Defining Interaction Protocols using a Commitment-based
Agent Communication Language’

Nicoletta Fornara
Universita della Svizzera italiana
via Buffi 13, 6900 Lugano, Switzerland

nicoletta.fornara@lu.unisi.ch

ABSTRACT

We propose a method for the definition of interaction pro-
tocols to be used in open multiagent systems. Starting from
the assumption that language is the fundamental compo-
nent of every interaction, we first propose a semantics for
Agent Communication Languages based on the notion of so-
cial commitment, and then use it to define the meaning of a
set of basic communicative acts. Second, we propose a veri-
fiable and application-independent method for the definition
of interaction protocols, whose main component is the spec-
ification of an interaction diagram specifying which actions
may be performed by agents under given conditions. Inter-
action protocols fully rely on the application-independent
meaning of communicative acts. We also propose a set of
soundness conditions that can be used to verify whether a
protocol is reasonable. Finally, our approach is exemplified
by the definition of an interaction protocol for English auc-
tions.
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1. INTRODUCTION

Interaction Protocols are patterns of behavior that agents
have to follow to engage in a communicative interaction with
other agents within a multiagent system (MAS). The specifi-
cation of interaction protocols is crucial for the development
of a MAS: the advent of Internet makes it urgent to develop
general, application-independent methods for the definition
of interaction protocols, to be used as components of open,
dynamic, heterogeneous, and distributed interaction frame-
works for artificial agents. Indeed, the definition of new
interaction protocols is a critical task, because a badly de-
signed protocol may lead to unsuccessful interactions; thus
there is a need for general methods, criteria, and tools for
protocol design. We think that there are some important
properties that interaction protocols for open frameworks
have to satisfy. In particular, an interaction protocol should:

e Specify legal sequences of communicative acts that form
a complete interaction within a system. Every com-
municative act used in a protocol should maintain its
meaning, as defined in a general, application-indepen-
dent communicative act library of a standard Agent
Communication Language (ACL).

e Enable interactions among purely reactive agents, that
blindly follow a given protocol, and deliberative agents,
that are able to reason about the consequences of ac-
tions, and decide whether to take or not to take part
in an interaction.

e Allow for effective verification that agents behave in
accordance to the specifications of the interaction pro-
tocol.

Moreover, a general method for the development of inter-
action protocols should allow a designer to verify whether
a protocol is "sound” with respect to general, application-
independent soundness criteria.

So far, several approaches to the definition of interaction
protocols have been proposed. Some authors define interac-
tion protocols as finite state machines or Petri nets (see for
example [3] and [6]), but do not take into account the mean-
ing of the exchanged messages, which in our opinion is cru-
cial to obtain the properties listed above. Other approaches
take into account the meaning of the exchanged messages,

but do not rely on a standard ACL with application-independent

semantics; for instance Esteva et al. [4] specify the protocols



available in an electronic institution using finite state ma-
chines, but define the meaning of only some of the message
types using ad-hoc rules. An example of interaction proto-
col specification which fully takes into account the mean-
ing of the exchanged messages is proposed by Yolum and
Singh [10], who introduce a method based on event calcu-
lus to define protocols that may be used by artificial agents
to determine flexible paths of interaction complying with
the specifications. The main difference between Yolum and
Singh’s proposal and the one put forward in this paper is
that with the method described in this paper all the pre-
conditions and effects of the performance of communicative
acts on the state of the interaction are completely specified;
we also propose a method through which protocol designers
may verify if a protocol is sound with respect to a number of
general, application-independent soundness criteria related
also to the meaning of the exchanged messages.

Our approach to agent interaction presupposes the defini-
tion of a standard ACL with unambiguous semantics. In a
previous paper [5] we have shown how the semantics of an
ACL can be defined in terms of (social) commitments. Our
definitions set the rules for the execution of communicative
acts, which are regarded as commitment-manipulation ac-
tions. Starting from such an analysis, which will be briefly
summarized in Section 2, we show how an interaction pro-
tocol can be defined. It is important to remark that our
protocols are defined starting from the communicative act
library of a predefined ACL, and that all communicative
acts preserve their general meaning when used within a pro-
tocol. As we shall see, an interaction protocol mainly con-
sists of a set of rules that regulate the performance of cer-
tain communicative acts; part of these rules are expressed
in terms of an interaction diagram that specifies which ac-
tions can be performed by the agents at every stage of the
interaction. Of course, an arbitrary collection of rules does
not necessarily define a reasonable interaction protocol. We
therefore propose a set of application-independent and veri-
fiable soundness conditions, which guarantee that protocols
possess certain properties that are crucial for a successful
interaction. Such conditions are expressed in terms of the
content of the system state at each stage of the interaction,
as consequence of the performance of communicative acts.

