
can have vastly different genome sizes. The
estimated mutation rate in protein-coding
genes suggested that only up to ∼20% of
the nucleotides in the human genome can
be selectively maintained, as the mutational
burden would be otherwise too large (75).
The term “junk DNA” was coined to refer
to the majority of the rest of the genome,
which represent segments of neutrally
evolving DNA (76, 77). More recent work
in population genetics has further de-
veloped this idea by emphasizing how
the low effective population size of large-
bodied eukaryotes leads to less efficient
natural selection, permitting proliferation of
transposable elements and other neutrally
evolving DNA (78). If repetitive DNA ele-
ments could be equated with nonfunctional
DNA, then one would surmise that the hu-
man genome contains vast nonfunctional
regions because nearly 50% of nucleotides in
the human genome are readily recognizable
as repeat elements, often of high degeneracy.
Moreover, comparative genomics studies
have found that only 5% of mammalian
genomes are under strong evolutionary con-
straint across multiple species (e.g., human,
mouse, and dog) (2, 3).

Case for Abundant Functional Genomic
Elements. Genome-wide biochemical stud-
ies, including recent reports from ENCODE,
have revealed pervasive activity over an
unexpectedly large fraction of the genome,
including noncoding and nonconserved
regions and repeat elements (58–60). Such
results greatly increase upper bound esti-
mates of candidate functional sequences (Fig.
2 and Fig. S2). Many human genomic regions
previously assumed to be nonfunctional have
recently been found to be teeming with bio-
chemical activity, including portions of repeat
elements, which can be bound by transcrip-
tion factors and transcribed (79, 80), and are
thought to sometimes be exapted into novel
regulatory regions (81–84). Outside the 1.5%
of the genome covered by protein-coding
sequence, 11% of the genome is associated
with motifs in transcription factor-bound
regions or high-resolution DNase footprints
in one or more cell types (Fig. 2), indicative of
direct contact by regulatory proteins. Tran-
scription factor occupancy and nucleosome-
resolution DNase hypersensitivity maps
overlap greatly and each cover approximately

15% of the genome. In aggregate, histone
modifications associated with promoters or
enhancers mark ∼20% of the genome,
whereas a third of the genome is marked by
modifications associated with transcriptional
elongation. Over half of the genome has
at least one repressive histone mark. In
agreement with prior findings of pervasive
transcription (85, 86), ENCODE maps of
polyadenylated and total RNA cover in total
more than 75% of the genome. These already
large fractions may be underestimates, as
only a subset of cell states have been assayed.
However, for multiple reasons discussed
below, it remains unclear what proportion of
these biochemically annotated regions serve
specific functions.
The lower bound estimate that 5% of the

human genome has been under evolutionary
constraint was based on the excess conser-
vation observed in mammalian alignments
(2, 3, 87) relative to a neutral reference
(typically ancestral repeats, small introns,
or fourfold degenerate codon positions).
However, estimates that incorporate alternate
references, shape-based constraint (88), evo-
lutionary turnover (89), or lineage-specific
constraint (90) each suggests roughly two
to three times more constraint than pre-

viously (12–15%), and their union might be
even larger as they each correct different
aspects of alignment-based excess constraint.
Moreover, the mutation rate estimates of the
human genome are still uncertain and sur-
prisingly low (91) and not inconsistent with
a larger fraction of the genome under rela-
tively weaker constraint (92). Although still
weakly powered, human population studies
suggest that an additional 4–11% of the ge-
nome may be under lineage-specific con-
straint after specifically excluding protein-
coding regions (90, 92, 93), and these num-
bers may also increase as our ability to detect
human constraint increases with additional
human genomes. Thus, revised models,
lineage-specific constraint, and additional
datasets may further increase evolution-
based estimates.
Results of genome-wide association studies

might also be interpreted as support for more
pervasive genome function. At present, sig-
nificantly associated loci explain only a small
fraction of the estimated trait heritability,
suggesting that a vast number of additional
loci with smaller effects remain to be dis-
covered. Furthermore, quantitative trait locus
(QTL) studies have revealed thousands
of genetic variants that influence gene
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expression and regulatory activity (94–98).
These observations raise the possibility that
functional sequences encompass a larger
proportion of the human genome than
previously thought.

Reconciling Genetic, Evolutionary, and
Biochemical Estimates
The proportion of the human genome
assigned to candidate functions varies
markedly among the different approaches,
with estimates from biochemical approaches
being considerably larger than those of ge-
netic and evolutionary approaches (Fig. 1).
These differences have stimulated scientific
debate regarding the interpretation and
relative merits of the various approaches
(26–29). We highlight below caveats of each
approach and emphasize the importance
of integration and new high-throughput
technologies for refining estimates and
better understanding the functional seg-
ments in the human genome.

