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Abstract 31 

Human oral soft tissues provide the first barrier of defence against chronic 32 

inflammatory disease and hold a remarkable scarless wounding phenotype. Tissue 33 

homeostasis requires coordinated actions of epithelial, mesenchymal and immune 34 

cells. However, the extent of heterogeneity within the human oral mucosa and how 35 

tissue cell types are affected during the course of disease progression is unknown. 36 

Using single cell transcriptome profiling we reveal a striking remodelling of the 37 

epithelial and mesenchymal niches with a decrease in functional populations that are 38 

linked to the aetiology of the disease. Analysis of ligand-receptor interaction pairs 39 

identify potential intercellular hubs driving the inflammatory component of the disease. 40 

Our work establishes a reference map of the human oral mucosa in health and 41 

disease, and a framework for the development of new therapeutic strategies.  42 

 43 
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Introduction 48 

The oral mucosa is one of the most rapidly dividing tissues in the body and provides 49 

the first line of defence against the development of oral disease. Gingiva is the oral 50 

mucosa that surrounds the cervical portion of the teeth, and consists of a keratinised 51 

stratified squamous epithelium and an underlying connective tissue containing 52 

multiple cell types that collectively orchestrate tissue homeostasis during health and 53 

in response to mechanical and microbial challenges (Lindhe et al., 2008, Cekici et al., 54 

2014). Periodontal disease is a chronic inflammatory condition associated with a 55 

dysbiosis of the commensal oral microbiota and host immune defences  causing 56 

irreversible destruction of the soft and hard supporting tissues of the teeth (Pihlstrom 57 

et al., 2005, Lindhe et al., 2008). Gingivitis is a mild and reversible inflammation of the 58 

gingiva that does not permanently compromise the integrity of the tissues supporting 59 

the teeth. Chronic periodontitis occurs when untreated gingivitis progresses to the loss 60 

of the gingiva, bone and ligament (Lamont and Hajishengallis, 2015, Pihlstrom et al., 61 

2005, Lindhe et al., 2008). Regenerating lost tissues remains the fundamental 62 

therapeutic goal and to achieve this it is necessary to understand the mechanisms and 63 

pathways controlling disease progression while identifying novel candidates for 64 

intervention.  65 

Most studies on the pathogenesis of periodontal disease have largely focused on 66 

characterising the microbial biofilm and host immune response (Hajishengallis, 2014, 67 

Yucel-Lindberg and Bage, 2013). However, it is recognised that tissue resident cells 68 

play an instrumental role in innate immunity, immune regulation, and epithelial barrier 69 

maintenance (Krausgruber et al., 2020). Additionally, individual molecules known to 70 

play important roles in disease pathogenesis and the cell types they originate from 71 

remain ill-defined (Yucel-Lindberg and Bage, 2013). 72 
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Here we set out to unbiasedly profile human gingiva, including epithelial, 73 

mesenchymal and immune compartments using single cell RNA sequencing. To better 74 

characterise the dynamics of disease progression we used samples isolated from 75 

healthy and diseased patients. Our single-cell analysis identified differences in the 76 

composition of cellular sub populations residing within the gingival tissues and 77 

changes in the transcriptional fingerprint between healthy and diseased patient 78 

samples. We showed that these changes correlate with progressive diseased states.  79 

Despite the growing recognition that mesenchymal (stromal) cells maintain epithelial 80 

barrier integrity and immune homeostasis in several organs (Kabiri et al., 2014, 81 

Nowarski et al., 2017, Bernardo and Fibbe, 2013), the identity of gingiva-specific 82 

mesenchymal subtypes and the molecular attributes that regulate niche maintenance 83 

or disease remodelling have not been described. Significantly, we identified specific 84 

changes in mesenchymal cell populations indicative of playing a role in disease 85 

progression.  86 

Intercellular network reconstruction in healthy and diseased states revealed loss of 87 

cell communication and increased immune interactions between the identified cell 88 

types. We provide novel insights into altered communication patterns between 89 

epithelial and mesenchymal cells caused by the inflammatory response. 90 

Taken together, our data characterise the cellular landscape and intercellular 91 

interactions of the human gingiva, which enables the discovery of previously 92 

unreported cell populations contributing to oral chronic disease. Understanding the 93 

crucial roles of individual cell states during disease progression will contribute to the 94 

development of targeted cell-based approaches to promote regeneration or reduce 95 

inflammation-associated tissue dysfunction. 96 

 97 
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Results 98 

Generation of the gingival transcriptional landscape in health and periodontitis. 99 

Similar to other tissues in the gastrointestinal tract, the oral mucosa is a good model 100 

for studying a rapidly renewing tissue. To provide an in-depth analysis of cellular 101 

architecture, cell heterogeneity and understand gingival cell dynamics when 102 

transitioning from health to disease, we transcriptionally profiled single cells derived 103 

from patients. We obtained freshly resected human gingival tissue and isolated live 104 

cells (Figure S5) to be sequenced on the 10x Genomics Chromium platform for single 105 

cell RNA-seq (scRNA-seq) (Figure 1A). A total of 12,411cells were captured across 106 

four patient biopsies, allowing us to perform an in-depth analysis of single-cell 107 

transcriptomics. In order to ascertain the extent of likely human variation between 108 

datasets we first compared data from two healthy patients. Cells from these healthy 109 

patients were remarkably similar (Figure S1) and we observed a strong linear 110 

relationship in gene signatures between the two patient samples (Figure S1). Having 111 

established a high concordance of datasets obtained from two biopsies of healthy 112 

gingiva and to amplify the power of the study, these were merged and handled 113 

together for the subsequent analysis.  114 

Carrying out a comparative bioinformatic analysis of samples obtained from healthy 115 

and periodontitis patients revealed a diversity in epithelial, stromal, endothelial and 116 

immune cells. A total of 16 distinct transcriptomic signatures were detected that 117 

corresponded to cell types or sub-populations of identifiable cell states. These were 118 

visualised using UMAP (Figure 1B).  119 

In the epithelial compartment, we identified 3 subsets (clusters 1, 8 and 12), potentially 120 

corresponding to distinct differentiation stages. Cluster 1 shows a basal cell state with 121 

expression of HOPX, IGBP5 and LAMB3; and cluster 8 a more mature cell state with 122 
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expression of KRT1, KRT8, LAT (Linker for Activation of T cells) and PTGER both 123 

required for TCR (T-cell antigen receptor) signalling (Figure 1B, C; Figure S2). 124 

Proliferating basal cells were identified in cluster 12 by expression of canonical marker 125 

genes of proliferating cells such as MKI67 and TOP2A (Whitfield et al., 2006) (Figure 126 

1B, C; Figure S2). We also identify a mesenchymal (stromal-fibroblast) (cluster 6) 127 

based on collagen expression; 1 perivascular (cluster 10) by high expression of 128 