The paper is organized as follows. Section 2 introduces a
commitment-based framework for the definition of an ACL,
and a minimal communicative act library that we consider
essential to describe communicative interactions in an open
MAS. In Section 3 we define a general method for the defi-
nition of interaction protocols, and introduce a set of sound-
ness conditions, related to the meaning of the messages ex-
changed by the agents, which may be used to validate inter-
action protocols. In Section 4 we present a specification of a
form of English auction, an interaction protocol widely used
in electronic commerce applications, based on the formalism
presented in the paper. Finally, in Section 5 we draw some
conclusions.

2. A COMMITMENT-BASED
AGENT COMMUNICATION LANGUAGE

A complete operational specification of a commitment-
based ACL and a discussion of its motivations can be found
in [5]. The semantics proposed in that paper is given by
describing the effects that sending a message has on the
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social relationship between the sender and the receiver of
the message using an unambiguous, objective, and public
concept, that is, social commitment. We assume that the
open system in which artificial agents interact consists of
the following components:

e A group of registered agents {a,b, ...}.

A variable set of commitment objects {C1, Ca, ...}, which
are instances of the commitment class discussed below.

A variable set of temporal proposition objects { P, Q, ...},
which are instances of the corresponding class discussed
below, and are used to express propositions about the
application domain and the interaction process.

A fixed set of actions that agents may perform, includ-
ing both communicative acts belonging to a commu-
nicative act library and application domain actions.

A fixed set of event-driven routines that automatically
update the state of commitment objects. These rou-
tines are represented by update rules as described in
Table 1.

A set of domain-specific objects {O1, Oz, ...}, which
represent entities of the application world. Such enti-
ties may possess both ”natural” or and ”institutional”
attributes; for example, the color of a product be-
ing sold is a natural attribute, while the price of the
same product is an institutional attribute. Natural
attributes are assumed to reflect the physical proper-
ties of the corresponding entities of the real world, and
typically cannot be changed during an interaction (of
course, they might be changed if some of the interact-
ing agents were assumed to be physical robots). On
the contrary, institutional attributes can be affected
by the performance of certain communicative acts, in
particular by declarations (as discussed below). We
assume that each domain-specific object has a value-
setting method for each of its institutional properties;
for example the method ”setState()” can be invoked
to set the "state” property.

A fixed set of roles {rolei,roleg,...}. This concept is
introduced to abstract from the specific agents that
take part in an interaction.

A fixed set of authorizations associated to roles, that
specify which agent is authorized to perform a partic-
ular declaration (see Section 2.1 for details).

Commitment objects are used to represent the network of
commitments binding the interacting agents; they have an
internal structure, a life cycle, and a set of methods available
for manipulation. The internal structure of a commitment
object consists of the following fields:

e a unique commitment identifier (id);

e a reference to the commitment’s debtor, that is, the
agent that has the commitment;

e a reference to the creditor, that is, the agent relative
to which the debtor is committed;
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Figure 1: The life-cycle of commitments.

the commitment’s content, that is, the representation
of the proposition (describing a state of affairs or a
course of action) to which the debtor is committed
relative to the creditor;

the commitment’s conditions, that is, a list of propo-
sitions that have to be satisfied in order for the com-
mitment to become active;

a state, taken from the finite set {unset, cancelled,
pending, active, ful filled, violated}, used to keep track
of the dynamic evolution of the commitment; and

a timeout, which is relevant only in the case of un-
set commitments, and will therefore be treated as an
optional parameter.

Commitment objects will be represented with the following
notation:

Cia(state, debtor, creditor, content|conditions{, timeout}).