Although ENCODE has expended con-
siderable effort to ensure the reproducibility
of detecting biochemical activity (99), it is not
at all simple to establish what fraction of the
biochemically annotated genome should be
regarded as functional. The dynamic range of
biochemical signals differs by one or more
orders of magnitude for many assays, and the
significance of the differing levels is not yet
clear, particularly for lower levels. For ex-
ample, RNA transcripts of some kind can be
detected from ∼75% of the genome, but
a significant portion of these are of low
abundance (Fig. 2 and Fig. S2). For poly-
adenylated RNA, where it is possible to
estimate abundance levels, 70% of the docu-
mented coverage is below approximately one
transcript per cell (100–103). The abundance
of complex nonpolyadenylated RNAs and
RNAs from subcellular fractions, which
account for half of the total RNA coverage
of the genome, is likely to be even lower, al-
though their absolute quantification is not

yet achieved. Some RNAs, such as lncRNAs,
might be active at very low levels. Others
might be expressed stochastically at higher
levels in a small fraction of the cell popu-
lation (104), have hitherto unappreciated
architectural or regulatory functions, or
simply be biological noise of various kinds.
At present, we cannot distinguish which
low-abundance transcripts are functional,
especially for RNAs that lack the defining
characteristics of known protein coding,
structural, or regulatory RNAs. A priori, we
should not expect the transcriptome to
consist exclusively of functional RNAs. Zero
tolerance for errant transcripts would come
at high cost in the proofreading machinery
needed to perfectly gate RNA polymerase
and splicing activities, or to instantly eliminate
spurious transcripts. In general, sequences
encoding RNAs transcribed by noisy tran-
scriptional machinery are expected to be
less constrained, which is consistent with
data shown here for very low abundance

GATA1
ChIP-seq

(PBDE)

Erythroblast
DNase I-seq

1 2 3 4 5

-globin LCR

HBG1-D BCL11a

GATA1, BCL11A, SIRT6, EGR1,MXI1, USF1, POL2 GATA1, ELF1, YY1, EGR1, MXI1, POL2 USF1, GATA1/2, TAL1, CACBP, NFE2

Evidence for
function:

HBG1 3’ enhancer -globin LCR HS2

Genetics

Biochemical

Evolution

Bound by:

HBB CRMs

HBB CRMs

DNase I
cleavage

(per-nucleotide)

Mammalian
Conservation

–

+

–

+

+

–

+

+

+

chr11:

20 kb

5,260,000 5,280,000 5,300,000

HBB HBD HBBP1 HBG1 HBG2 HBE1

100 bases 100 bases 100 bases

Fig. 4. Epigenetic and evolutionary signals in cis-regulatory modules (CRMs) of the HBB complex. (Upper) Many CRMs (red rectangles) (106) have been mapped within
the cluster of genes encoding β-like globins expressed in embryonic (HBE1), fetal (HBG1 and HBG2), and adult (HBB and HBD) erythroid cells. All are marked by DNase
hypersensitive sites and footprints (Gene Expression Omnibus accession nos. GSE55579, GSM1339559, and GSM1339560), and many are bound by GATA1 in peripheral
blood derived erythroblasts (PBDEs). (Lower, Left) A DNA segment located between the HBG1 and HBD genes is one of the DNA segments bound by BCL11A (109, 110)
and several other proteins (ENCODE uniformly processed data) to negatively regulate HBG1 and HBG2. It is sensitive to DNase I but is not conserved across mammals.
(Center) An enhancer located 3′ of the HBG1 gene (red line) (108) is bound by several proteins in PBDEs and K562 cells (from the ENCODE uniformly processed data) and
is sensitive to DNase I, but shows almost no signal for mammalian constraint. (Right) The enhancer at hypersensitive site (HS)2 of the locus control region (LCR) (red line)
(107) is bound by the designated proteins at the motifs indicated by black rectangles. High-resolution DNase footprinting data (116) show cleavage concentrated
between the bound motifs, which are strongly constrained during mammalian evolution, as shown on the mammalian phastCons track (48).
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RNA (Fig. 3). Similarly, a majority of the
genome shows reproducible evidence of
one or more chromatin marks, but some
marks are in much lower abundance, are
preferentially associated with nonconserved
heterochromatin regions (e.g., H3K9me3;
Fig. 3B), or are known to act at a distance by
spreading (105). Indeed, for any given bio-
chemical assay, the proportion of the ge-
nome covered is highly dependent on the
signal threshold set for the analysis (Fig. 2
and Fig. S2). Regions with higher signals
generally exhibit higher levels of evolution-
arily conservation (Fig. 3 and Fig. S3). Thus,
one should have high confidence that the
subset of the genome with large signals for
RNA or chromatin signatures coupled with
strong conservation is functional and will be
supported by appropriate genetic tests. In
contrast, the larger proportion of genome
with reproducible but low biochemical sig-
nal strength and less evolutionary conser-
vation is challenging to parse between
specific functions and biological noise.
Another major variable underlying the dif-