PDGFRB and RGS5 (Figure 1B, C; Figure S2); 2 endothelial (clusters 9 and 15) in 129 

which cluster 9 specifically expresses CLDN5 and EMCN and cluster 15 shows high 130 

expression of genes involved in the regulation of angiogenesis such as KDR, TIE1 131 

and SOX18 (Jones et al., 2001, Francois et al., 2008) (Figure 1B, C; Figure S2).  132 

We identified immune clusters of the myeloid (macrophages and dendritic cells) and 133 

lymphoid (T and B cells) lineages. B cells are shown in 3 distinct populations (clusters 134 

0, 5 and 7) with clusters 0 and 5 expressing MZB1, DERL3 and IGHG4 characteristic 135 

of follicular and IgG plasma B cells respectively, and cluster 7 expressing MS4A1 and 136 

CD37 corresponding to memory B cells (Akkaya et al., 2020, James et al., 2020) 137 

(Figure 1B, C; Figure S2). T cells are shown in cluster 3 identified by expression of 138 

canonical TRM marker CXCR6. Dendritic cells of myeloid origin with high expression 139 

of CLEC9A and IRF8 are found in clusters 13 and 14 (Eisenbarth, 2019, James et al., 140 

2020), and mast cells are indicated in cluster 2 expressing TPSB2 and TPSB1 141 

(Abraham and St John, 2010) (Figure 1B, C; Figure S2). Macrophages are found in 142 

two populations (clusters 4 and 11) sharing high expression of LYZ and AIF1 143 

(Chakarov et al., 2019) (Figure 1B, C; Figure S2). 144 

Together, these data provide the first detailed molecular insight into gingival cell 145 

populations supported by known and novel markers.  146 

 147 
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 148 

Figure 1. Single-cell Atlas of Gingiva Biopsies from Healthy Individuals and Periodontitis 149 
Patients. (A) Overview of the experimental workflow. All samples were processed immediately after 150 
clinical surgery. (B) scRNA-seq data obtained from healthy and periodontitis cells (n= 12,411) from four 151 
donors illustrated by UMAP coloured by cell-type annotation. (C) Heatmap of the mean expression of 152 
the most differentially expressed marker genes for each cluster identified. (D) Haematoxylin and eosin 153 
staining of gingival sections from healthy, mild and severe patient samples showing increasing changes 154 
in tissue architecture with loss of epithelial rete ridges definition and infiltration of leukocytes. (E) 155 
Changes in tissue composition in periodontitis showing UMAP of progressive diseased states from 156 
healthy, mild, and severely diseased donors. 157 

 158 
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Transcriptional comparison of healthy and periodontitis reveals progressive 159 

diseased states 160 

During disease progression there is a distinct signature of clinical phenotypes 161 

including redness, swelling, bleeding, destruction of periodontal ligament and bone 162 

and gingival recession (Kinane, 2001). These clinical manifestations are due to the 163 

dysregulation of a number of cell types which include epithelial, stromal, immune and 164 

the associate cross-talk between them. (Pihlstrom et al., 2005).  165 

Histologically, the diseased samples showed different levels of severity. Therefore, in 166 

our analysis we staged the samples as healthy, mild and severe. (Figure 1D). In the 167 

mildly affected sample, we observed an intact keratinised squamous epithelial layer, 168 

minor losses of collagen and rete-ridge definition. In contrast, in the severe state we 169 

detected a dense infiltrate of lymphocytes, breakdown of the epithelial barrier and clear 170 

reduction of collagen content (Figure 1D). 171 

To investigate the transitions between health and mild to severe periodontitis, we 172 

determined the contribution of cells sampled from each condition to the main cell 173 

classes, and investigated whether their respective subpopulations were maintained, 174 

amplified or depleted across the conditions.  175 

At a transcriptomic level, the cellular landscape is dominated by a corresponding shift 176 

in cellular proportions (Figure 1E). In health, we observed low numbers of follicular 177 

and plasma B cells and a progressive increase from mild to severe (Figure 1E). The 178 

minimal presence of B cells in healthy gingiva was also reported by others (Dutzan et 179 

al., 2016, Mahanonda et al., 2016, Artese et al., 2011). Memory B cells show a 180 

distinctive increase at disease onset with a subsequent decrease in the severe sample 181 

(Figure 1E). 182 
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Similarly, there was a surge in T cells in mild disease followed by a decrease in severe. 183 

While there has been some characterisation of immune cell subsets in health and 184 

periodontitis (Dutzan et al., 2016), the timing of their involvement is still unclear. Our 185 

study addresses this to some extent by showing that these populations may be 186 

abundant at disease onset and then gradually decrease as disease progresses. T cell 187 

senescence as a result of persistent immune activation in chronic diseases has been 188 

previously reported (Effros and Pawelec, 1997, Vallejo et al., 2004). A decrease in the 189 

severe stage might suggest that the persistent immune activation characteristic of 190 

chronic inflammation may lead to T cell senescence, and consequently to the inability 191 

to reduce local inflammatory responses contributing to disease persistence. 192 

Additionally, we also identified a dynamic shift in the two macrophage populations with 193 

an expansion at disease onset consistent with their function in tissue clearing and a 194 

subsequent reduction at the severe stage (Figure 1E). There is no clear difference in 195 

the dendritic cell compartment during disease progression. Mast cells also show a 196 

significant enrichment at disease onset and a decrease in the severe state. These 197 

results deliver the first unbiased immune characterisation of the gingiva across 198 

disease states (Figure 1E). 199 

In addition to infiltrating immune cells driving the inflammatory process, mesenchymal 200 

and epithelial gingival cells in the gingiva are also affected during the progression and 201 

persistence of the disease (Yucel-Lindberg and Bage, 2013). We observed a 202 

progressive depletion of both mesenchymal and epithelial cell populations (Figure 1E), 203 

in line with the patient matched immunohistochemical studies. 204 

Together these results provide with the first comprehensive platform to compare 205 

dynamic changes of gingival cell populations during disease development. 206 

 207 
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Cellular and molecular map of the stromal gingival compartment in health and 208 

disease identifies subpopulations with potential roles in disease progression 209 

Tissue mesenchymal cells play essential roles in epithelial homeostasis, matrix 210 

remodelling, immunity and inflammation (Kinchen et al., 2018, Nowarski et al., 2017). 211 

Their function in the regulation of acute and chronic inflammation in peripheral organs 212 

is now well established (Fiocchi et al., 2006, Kinchen et al., 2018, Croft et al., 2019). 213 