We use temporal proposition objects to represent the con-
tent and the conditions of a commitment. A temporal propo-
sition object consists of the following fields: a statement,
which represents a proposition; the truth_value of the state-
ment, which may be true (1), false (0) or undefined (L);
a time interval, which may go from a single instant to the
entire life of the system, relative to which the statement is
considered; and a temporal mode, either (V) or (3), which
specifies whether the statement should be true for the whole
time interval or on at least an instant of the time interval.
We assume that the truth value of temporal proposition ob-
jects is updated by a suitable ”notifier”. In particular: if
the mode is 3’ the notifier sets the truth-value to true if the
statement becomes true at any point of the time interval,
otherwise sets it to false when the time interval expires; if
the mode is 'V’ the notifier sets the truth-value to false if the
statement becomes false at any point of the time interval,
otherwise sets it to true when the time interval expires. It
is important to remark that the truth value of a temporal
proposition object can switch from L to 1 or 0, but then can-
not change any more. In particular cases, as we shall see, it
is possible to infer in advance that the statement of a tem-
poral proposition object can no longer become true (false)
within the associated time interval. In this case the noti-
fier may set the truth value to false (true) before the time
interval expires. To do so, the notifier may exploit specific
inference rules (more on this later). Temporal proposition
objects are represented with the following notation:
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Pidentifier (Statement, time interval, mode, truth_value).

As we have already said, temporal proposition objects are
used to represent content and conditions of a commitment.
In particular the conditions of a commitment consist of a
list [P,Q,...] of temporal proposition objects that have to
be satisfied in order for the commitment to become active.
The truth value of a list of temporal proposition objects is
computed as follows: (i) an empty list of temporal proposi-
tion objects is true; (ii) a true temporal proposition object
is removed from the list; (iii) a list containing a false propo-
sition object is false.

To make the notation simpler, when the list of conditions
contains one temporal proposition object the square brack-
ets are dropped. We also remark that a temporal proposi-
tion object, used to express the content or a condition of a
commitment object, may in turn represent another commit-
ment object. In particular temporal proposition objects can
be used to represent conditions on the temporal evolution
of commitments. An example of this is given in Subsection
2.1.4.

The life cycle of a commitment object is described by the
finite state machine in Figure 1. The state of a commitment
can change as an effect of the invocation of its basic methods
(solid lines) or of environmental events (dotted lines), that
is, of events that change the truth-value of a commitment’s
conditions or content. We assume that when a commitment
object is declared, the constructor of the class creates an
empty commitment object, C;(). We represent the invoca-
tion of a method by the name of the object followed by a
dot and by the name of the method with its parameter list.
Commitments are created and manipulated through the fol-
lowing basic operations:

o Make commitment. By invoking the method
mc(a, b, P,Q) with arbitrary debtor a, creditor b, con-
tent P, and condition list ), a new unset commitment
object is created:

Ci().mc(a,b, P,Q) — C;(unset,a,b, P|Q)

Set commitment. The method sc(s) changes the cur-
rent state of an existing commitment object to s:

Ci(_7a7b7P|Q)'SC(S) - Ci(57a7 b7P|Q)

Add condition. The method ac(R) adds a new tem-
poral proposition object R to the conditions of the
commitment:

Ci(57a7b7 P|Q)CLC(R) - Ci(57a7 b7P|R. Q)7

where the symbol e denotes the operation of inserting
a new element in a list.

Basic operations should not be viewed as actions that are di-
rectly performed by agents. Rather, they are low-level prim-
itives used to implement operations on commitment objects,
more specifically, agents manipulate commitments through
a communicative act library.

Finally note that we defined the conditions under which
commitments are fulfilled or violated, but we are not con-
cerned with the management of violations e.g. in terms of
sanctions, because this aspect lies beyond the use of com-
mitments for the definition of ACL semantics.



Table 1: Update Rules.

event action rule

Ptruthval() =1| Ci(a,a,b, P|T) — Ci(f,a,b,P|T) | 1
Ptruthval() =0| Ci(a,a,b, P|T) — Ci(v,a,b,P|T) | 2
Q.truthval() = 1| Ci(p,a,b, P|Q) — Ci(a,a,b,P|T) | 3
Q.truthval() = 0| Ci(p,a,b, P|Q) — Ci(c,a,b, P|Q) | 4
Ptruthval() =1| Ci(u,a,b, P|T) — Ci(a,a,b,P|T) | 5
Pitruthval() = 1| Ci(p,a,b, P|Q) — Ci(f,a,b,P|Q) | 6

curr_time >t |Ci(u,a,b, P|Q,t) — Ci(c,a,b, P|Q)| T

legend: u = unset, p = pending, ¢ = cancelled,
a = active, f = fullfilled, v = violated, T = TRUFE