ferences in genome coverage is assay resolu-
tion. Biochemical methods, such as ChIP or
DNase hypersensitivity assays, capture ex-
tended regions of several hundred bases,
whereas the underlying transcription factor-
binding elements are typically only 6–15 bp
in length. Regulatory motifs and DNase foot-
prints within bound regions show much
stronger evidence of constraint than sur-
rounding nucleotides that nevertheless fall
within the region. Functional elements pre-
dicted from chromatin-state annotations tend
to span even larger regions (e.g., the median
length of enhancer states is ∼600 bp), al-
though the driver nucleotides can be simi-
larly few. Biochemical activity may also spread
from neighboring regions, in genomic coor-
dinates or 3D genome organization, making
it even more difficult to establish the poten-
tial nucleotide drivers. Nonetheless, imme-
diately consigning a biochemically marked
region to the nonfunctional bin for lack of
a driver motif would be premature. Genetic
tests by deletion or sequence substitution are
needed to resolve the question of their func-
tional significance.
Thus, unanswered questions related to

biological noise, along with differences in the
resolution, sensitivity, and activity level of the
corresponding assays, help to explain di-
vergent estimates of the portion of the human
genome encoding functional elements. Nev-
ertheless, they do not account for the entire
gulf between constrained regions and bio-
chemical activity. Our analysis revealed
a vast portion of the genome that appears
to be evolving neutrally according to our

metrics, even though it shows reproducible
biochemical activity, which we previously
referred to as “biochemically active but se-
lectively neutral” (68). It could be argued that
some of these regions are unlikely to serve
critical functions, especially those with lower-
level biochemical signal. However, we also
acknowledge substantial limitations in our
current detection of constraint, given that
some human-specific functions are essential
but not conserved and that disease-relevant
regions need not be selectively constrained to
be functional. Despite these limitations, all
three approaches are needed to complete the
unfinished process of inferring functional
DNA elements, specifying their boundaries,
and defining what functions they serve at
molecular, cellular, and organismal levels.

Functional Genomic Elements and
Human Disease
Presently, ∼4,000 genes have been associated
with human disease, a likely underestimate
given that the majority of disease-associated
mutations have yet to be mapped. There
is overwhelming evidence that variants in
the regulatory sequences associated with
such genes can lead to disease-relevant
phenotypes. Biochemical approaches provide
a rich resource for understanding disease-
relevant functional elements, but they are
most powerful as part of a multifaceted
body of evidence for establishing function.
Three specific examples from the β-globin
locus illustrate how biochemical data can
be integrated with evolutionary constraint
and genetic assays of function (Fig. 4). The
expression of globin genes at progressive
stages of development is controlled by
transcription factors binding at multiple
cis-regulatory modules (CRMs) (106), but
these CRMs differ dramatically in epige-
netic signals and evolutionary history. For
example, the independently acting enhancer
LCR hypersensitive site 2 (HS2) (107) shows
strong constraint on the motifs bound
by transcription factors and strong DNase
footprints. A second CRM, HBG1 3′ en-
hancer (108), is also bound in vivo by
GATA1 (and other proteins) and is active
as an enhancer, but shows almost no con-
straint over mammalian evolution. Last,
a third location, HBG1-D (109, 110),
shows DNase hypersensitivity but lacks

biological activity in enhancer assays.
Rather, binding of this and other CRMs in
the locus by BCL11A leads to a reorga-
nization of the chromatin interactions and
repression of genes encoding the fetally
expressed γ-globins in adult erythroid
cells. This CRM is virtually devoid of ev-
idence of mammalian constraint, at least
in part because the adult-stage silencing
of γ-globin genes is specific to primates.
These vignettes illustrate the comple-
mentary nature of genetic, evolutionary,
and biochemical approaches for under-
standing disease-relevant genomic ele-
ments and also the importance of data
integration, as no single assay identifies all
functional elements.

Conclusion
In contrast to evolutionary and genetic evi-
dence, biochemical data offer clues about
both the molecular function served by un-
derlying DNA elements and the cell types
in which they act, thus providing a launch-
ing point to study differentiation and de-
velopment, cellular circuitry, and human
disease (14, 35, 69, 111, 112). The major
contribution of ENCODE to date has been
high-resolution, highly-reproducible maps of
DNA segments with biochemical signatures
associated with diverse molecular functions.
We believe that this public resource is far
more important than any interim estimate
of the fraction of the human genome that
is functional.
By identifying candidate genomic elements

and placing them into classes with shared
molecular characteristics, the biochemical
maps provide a starting point for testing
how these signatures relate to molecular,
cellular, and organismal function. The data
identify very large numbers of sequence ele-
ments of differing sizes and signal strengths.
Emerging genome-editing methods (113,
114) should considerably increase the
throughput and resolution with which
these candidate elements can be evaluated
by genetic criteria. Given the limitations of
our current understanding of genome func-
tion, future work should seek to better define
genome elements by integrating all three
methods to gain insight into the roles they
play in human biology and disease.
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