Despite the growing recognition that the mesenchyme acts as a critical regulator in 214 

disease persistence by producing cytokines, chemokines, proteolytic enzymes and 215 

prostaglandins (Yucel-Lindberg and Bage, 2013), the identity of gingiva-specific 216 

mesenchymal subtypes and the molecular attributes that regulate niche maintenance 217 

in disease have not been described. To better visualise the difference in cellular 218 

heterogeneity of gingival stromal cells in health and disease, we performed re-219 

clustering analysis of collagen expressing cells to identify any possible sub-clusters 220 

with a distinct transcriptional signature. 221 

These data revealed five fibroblast-like populations, one pericyte and one 222 

myofibroblast (Figure 2A). Myofibroblasts were identified by expression of ACTA2 and 223 

by gene ontology (GO) terms such as “muscle contraction” and “smooth muscle 224 

contraction”. Pericytes were identified by PDGFRB and MCAM expression and GO 225 

terms such as “regulation of angiogenesis” (Figure 2 C, D). S0, S2 and S4 fibroblast-226 

like subpopulations showed enrichment for genes annotated with “extracellular 227 

matrix”-related GO terms. Interestingly, one of the fibroblast-like populations (S0) GO 228 

enrichment included “upregulation of fibroblast proliferation” with marked expression 229 

of PDGFRA, WNT5A and IGF1. It also shows upregulation of POSTN which is 230 

essential for tissue repair (Kuhn et al., 2007). Another fibroblast-like population (S2) 231 

showed enrichment for genes involved in the negative regulation of Wnt signalling 232 
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(GREM1, SFRP1, APCDD1 and DKK3); S4 showed expression of OSR2, FGFR1, 233 

SOX4 and TBX3 known to be involved in skeletal development. Additionally, S4 also 234 

differed in the expression of a specific form of collagen, collagen IV, which is known 235 

to be a key component of the epithelial basement membrane and might suggest a role 236 

in epithelial barrier membrane as previously described (Kinchen et al., 2018). Finally, 237 

S5 and S6 show a potential role in immune regulation with enrichment for “cytokine-238 

mediated signalling pathway”, “IFN-g signalling” and “T cell activation” (Supplemental 239 

Figure 3; Supplemental Table 2). Highly ranked S5 markers included ILR1, IFNgR1 240 

and a member of the TNF-receptor superfamily – TNFRS11B (osteoprotegerin) which 241 

is a negative regulator of bone resorption and thus a key regulator of osteoclast activity  242 

(Zaidi, 2007). 243 

To uncover the role of the newly identified mesenchymal subsets in periodontitis, we 244 

investigated changes in their contribution across diseased states. Most significantly, 245 

we identified a marked decreased in the myofibroblast (S1) and pericyte (S3) 246 

subpopulations at disease onset (mild), while the other fibroblast-like cells appeared 247 

unchanged with the exception of S6 (Figure 2B). This suggests loss of S1 and S3 cells 248 

was the most pronounced change from healthy tissue to mild disease. We further 249 

explored the nature of the pro-inflammatory cluster S6 and it included the expression 250 

of the major histocompatibility complex (MHC) class II invariant chain (CD74) and 251 

AREG (amphiregulin). Amphiregulin is a reparative cytokine previously described with 252 

a role in gingival immune homeostasis (Krishnan et al., 2018). These results identified 253 

the potential expansion of a novel stromal population enriched for pro-inflammatory 254 

genes in periodontitis.  255 

Next, we investigated whether we could detect these changes using 256 

immunofluorescence analysis in gingival tissue samples. We confirmed a progressive 257 
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decrease in collagen VI levels suggesting overwhelming changes in the ECM 258 

composition and deposition (Figure 2E). We also assessed the myofibroblast and 259 

pericyte populations by looking at expression of ACTA2 and MCAM respectively 260 

(Figure 2E).  261 

Understanding the pathways underlying stromal differentiation will be essential to 262 

understand tissue homeostasis in chronic diseases. Given the lack of markers to 263 

reconstruct a cellular trajectory and the knowledge that the number of expressed 264 

genes per cells is a hallmark of developmental potential (Teschendorff and Enver, 265 

2017, Han et al., 2020), we used transcriptional diversity to predict candidate stromal 266 

precursors (Gulati et al., 2020) (Figure 2F). This analysis placed sub-clusters S5 and 267 

S0 as the less differentiated subpopulations, and S1 and S3 (myofibroblasts and 268 

pericytes) as fully differentiated states (Figure 3F). Using this pipeline, we identified 269 

genes such as IGHBP4 and AEBP1 in the less differentiated states. 270 

Overall, we demonstrate that stromal remodelling in periodontitis is heterogenous with 271 

a disruption in cell populations known to be involved in tissue repair, and a higher 272 

proportion in a pro-inflammatory cell population that could prevent disease resolution. 273 

Collectively, these observations suggest that stromal cells shape a permissive 274 

inflammatory niche.  275 

 276 

 277 

 278 
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 279 

Figure 2. Cellular and molecular map of the stromal gingival compartment in health and disease 280 
identifies subpopulations with potential role in disease progression. (A) UMAP plot of gingival 281 
stromal cells. Single cells coloured by cluster annotation. (B) UMAP plot of stromal cells during disease 282 
progression. (C) Heatmap showing subset-specific markers. (D) GO enrichment terms for S1 283 
(myofibroblast) and S3 (pericyte). -log adjusted p-value shown (dotted line corresponds to FDR = 0.05). 284 
(E) Immunofluorescence staining showing COLVI, ACTA2, MCAM expression throughout disease 285 

progression. Scale bars, 100 µm.  n= 3 patient samples/condition. Violin plots showing ACTA2 and 286 
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MCAM expression across clusters and conditions. (F) UMAP annotated with CytoTRACE analysis to 287 
predict stromal stem populations. Transcriptional diversity is used here to predict maturation states. 288 
 289 
 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 
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Cellular and molecular map of the epithelial gingival compartment in health and 313 

disease 314 

The oral epithelium is one of the fastest renewing tissues in the human body and 315 

shows a remarkable regenerative potential. Cell division in epithelial cells takes place 316 

in the basal layer which contains the stem cell compartment. After dividing, the 317 

committed cells undergo differentiation that leads to expression of structural keratins 318 

as cells move superficially (Blanpain and Fuchs, 2009). Recent work has started to 319 

elucidate epithelial heterogeneity in the basal layer using mouse models (Jones et al., 320 

2019, Byrd et al., 2019). However, little is known about human gingival epithelial cell 321 

heterogeneity and its role in disease. Thus, we further explored the single-cell 322 

transcriptomes of epithelial clusters (1, 8 and 12). 323 

By re-clustering the epithelial cells, we identified ten populations (Figure 3A). Two 324 

basal cell populations were identified in E0 and E1. E0 shows expression of HOPX 325 

which marks known stem cells in the intestinal and skin epithelia (Takeda et al., 2013, 326 