2.1 Library of Communicative Acts

We shall now define the meaning of the basic types of
communicative acts as identified by Speech Act Theory [8].
We extend the definitions of [5] by introducing the definition
of a new commissive act, the conditional accept act, and a
treatment of declarations; both will be used in the example
of Section 4. In the following definitions the sign "=gs”
means that performing the action represented on the left-
hand side is the same as performing the action represented
on the right-hand side, and the symbol ”:=" means that the
act represented on the left-hand side is actually performed
through the invocation of the methods listed on the right-
hand side.

2.1.1 Assertives

According to Speech Act Theory, the point of an assertive
act is to commit the sender, relative to the receiver, to the
truth of what is asserted. We consider the inform act as
our prototypical assertive act. This act is used by agent a
to inform agent b that P is the case. In a commitment-
based approach, an act of informing can be defined as fol-
lows (TRUF is the identically true temporal propositional
object):

inform(a, b, P) :=
{Ci().mc(a,b, P, TRUE);
Ci(unset,a,b, PI[TRUE).sc(pending)}.

The final result is an active commitment, thanks to the in-
tervention of Update Rule 3.

2.1.2 Directives

As defined in Speech Act theory, the point of a directive
act is to get the receiver to perform an action (possibly a
speech act). We treat request as our basic directive act, and
define it as the creation of an unset commitment with the
sender as the creditor and the receiver as the debtor. The
request by agent a to agent b to bring about P if condition
list @ is satisfied is defined as:

request(a, b, P, Q) := {Ci().mc(b,a, P,Q)}.

The receiver of a request can react in three different ways:
it can perform the requested action, accept the request, or
refuse it. Questions (or queries) are requests to be informed
about something. Here we deal with only wh-questions; for
a definition of yes-no-questions see [5]. In wh-questions the
requested act of informing cannot be completely described
by the sender (otherwise, why should it ask the question?).
In this cases the sender provides a ”template” for the an-
swer, that is, a temporal proposition object S(x) containing
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a meta-variable x that the receiver has to replace with a
constant value c¢. A query has therefore the form:

request(a, b, P)
where P.statement() = inform(b, a, S(x))
inform(b, a, S(x)) =ges inform(b, a, S(c)),
for some constant value c.

This definition implies that the performance of the requested
inform act with the temporal proposition S(c) as a param-
eter makes the temporal proposition P true. Indeed, as
remarked by Searle [9] the concept of a question is more
general: by a question, an agent may request the execution
of a non-assertive communicative act (like a directive, or a
commissive). However, our definition above easily general-
izes to such cases (an example can be found in Section 4).

2.1.3 Commissives

The point of a commissive act, as defined by Speech Act
theory, is to commit the debtor, relative to the creditor, to
the execution of an action of a given type. Here we define
the basic commissive act of promising:

promise(a,b, P, Q) :=
{Ci().mc(a,b, P,Q); Ci(unset,a,b, P|Q).sc(pending)}

To make an unconditional promise the constant proposition
object TRUE is used as the condition, and thus the pending
commitment created by the promise is immediately turned
into an active commitment by Update Rule 3. Three types
of commissive acts can be performed only in connection with
an unset commitment, namely accept, conditional accept
and reject. Accepting and rejecting are defined as follows:

preconditions : 3 C;(unset, b, a, P|Q))
accept(b, a, C;(unset, b, a, P|Q)) :=
{Ci(unset, b, a, P|Q).sc(pending) }

preconditions : 3 C;(unset, b, a, P|Q))
reject(b, a, C;(unset, b, a, P|Q)) :=
{Ci(unset, b, a, P|Q).sc(cancelled) }

Another useful commissive act is ” conditional accept”, which
may be used by agents to negotiate the condition of an un-
set commitment. In particular, conditional acceptance will
appear in the example proposed in Section 4. In fact, in
the English Auction Protocol at every round of the bidding
process the auctioneer accepts the currently highest bid on
condition that no higher bids will be accepted later. In gen-
eral, the debtor of an unset conditional commitment C; can
accept it provided that an additional condition, represented
by a temporal proposition object, holds. Conditional ac-
ceptance transforms an unset commitment into a pending
commitment, and adds a new condition to the original con-
dition list of the unset commitment:

preconditions : 3 Ci(unset, b, a, P|Q))
condAccept (b, a, C;(unset, b, a, P|Q), R) :=
{Ci(unset,b,a, P|Q).ac(R);
Ci(unset,b,a, P|R & Q).sc(pending) }

Note that when condition R becomes true, the debtor is

left with a pending conditional commitment of the form
Ci(pending, b, a, P|Q).



2.1.4 Proposals

A proposal is a combination of a directive and a commis-
sive act. Even if proposals are not basic acts, they deserve
special attention because they are crucial in many interest-
ing application fields, like for example electronic commerce.
A propose act can be defined as the parallel execution of a
request and a promise, as denoted by the symbol |[:

propose(a,b, P, Q) =acy
request(a,b, P,Q) || promise(a, b, Q, S)
where S.statement() = C;(pending, b, a, P|Q)

Note that in the above definition the statement of temporal
object S represents the commitment object C;(pending, b, a,

PlQ).

2.1.5 Declarations

Declarations are a special type of communicative acts. Ex-
amples of declarations are "I pronounce you man and wife”
or "I declare the auction open”. The point of a declaration
is to bring about a change in the world, obviously not in the
physical or natural world but in an institutional world [1],
that is, a conventional world relying on common agreement
of the interacting agents (or, more precisely, of their design-
ers). Declarations actually change the institutional world
simply in virtue of their successful performance. In our
interaction framework, to treat declarations we introduce
objects with institutional properties, that is, conventional
properties that result from common agreement, like for ex-
ample the ownership of a product. Such properties can be
affected by declaration acts. It is however necessary to iden-
tify which agents are authorized or empowered to perform
a given declaration act in the system. Typically, authoriza-
tions are granted to agents in virtue of the role they play in
an interaction, and thus authorizations are naturally associ-
ated to roles. To do so, we need to introduce a construct to
express that an agent having a given role in the interaction
system is empowered to bring about an institutional change
of a given kind:

preconditions :
empowered(role;, Oy.set Prop;()) A a.role() = role;

declare(a, Oy.prop; = x) := {Ok.setProp;(z)}.

3. INTERACTION PROTOCOLS

Having defined an essential Communicative Act Library
we can now proceed to the specification of interaction proto-
cols. An interaction protocol is defined by an environment
and an interaction diagram. In particular, a protocol’s en-
vironment defines:

e A nonempty set of roles that agents can play in the in-
teraction. To each role, a set of specific authorizations
may be associated.

e A nonempty set of participants, which are the agents
interacting by using the protocol. Every participant
must play a well-defined role in the interaction. The
set of participants may vary during the execution of
the protocol, but is always finite.

e A possibly empty set of global constants and variables,
that may be subject to global constraints.
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e A collection of commitment objects, temporal proposi-
tion objects, and domain-specific objects (see Section
2) used to represent all entities involved in the inter-
action.

e A set of authorizations, associated to roles, to perform
certain institutional actions, in particular declarations.

A protocol’s interaction diagram specifies which actions may
be performed by each agent at each stage of the interaction.
More precisely, an interaction diagram (see for example Fig-
ure 2) is defined by a finite graph in which:

e Every node represents a state of the interaction. To
every state we can associate a representational con-
tent, that is, the set of all facts that hold at the state,
expressed in terms of: protocol variable values, com-
mitment objects, temporal proposition objects, and
domain-specific objects.

e There is a single distinguished initial node, with no
incoming edge, and a set of distinguished final nodes,
with no outgoing edge. The interaction starts from the
initial node and ends when a final node is reached.

e Every edge describes a transition from a state to an-
other state. A transition may correspond to the ex-
ecution of a communicative act or to the occurrence
of a relevant environmental event; when the transition
occurs, the content of the target state can be com-
pletely computed from the content of the source state,
and from the semantics of the communicative act or a
description of the environmental event responsible for
the transition.

e When more than one communicative-act edge goes out
of a given node, it is possible to specify the condi-
tions (defined as arbitrary Boolean expressions) under
which each act may be executed. As a whole, the set
of condition-action pairs going out of a node behaves
like a guarded command [2]: at least one of the actions
must be executed, but the agent specified as the actor
of the action is free to choose which action to perform
among those whose guard is true. If all guards are mu-
tually exclusive, the guarded command is equivalent to
a sequence of if-then statements.

e It is possible to associate a cardinality to communica-
tive act edges. In particular cardinality ”1 to n” means
that the same message is sent by one agent to n agents,
and cardinality ”1 to 1”7 means that a message is send
by one agent to another agent.