Takeda et al., 2011) and IGFBP5 which is enriched in transit-amplifying cells (TACs) 327 

in the interfollicular epidermis (Tumbar et al., 2004) and recently shown through 328 

lineage-tracing to label oral epithelial stem cells in the hard palate (Byrd et al., 2019). 329 

E1 indicated a more mature basal cell state with expression of DDR1 known as a cell 330 

surface receptor for fibrillar collagen, and COL17A1. Cycling basal cells were identified 331 

in E5 by expression of MKI67 and AURKB. E2 showed enrichment for SAA1 and 332 

TNFRSF21 both involved in chronic inflammatory conditions. E3 showed enrichment 333 

for B cell receptor signalling pathway, and E4 and E8 for neutrophil mediated 334 

immunity. We further identified E6 and E7 with a role in cell cycle regulation. Finally, 335 

E9 had a gene expression profile consistent with a role in ECM organisation and 336 

angiogenesis (Figure 3A, D; Figure S4). 337 
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Next, we investigated changes in epithelial cell composition and gene expression 338 

through the different disease states (Figure 3B). At disease onset (mild), we observed 339 

a depletion in E6 and E7 populations which show enrichment in genes involved in cell 340 

cycle regulation; and in E9 which is involved in ECM organisation. Cycling cells (E5) 341 

show a decrease in mild, and a subsequent increase in severe (Figure 3B). We 342 

detected an increase in E8 defined in GO terms by “cytokine mediated signalling” 343 

(Figure 3 B, D). Next, we asked which epithelial signals are predicted to modulate the 344 

identified stem cell signature found in E0 in disease. Using NicheNet (Browaeys et al., 345 

2020) we identified sub-cluster E8 as the main signalling source predicted to modulate 346 

E0 through the expression of several ligands including MMP9, SPN and HLA-DRA 347 

(Figure 3E). While more work is necessary to understand the functional role of the E8 348 

subpopulation, targeting this subpopulation in future immune-modulatory experiments 349 

may lead to important findings.  350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 
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 360 
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 363 

 364 

 365 
Figure 3. Cellular and molecular map of the epithelial gingival compartment in health and 366 
disease. (A) UMAP plot of human gingival epithelial cells. Single cells coloured by cluster annotation. 367 
(B) UMAP plot of epithelial cells during disease progression.  (C) Heatmap showing subset-specific 368 
markers. (D) GO enrichment terms for E0, E6 and E8 with -log adjusted p-value shown (dotted line 369 
corresponds to FDR = 0.05). (E) Dot plot showing top predicted ligands expressed by epithelial cells 370 
that modulate the E0 (stem) compartment. (F) Expression of KI67 and SOX2 in human healthy tissue. 371 
KI67 marks proliferative cells (cluster E5), and SOX2 marks an epithelial stem cell compartment (cluster 372 

E0). Scale bars = 100 µm (A, B). Scale bars, 50 µm (A’, B’). n = 4 patient samples/condition. 373 

 374 
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Identifying ligand-receptor interactions and transcriptional regulation 375 

contributing to disease progression  376 

Periodontitis is characterised by tissue remodelling, which depends on complex 377 

interactions between stromal, epithelial and immune cells. However, how these cells 378 

interact to contribute to tissue homeostasis and how these interactions are 379 

dysregulated during disease remains poorly defined. To understand this cross-talk, we 380 

used NicheNet (Browaeys et al., 2020) to model which cellular signals induce a 381 

stromal and perivascular response in periodontitis (Figure 4A). 382 

In healthy and mild stages, the cell-stromal/cell-perivascular interaction landscape 383 

was dominated by endothelial, stromal, macrophage and epithelial originating signals 384 

(Figure 4B). As disease progresses, in mild and severe stages, we observed a clear 385 

loss in endothelial and stromal originating signals, and an increase in macrophage, 386 

mast, T and B cell signalling (Figure 4B). Analysis of these cell-cell interactions 387 

revealed several signalling pathways including tumour necrosis factor (TNF) and bone 388 

morphogenetic protein (BMP) signalling (Figure 4B). Overall, the number of predicted 389 

interactions in severe disease was strongly reduced. 390 

We next focused on epithelial-mesenchymal interactions in the mild stage by 391 

investigating which signalling interactions could potentially induce an inflammatory 392 

signature in the mesenchymal compartment (Figure 4C). Analysis of epithelial ligands 393 

predicted to cause an inflammatory response revealed IL1, EDN1, TNF, LTB and 394 

BMP2 as the main contributors to the mild inflammatory stage (Figure 4D). 395 

Proliferative cells (TACs) are suggested to be the main source of these ligands with 396 

the exception of BMP2 (Figure 4D). We next analysed which stromal and perivascular 397 

receptors can potentially bind to these identified epithelial ligands (Figure 4E) and the 398 

target genes of these ligand-receptor interactions (Figure 4F). We estimated 399 
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prominent IL1B-CXCL9, TNF-CXCL9, TNF-UBD, BMP2-COL1A2 interactions, 400 

suggesting that these molecular interactions may be crucial in sustaining a 401 

proinflammatory microenvironment. Target genes were confirmed to be differentially 402 

expressed with disease (Figure 4G). IL1B and TNF epithelial ligands specifically 403 

targeted S0 and S5 stromal subpopulations, and BMP2 all fibroblast-like 404 

subpopulations and pericytes (Figure 4H). 405 

Together, these results identify IL1B, EDN1, TNF and BMP2 as the main epithelial 406 

modulators driving an inflammatory response in stromal and perivascular cells. Based 407 

on their expression, we identified novel epithelial-mesenchymal interactions in 408 

periodontitis: the interactions between epithelial IL1B and TNF and stromal target 409 

genes. 410 
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 411 

Figure 4. Unbiased cell-cell interaction analysis and its effect in the stromal microenvironment. 412 
(A) Schematic representation of the NicheNet analysis of upstream ligand-receptor pairs and stromal 413 
target genes inducing DE genes in periodontitis. Created with BioRender.com. (B) Dot plots depicting 414 
which gingival cell populations express top-ranked ligands contributing to the transcriptional response 415 
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observed from health to mild disease and from mild to severe in the stromal compartment. (C) 416 
Schematic representation of the NicheNet analysis of epithelial-mesenchymal crosstalk in mild disease. 417 
Created with BioRender.com. (D) Top predicted epithelial ligands driving the stromal inflammatory 418 
response and dot plot showing which epithelial subpopulation express these ligands. (E) Ligand-419 
receptor heatmap of potential receptors expressed by stromal cells associated with each epithelial 420 
ligand. (F) Ligand-target heatmap of stromal and perivascular target genes of the identified epithelial 421 
ligands. (G) Dot plot confirming upregulation of the identified stromal target genes in disease. (H) 422 
UMAPs feature plots mapping the identified epithelial ligands and target genes to the respective target 423 
genes expressed by stromal cells. 424 
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Single-cell transcriptomics of human B cells reveals activation signature in 445 

periodontitis 446 

B cells are essential in the generation of protective immunity. However, tissue-based 447 