3.1 Soundness conditions

To describe a sensible interaction pattern, an interaction
protocol must satisfy a number of general, application-inde-
pendent soundness conditions. A first, fairly trivial, set of
conditions concerns the topology of the interaction diagram:

e Every node of the interaction diagram must be reach-
able from the initial node.
e There must be at least a final node.

Another, less trivial, set of soundness conditions concerns
the content of states. Such conditions, express constraints
related to the meaning of the exchanged messages, as defined
by the communicative act library adopted.



e All communicative acts that are allowed by a protocol
at state s must have their preconditions satisfied by
the content associated to s when their guard is true.
This condition guarantees that all communicative acts
allowed by the interaction protocol may actually be
executed.

e All commitments included in the content of a final
state must be cancelled, fulfilled, or violated. This
condition guarantees that the whole interaction has
been completed.

An interesting problem is raised by the fact that during the
execution of a protocol, the same state may be reached from
the start state following different paths (i.e., performing dif-
ferent chains of actions). For example, a certain state of
an interaction could be reached because an agent has au-
tonomously made a promise or because the agent was re-
quested to make a promise, accepted the request, and then
fulfilled the resulting commitment by actually making the
promise. If we abstract from the different paths, we intu-
itively feel that the interaction has reached the same state;
however, if we compute the content of the state we get differ-
ent results. The point is that these results, although differ-
ent, are equivalent from the point of view of the interaction,
in that they have the same ”commissive import”. More pre-
cisely, we say that state s is equivalent to state s’ if and only
if the contents of s and s’ are identical, with the only excep-
tion of commitments that are fulfilled, violated, or cancelled.
We can therefore formulate another soundness condition:

e If a state of an interaction can be reached through dif-
ferent paths, the contents of the state computed along
the different paths must be equivalent.

The situation is even more complex when the definition of
an interaction protocol has a loop, that is, a cycle in the in-
teraction diagram. Interaction loops naturally appear when
a sequence of communication acts can be repeated several
times, like for example in the English Auction Protocol (Sec-
tion 4). The existence of loops makes it possible to reach
the same state following different paths in the interaction
diagram. In this case, however, the notion of equivalence
discussed above is still necessary but no longer sufficient.
This problem is well known in computer programming, and
it can be solved by introducing the concept of a loop invari-
ant. For example, consider again the protocol for an English
Auction. At a generic iteration, the auctioneer is committed
to selling the product currently under the hammer to a spe-
cific agent for a specific price, on condition that no higher
price will be offered. Of course, the specific agent that made
the highest offer, as well as the associated price, will change
from one iteration to another one. However, we can describe
the situation in terms of loop invariants, by saying that the
auctioneer is committed to selling the product to the agent
that made the highest offer, for the price defined by such an
offer, on condition that no higher offer will be made. The
soundness condition given above can now be reformulated
as follows:

e [f a state of an interaction can be reached through dif-
ferent paths, the contents of the state computed along
the different paths, expressed in terms of suitable in-
variants, must be equivalent.
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4. THE ENGLISH AUCTION PROTOCOL

In this section we present a specification of a form of En-
glish auction protocol using the framework proposed so far.
We chose this protocol as an example because it is used in
many electronic commerce applications on the web, and be-
cause it is fairly complex: in particular, it is an interesting
example of iterative interaction protocol. In this example
we consider the interaction process needed to sell a single
product o, which can obviously be repeated to sell several
products.

4.1 The Environment

The environment of the English Auction Protocol includes
the following elements:

e Roles. Auctioneer and Client.

e Participants. One agent, a, in the role of Auctioneer
and n agents, {p1, ..., pn}, in the role of Client.

e Constants and Constraints. t,,,;, the maximum
duration of the auction; t1, the deadline for the pay-
ment; t2, the deadline for the delivery. tmas < t1 < to.