B cell subsets are not well characterised in human oral tissues. Following our 448 

observations that there is a consistent increase of B cells in line with disease severity, 449 

and their established role in disease immunopathogenesis, we next focused on the 450 

humoral response by performing a more in-depth transcriptomic analysis. Previous 451 

studies have established that B cells constitute the majority of cells in periodontitis 452 

lesions (Thorbert-Mros et al., 2015), and it has been suggested a dual protective and 453 

detrimental role (Oliver-Bell et al., 2015, Abe et al., 2015).  454 

We compared their transcriptional profiles across disease states (Figure 5A). We 455 

found a profound prevalence of IgG plasma B cells in disease which is supported by 456 

another study (Kinane et al., 1999) in periodontitis patients. Similarly, it has been 457 

reported an increase in local IgG within the gastrointestinal tract during intestinal 458 

inflammation (Castro-Dopico et al., 2019). Here, we found IgG plasma cells almost 459 

absent in health and distinctively expanded with disease progression (Figure 5A). 460 

Upregulation of an IGH signature has been previously linked to disease severity and 461 

renders activation of the mononuclear phagocyte response in the intestinal mucosa 462 

(Castro-Dopico et al., 2019). In humans, mucosal IgG responses are pro-inflammatory 463 

when they involve complement activation. This cluster showed enrichment of genes 464 

involved in the complement system such as CFB and C2 (Figure 5D). This system 465 

plays a critical role in signalling B cell activation (Carroll and Isenman, 2012, Chen et 466 

al., 2020), and previous research has established a role in periodontitis.  467 
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 468 

 469 

Figure 5. Periodontitis induces an IgG plasma B cell signature in human gingiva. (A) UMAP 470 
analysis of human B cells identifying follicular and IgG plasma B cells split by condition. (B) UMAP 471 
expression plots of human B cell subset markers. Cells coloured by normalised expression of indicated 472 

genes. (C) CD79A in human gingival tissue across health and disease. Scale bars, 100 µm. n = 3 473 
patient samples/condition. (D) Gene enrichment analysis of IgG Plasma B cells. -log adjusted p-value 474 
shown (dotted line corresponds to FDR = 0.05). 475 
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Discussion 486 

The human gingiva is a unique barrier site since failure to appropriately control 487 

immune responses leads to periodontitis. However, the molecular mechanisms of 488 

homeostasis and how they are disrupted in disease are poorly understood. Previous 489 

studies have reported on gene expression in gingival tissue from patients with 490 

periodontitis, however these studies have used conventional bulk RNA sequencing on 491 

whole-biopsies which average gene expression changes across the whole tissue, and 492 

therefore lose all information of discreet cellular subpopulations (Becker et al., 2014, 493 

Davanian et al., 2012, Demmer et al., 2008, Kim et al., 2016, Lundmark et al., 2015). 494 

In this work, we provided the first comprehensive cellular landscape of in vivo human 495 

gingiva, charting dynamic cellular composition differences at single-cell level across 496 

disease states. Our atlas comprises all the main gingival cell types defined by the 497 

expression of canonical and novel gene markers, with highly consistent results across 498 

all samples tested. Next, we analysed the potential molecular signals driving the 499 

inflammatory response in the stromal niche. 500 

We identified a striking difference in mesenchymal and epithelial cells during disease 501 

progression. In the mesenchymal lineage, we identified populations of established 502 

cells, such as myofibroblasts and pericytes, and five additional distinct populations of 503 

fibroblast-like cells. Recent studies have started to elucidate the role of stromal cell 504 

populations in tissue homeostasis (Shoshkes-Carmel et al., 2018, Bahar Halpern et 505 

al., 2020, Greicius et al., 2018), and consistent with previous studies we identified two 506 

populations expressing Wnts and Wnt inhibitors suggesting the presence of 507 

mesenchymal niche regulating populations (Kinchen et al., 2018, Kim et al., 2020) that 508 

may be required for oral mucosa maintenance. In periodontitis, we observed that these 509 

populations were preserved in the mild stage, whereas the myofibroblast and pericyte 510 
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populations were strikingly reduced. Myofibroblasts are known to be responsible for 511 

excessive synthesis, deposition and remodelling or extracellular matrix proteins 512 

(Tomasek et al., 2002), however less is known about the mechanisms that promote 513 

their survival and persistence in inflammatory conditions. Multiple single-cell analysis 514 

have revealed that myofibroblast populations are heterogenous and undergo dynamic 515 

changes during tissue repair in various organs (Farbehi et al., 2019, Guerrero-Juarez 516 

et al., 2019, Xie et al., 2018, Tabib et al., 2018, Peyser et al., 2019, Lambrechts et al., 517 

2018). Our observation that myofibroblasts are reduced in the transition from health to 518 

mild disease, might suggest a contribution to ECM degradation and to the state of 519 

chronic inflammation characteristic of periodontitis. Previous research has suggested 520 

two mechanisms that limit myofibroblast survival; either a dependence on growth 521 

factor receptor-mediated pathways required for their survival (Bostrom et al., 1996), 522 

or pro-apoptotic cytokines might selectively induce apoptosis by directly activating cell 523 

death signalling pathways or by inhibiting pro-survival pathways. One example is IL-524 

1B which induces caspase-dependent apoptosis in mouse lung myofibroblasts by 525 

inhibiting FAK (Zhang and Phan, 1999). We also detected a decrease in the pericyte 526 

population from health to mild disease. Pericytes are present in all vascularised 527 

tissues, and provide structural support to the vasculature with proven roles in 528 

angiogenesis (Lindblom et al., 2003), wound healing (Kramann et al., 2015), 529 

progenitor cell functions (Crisan et al., 2008) and immunomodulation (Meyers et al., 530 

2018). It has been demonstrated that there is an expansion and dilation of the 531 

vasculature in periodontitis (Zoellner et al., 2002), contributing to increased leukocyte 532 

recruitment into the tissue. The loss or detachment of pericytes has been implicated 533 

in disease (Armulik et al., 2011), and has been related to infiltration of inflammatory 534 

cells (Ogura et al., 2017). Interestingly, Pdgfb or Pdgfr loss-of-function embryos show 535 
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vascular hyperplasia and microvessel dilation (Hellstrom et al., 2001). We hypothesise 536 

that the observed pericyte decrease might impair the stromal compartments ability to 537 

regenerate as these are mesenchymal stem cell precursors in vivo (Sacchetti et al., 538 

2016, Yianni and Sharpe, 2018).  539 

In periodontitis, we observed the emergence of one fibroblast-like population highly 540 

enriched in pro-inflammatory genes such as AREG. Overall, we observed stromal 541 

remodelling in a subpopulation specific way and in accordance with previous reports 542 

(Kinchen et al., 2018). Normal repair and regeneration responses are compromised, 543 

while continuous production of pro-inflammatory factors prevent inflammatory 544 

resolution. 545 

This work also provides the first comprehensive analysis of the human gingival 546 

epithelium. Understanding the molecular mechanisms underlying this mucosal barrier 547 

can help shape immunoregulatory responses in the context of homeostasis and 548 

disease. Our data identified a basal progenitor cell population expressing HOPX and 549 

IGFBP5. Although, recent studies have started to elucidate oral progenitor cells’ 550 

heterogeneity, this is the first human detailed characterisation that will allow the 551 

development of future validation models. We identified one epithelial subpopulation 552 

(E8) expanded in disease, and intercellular communication analysis suggested that 553 

this population is the main signalling centre driving the epithelial inflammatory 554 

response. More work is needed to address this finding and the immunoregulation of 555 

this population. 556 

We provided an extensive immune repertoire profiling and described in detail the 557 

expansion of B cell subtypes. These results are consistent with data obtained in a 558 

previous study despite the difference in tissue collection. Our samples were obtained 559 

from sites which had received non-surgical treatment but still had residual disease and 560 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.02.279406doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279406


 27 

the Dutzan study collected from a cohort that had never been treated for disease 561 

(Dutzan et al., 2016). We also observed a T cell-rich inflammatory infiltrate with 562 

minimal B cells present in health. This rich and diverse immune network present in 563 

health explains the immunosurveillance required to control the constant bacterial 564 

exposure. Dutzan et al, identified neutrophils as the most notable cellular difference in 565 

periodontitis. In our FACS gating strategy, neutrophils co-localised extensively with 566 

debris and were therefore excluded to avoid contamination.  567 

We specifically provided a detailed molecular description of B cell subsets as it was 568 

the major cellular shift detected in the immune cell network. This is consistent with 569 

previous observations showing that the most upregulated genes in periodontitis are 570 

involved in B cell development (Lundmark et al., 2018). Despite the knowledge that 571 

atypical activation of B cells contribute to disease progression by their antigen-572 

presentation, cytokine production, and expression and secretion of receptor activator 573 

of nuclear factor-kB ligand (RANKL), contributing to osteoclastogenesis (Thorbert-574 

Mros et al., 2015), little is known about the molecular mechanisms driving these 575 

processes. We identified a specific IgG plasma cell response. Recently, a IgG 576 

contribution has been specifically linked with driving chronic inflammatory responses 577 

(Castro-Dopico et al., 2019). In that study, patient samples with higher levels of IgG 578 

has the highest disease severity scores and correlated with neutrophil infiltration and 579 

IL-1B expression. In our study, this response was associated with complement 580 

activation. Previously, complement split products were found absent or present at low 581 

concentrations in healthy individuals, but abundant in periodontitis (Damgaard et al., 582 

2015, Hajishengallis et al., 2017). Continuous complement activation promotes 583 

survival of local pathogens in a nutritionally favourable inflammatory environment that 584 

promotes dysbiosis and disease development (Hajishengallis et al., 2017, 585 
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Hajishengallis et al., 2011, Maekawa et al., 2014). Our findings have therapeutic 586 

implications by identifying IgG signalling as a potential therapeutic target in 587 

periodontitis. 588 

Finally, we aimed to identify the signals driving the inflammatory response in the 589 

stromal compartment. Previous studies have reported IL1B and TNF as key regulators 590 

in the periodontitis pathogenesis (Yucel-Lindberg and Bage, 2013), therefore it was 591 

not surprising to find these molecules highly represented in our cell interaction analysis 592 

(Figure 6). We described newly identified molecular mechanisms involved in the 593 

regulation of these cytokines by predicting new receptor interactions and previously 594 

unidentified target genes. These findings bring new perspectives on periodontitis 595 

molecular mechanisms governing tissue loss and future experiments will be important 596 

to test these predictions. 597 

In summary, we have established the first human gingiva cell atlas, revealing 598 

heterogeneity within major gingiva cell populations and providing with a roadmap for 599 

further functional insights into the immune and structural populations present in the 600 

gingiva. It also provides new biological insights into the immunopathogenesis of 601 

periodontitis.  These data offer enormous potential for medicine, drug discovery and 602 

diagnostics through a more detailed understanding of cell types, basic biological 603 

processes and disease states. 604 

 605 

 606 

 607 

 608 

 609 

 610 
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Materials and Methods 611 

Patient recruitment and ethical approval 612 

Human gingival samples were obtained from consenting patients undergoing routine 613 

periodontal surgical procedures (Department of Periodontology, Guy’s Hospital, King’s 614 

College London). All samples were collected and processed in compliance with the 615 

UK Human Tissue Act (Human Tissue Authority #203019), ethically approved by the 616 

UK National Research Ethics Service (Research Ethics Committee 17/LO/1188). 617 

Written informed consent was received from participants prior to inclusion in the study. 618 

Cohort inclusion criteria for all subjects were: absent history of relevant medical 619 

conditions, no use of medication, no use of nicotine or nicotine-replacement 620 

medications, no pregnancy and breast feeding. 621 

Healthy controls included crown lengthening procedures, and periodontitis patients, 622 

pocket reduction surgeries. Patients with periodontitis had tooth sites with probing 623 

depth ³ 6 mm, and bleeding on probing. Patients used as controls showed no signs of 624 

periodontal disease, with no gingival/periodontal inflammation, a probing depth £ 3 625 

mm, and no bleeding on probing.  626 

Patient 33. Gender: male. Age band: 41-65. No history of periodontal disease. Site: 627 

buccal gingival margin. 628 

Patient 35. Gender: female. Age band: 41-65. Chronic periodontitis with previous 629 

history of non-surgical treatment. Site: buccal gingival margin. 630 

Patient 37. Gender: male. Age band: 41-65. Chronic periodontitis with previous history 631 

of non-surgical treatment.  Site: buccal gingival margin. 632 

Patient 38. Gender: male. Age band: 41-65. No history of periodontal disease. Site: 633 

buccal gingival margin. 634 

 635 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.02.279406doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279406


 30 

Histology and Microscopy 636 

Human gingival tissue was freshly collected and fixed overnight in 4% neutral buffered 637 

formalin. Then, tissue underwent three 5-minute washes in PBS at room temperature 638 

followed by dehydration washes in increasing ethanol concentrations. After 639 

dehydration, tissue was processed using a Leica ASP300 Tissue Processing for one 640 

hour.  Tissues were then embedded in paraffin. Serial sections (12 µm thick) were cut 641 

for haematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining. 642 

H&E was carried out for each patient sample using an Automated Slide Stainer. Slides 643 

were dewaxed by immersion in Neo-Clearâ (Merck Millipore), twice for 10 minutes. 644 

Tissue was then rehydrated by decreasing volumes of ethanol in deionised H20 645 

(100%, 90%, 70%, 50%) for two minutes in each step and rinsed in deionised H20 for 646 

2 minutes. Samples were then stained in Ehrlich’s Haematoxylin (Solmedia) for 10 647 

minutes followed by a 10-minute rinse under running water and then a two-minute 648 

rinse in deionised H20. Tissue was then stained in 0.5% Eosin Y (Sigma-Aldrich) for 5 649 

minutes and washed twice in deionised H20. Samples were dehydrated in increasing 650 

IMS in deionised H20 concentration steps (70%, 90%, 100%, 100%) for two minutes 651 

each. Slides were immersed in Neo-Clearâ three times for 5 minutes and then 652 

mounted using Neo-mountâ mounting medium (Merck Millipore), coverslipped and 653 

left to dry overnight in at 42°C.  654 

Immunohistochemical staining 655 

Immunofluorescence staining was performed on 12 µm sections as described above. 656 

In short, slides were dewaxed in Neo-Clear twice for 10 minutes and rehydrated in a 657 

series of decreasing ethanol volumes as described above. Heat induced epitope 658 

retrieval was performed with sodium citrate buffer (pH 6) in a Decloaking chamber 659 

NXGEN (Menarini Diagnostics) for 3 minutes at 110°C. Slides were cooled to room 660 
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temperature before blocking for 1 hour at room temperature in Blocking Buffer (0.2% 661 

BSA, 0.15% glycine, 0.1% TritonX in PBS) with 10% goat or donkey serum depending 662 

on the secondary antibody used. Primary antibodies were diluted in blocking buffer 663 

with 1% of the respective blocking buffer and incubated overnight at 4°C. The following 664 

day, slides were washed three times in PBST and incubated with the respective 665 

secondary antibodies diluted 1:500 in 1% blocking buffer for one hour at room 666 

temperature. Slides were mounted with Citifluorä AF1 mountant media (Citifluor Ltd., 667 

AF1-100) and cover slipped for microscopy. Slides were put to dry in a dry chamber 668 

that omitted all light, and kept at 4°C. 669 

The following antibodies were used: COLVI raised in rabbit (ab182744, 1:500, Alexa 670 

Fluor-488 secondary), ACTA2 raised in mouse (ab7817, 1:200, Alexa Fluor-633), 671 

MCAM raised in rabbit (ab75769), (KI-67 raised in rabbit (ab5580, 1:100, Alexa Fluor-672 

594), SOX2 raised in rabbit (ab92494, 1:100, biotinylated secondary), CD79A raised 673 

in rabbit (ab79414, 1:100, Alexa Fluor -488 secondary). 674 

Imaging 675 

For bright field images, stained slides were scanned with Nanozoomer-XR Digital slide 676 

scanner (Hamamatsu) and images processed using Nanozoomer Digital Pathology 677 

View. Fluorescent staining was imaged with a TCS SP5 confocal microscope (Leica 678 

Microsystems) and Leica Application Suite Advanced Fluorescence (LAS-AF) 679 

software. Images were collected and labelled using Adobe Photoshop 21.1.2 software 680 

and processed using Fiji (Schindelin et al., 2012).  681 

Tissue processing for single cell isolation 682 

Fresh tissues were processed immediately after clinical surgery using the same 683 

protocol. Tissue was transferred to a sterile petri dish and cut into <1mm3 segments 684 

before being transferred to a 15 mL conical tube. Tissue was digested for 30 minutes 685 
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at 37ºC with intermittent shaking using an enzymes dissociation kit (Miltenyi, Bergisch-686 

Gladbach, Germany). The resulting cell suspension was filtered through a 70-µm cell 687 

strainer to ensure a single cell preparation and cells collected by centrifugation (1,200 688 

rpm for 5 minutes at 4°C).  Cells were resuspended in 0.04% non-acetylated BSA 689 

(UltraPureä BSA, ThermoFisher Scientific) and stained with 1.5 µg DAPI (D1306, 690 

Invitrogen) used as dead cell exclusion marker. Samples were analysed on BD FACD 691 

Aria III fusion machine. Cells were gated based on size using standard SSC-A and 692 

FSC-A parameters so that debris is excluded. Doublets were excluded using SSC-A 693 

and SSC-W parameters.  Live cells were selected as cells identified to be dimly 694 

fluorescing in DAPI and were then sorted into chilled FACS tubes prefilled with 0.04% 695 

300µl BSA. Single cell suspensions were captured using the 10X Genomicsâ 696 

Chromium Single Cell 3’ Solution (v3) according to the manufacturers protocol. Cells 697 

were resuspended separately in PBS with 0.04% BSA at a density of 50-100 cells per 698 

µL. 699 

Chromium 10x Genomics library and sequencing 700 

Single-cell suspensions were manually counted using a haemocytometer and 701 

concentration adjusted to a minimum of 300 cells µL-1. Cells were loaded according to 702 

standard protocol of the Chromium single-cell 3’ kit to capture around 5,000 cells per 703 

chip position. Briefly, a single-cell suspension in PBS 0.04% BSA was mixed with RT-704 

PCR master mix and loaded together with Single Cell 3’ Gel Beads and Partitioning 705 

Oil into a Single Cell 3’ Chip (10x Genomics) according to the manufacturer’s 706 

instructions. RNA transcripts from single cells were uniquely barcoded and reverse 707 

transcribed. Samples were run on individual lanes of the Illumina HiSeq 2500. 708 

 709 

 710 
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Computational analysis of sc-RNAseq datasets 711 

The cell ranger pipeline was used for processing of the single-cell RNAseq data files 712 

prior to analysis according to the instructions provided by 10x Genomics. Briefly, base 713 

call files obtained from each of the HiSeq2500 flow cells used were demultiplexed by 714 

calling the ‘cellranger mkfastq’. Resulting FASTQ files were aligned to the human 715 

reference genome GRCh37/hg19 and subsequently filtered and had barcodes and 716 

unique molecular identifiers counted and count files generated for each sample. These 717 

were used for subsequent processing and data analysis using R.  718 

Integrative analysis 719 

Integrated analysis was performed according to the authors of the Seurat package 720 

(Butler et al., 2018, Stuart et al., 2019). Briefly, count files for each condition were read 721 

into RStudio and cells corresponding to each condition were labelled accordingly as 722 

‘Healthy’, ‘Mild’ and ‘Severe’. Only cells found to be expressing more than 500 723 

transcripts were considered as to limit contamination from dead or dying cells. Each 724 

dataset was normalised for sequencing depth by calling the ‘NormalizeData’ function 725 

and the 2000 most variable features of each dataset were detected using the “vst” 726 

method by calling the ‘FindVariableFeatures’ function. Subsequently the 727 

‘FindIntegrationAnchors’ function was called to identify anchors across the datasets 728 

and the ‘IntegrateData’ function to integrate them so an integrated analysis could be 729 

run on all cells simultaneously.  The data was then scaled to account for sequencing 730 

depth using ‘ScaleData’ and PCA components were used for an initial clustering of the 731 

cells (using ‘RunPCA’). 20 dimensions were used to capture the majority of the 732 

variability across the datasets.  ‘FindNeighbors’ was then used, utilising the above 733 

dimensionality parameters to construct a K-nearest neighbour graph based on 734 

Euclidian distances in PCA space. The clusters are then refined by applying a Louvain 735 
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algorithm that optimises the modularity of the dataset and groups the cells together 736 

based on global and local characteristics. This is done by calling the ‘FindClusters’ 737 

function. We then run non-linear dimensionality reduction using UMAP to be able to 738 

visualise and explore the datasets. The same principle components were used as 739 

above. The Stromal, Epithelial and B-cell clusters were then extracted using the 740 

‘Subset’ function. 741 

Stromal cell re-clustering analysis 742 

Stromal clusters were identified as being ‘collagen producing’. These two clusters 743 

were reanalysed separately from the integrated dataset. Stromal cells were filtered to 744 

only utilise live cells using percentage of mitochondrial gene expression as an 745 

exclusion metric (<15%).  Datasets were then re-normalised by calling the 746 

‘NormalizeData’ function to account for the reduction in cell numbers subsequent to 747 

subseting the data. According to the author instructions, the top 2000 most variable 748 

features across the dataset were then identified using the ‘FindVariableFeatures’. 749 

These variable features were subsequently used to inform clustering by passing them 750 

into the ‘RunPCA’ command. Using ‘Elbowplot’ we identified that the first 8 principle 751 

components should be used for downstream clustering when invoking the 752 

‘FindNeighbors’ and ‘RunUMAP’, as detailed above. 753 

Epithelial cell re-clustering 754 

Epithelial cells were identified from the epithelial clusters in the integrated UMAP and 755 

re-clustered as explained above with some minor exceptions. Epithelial cells were 756 

isolated as being the clusters 1, 8, 12. The first 5 principal components were used as 757 

these were identified as being significant by the ‘Elbowplot’ function.  758 

Gene Ontology (GO) analysis 759 
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Gene ontology (GO) analysis was performed using Enrichr (Chen et al., 2013) on the 760 

top 200 differentially expressed genes (adjusted p value < 0.05 by Wilcoxon Rank 761 

Sum test). GO terms shown are enriched at FDR < 0.05. 762 

CytoTRACE 763 

An expression matrix consisting of only the specified sub-set of cellular populations 764 

was used as a starting point. CytoTRACE analysis was performed according to the 765 

developer’s instructions (Gulati et al., 2020). The resulting embeddings were then 766 

projected onto the UMAP projections. 767 

NicheNet analysis 768 

This analysis predicts which ligands produced by a sender cell regulate the expression 769 

of receptors/target genes in another (receiver) cell. We followed the open source R 770 

implementation available at GitHub (https://github.com/saeyslab/nichenetr). For 771 

differential expression we used FindMarkers function in Seurat to generate average 772 

logFC values per cell type. For Figure 3E, we assigned all epithelial populations as 773 

‘sender cells’ and E0 as ‘receiver’ to derive a set of predicted epithelial ligands 774 

modulating the mild response seen in this specific subpopulation. For Figure 4B, we 775 

assigned all cell types as ‘sender cells’ and the stromal populations as ‘receiver’ and 776 

extracted all cell type signatures by taking the 100 differentially expressed genes 777 

isolated in health/mild and in mild/severe.  778 

For Figure 4D-G, we defined all epithelial populations as ‘sender’ and all stromal as 779 

‘receiver’ in health vs mild responses.  780 

 781 

Data availability 782 

Raw sequencing data obtained from patients used in this study is deposited under 783 

GSE152042. These will become available upon acceptance of the manuscript. 784 
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SUPPLEMENTARY INFORMATION 1280 
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SUPPLEMENTARY FIGURES 1282 

SUPPLEMENTARY FIGURE 1. Single-cell profiling of healthy human gingiva 1283 

datasets using 10x Chromium, Related to Figure 1. 1284 

 1285 

SUPPLEMENTARY FIGURE 2. Single-cell profiling of healthy and disease human 1286 

gingiva using 10x Chromium, Related to Figure 1. 1287 

 1288 

SUPPLEMENTARY FIGURE 3. Re-clustering of human stromal gingival cells in 1289 

health and disease, Related to Figure 3. 1290 

 1291 

SUPPLEMENTARY FIGURE 4. Re-clustering of human epithelial gingival cells in 1292 

health and disease, Related to Figure 4. 1293 

 1294 

SUPPLEMENTARY FIGURE 5. Flow Cytometry Gating Strategies on Human 1295 

Gingival Cells.  1296 
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Supplementary Figure 1. Single-cell profiling of healthy human gingiva 1304 

datasets using 10x Chromium, Related to Figure 1. 1305 

 1306 

A. UMAP visualisation of human gingiva clusters from healthy human donors. 1307 

B. Scatter plots showing differential expressed genes across the two healthy 1308 

samples. Panels A-B, n=2 individuals. 1309 
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Supplementary Figure 2. Single-cell profiling of healthy and disease human 1313 

gingiva using 10x Chromium, Related to Figure 1. 1314 

 1315 

A. UMAP illustration of scRNA-seq data obtained from healthy and periodontitis cells 1316 

(n= 12,411) from four donors coloured by condition.  1317 

B. Feature Plot showing the expression of lineage marker genes used for cell-type 1318 

classification. 1319 
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Supplementary Figure 3. Re-clustering of human stromal gingival cells in 1322 

health and disease, Related to Figure 2. 1323 

 1324 

A. Feature Plots showing the expression of individual genes used for cell-type 1325 

assignment of different stromal subsets.  1326 

B. GO enrichment terms for the different stromal subsets. -log adjusted p-value 1327 

shown (dotted line corresponds to FDR = 0.05). 1328 

 1329 
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Supplementary Figure 4. Re-clustering of human epithelial gingival cells in 1331 

health and disease, Related to Figure 3. 1332 

A. Feature Plots showing the expression of individual genes used for cell-type 1333 

assignment of different epithelial subsets.  1334 

B. GO enrichment terms for the different epithelial subsets. -log adjusted p-value 1335 

shown (dotted line corresponds to FDR = 0.05).   1336 
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Supplementary Figure 5. Flow Cytometry Gating Strategies on Human Gingival 1338 

Cells. 1339 
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