¢ Domain-specific objects and actions.
Object o, representing the product on sale, with a
resPrice field for the reservation price.
Object A, representing the auction, with fields for the
following variables (initialized as indicated): state =
"closed”; askPrice = 0; tenq automatically set to
tsystem When state is set to ”closed”; tinactivity i-€. the
maximum time of inactivity between two subsequent
bids.
The action of transferring the ownership of an object
or of a sum of money to another agent is an insti-
tutional action involving the institutional notions of
ownership and money. For the sake of simplicity, we
treat here this action as a primitive domain action.
The fact that agent a transfers to agent b the owner-
ship of z (an object or a sum of money) is represented
by give(a,b, x).

e Variables The environment has the following vari-
ables (initialized as indicated): newAskPrice =
o.resPrice(); valuewin = 0; tsystem, a global clock ac-
cessible to all participants; ¢, = 0, the time of the
last accepted bid; ¢ a counter that is automatically in-
cremented every time the bidding process is iterated.

e Authorizations. The auctioneer is empowered to
open and close the auction and to set the ask price
of the product on sale:
empowered(Auctioneer, A.setState()),
empowered(Auctioneer, A.set AskPrice()).

4.1.1 Scheme of Temporal Proposition Objects

In the interaction framework proposed so far the con-
tent language used to express the content and the condition
fields of commitment objects is based on the use of tempo-
ral proposition objects. Given that in complex interactions
like the ones that follow the English Auction Protocol many
temporal proposition objects are involved, we concisely de-
scribe them through schemes, that represent possible tem-
poral proposition object in parametric form. Parameters
will be bound to specific values when the interaction actu-
ally takes place and an instance of the temporal proposition



object is created (truth values are always initialized to L,
and therefore are not indicated in schemes). In our example,
parameter now is initialized at tsystem when the temporal
proposition object is created; and parameter v and v’ are
used to indicate an amount of money.

e Scheme P; represents the proposition ”the auctioneer
gives product o to client p;, in the time interval from
the end of the auction to t2”:
Pj(give(a,pj,0),tend..-t2,3);

e Scheme @);,, represents the proposition ”client p; gives
the amount v of money to the auction house repre-
sented by the auctioneer, in the time interval from the
end of the auction to t1”: Q;,»(give(p;,a,v), tend...t1,3)

e Scheme S, ; represents the proposition ”client p; makes
a proposal during iteration i”:
Sj.i(propose(pj, a, Pj, Q;(x)), now...now-+tinactivity, 3);

e Scheme Uj,, represents the proposition ”the auctioneer
is committed, relative to client p;, to proposition P;
under condition @+, in the time interval from now to
the end of the auction”:

Uj,v(Ciazj(pending, a, pj, P;i|Qj,v), now...tend, 3);

e Scheme W, represents the proposition ”the auctioneer
does not accept any proposal with value greater than
v’ in the time interval from now to the end of the
auction”:

Wi (= 35 (condAccept(a,pj, Ciazj(unset,a, p;,
Pj|Qjw), Wy) Av > 0")), now...tend, 3);

4.1.2 Communicative Acts

In this section specific conditions (guards) for the perfor-
mance of the communicative acts used in the English Auc-
tion Protocol are given. Obviously in order that the commu-
nicative act is successfully performed also the preconditions
defined in the Library of Communicative Acts have to be
satisfied. Some of these acts have to be repeated at every
round ¢ of the bidding process. In order to be able to re-
fer to commitment objects created by previously preformed
communicative acts we report also the effects of the perfor-
mance of communicative acts: they can also be computed
from the definitions given in the library of communicative
acts. Therefore in the protocol communicative acts retain
the semantics defined in the library of communicative acts,
this contrasts with the approaches in which the semantics of
communicative acts is affected by the protocol [7]. Moreover
the performance of certain communicative acts changes the
value of some environmental variables.

e The auctioneer declares the auction open (state so).
guards : A.state() = " closed”
declare(a, A.state = " open”)

e The auctioneer declares the current ask-price of the
ongoing auction (state s1, se, S11)-
guards : A.askPrice() < newAskPrice
declare(a, A.askPrice() = newAskPrice)

e The auctioneer makes the ”call for proposals” (state
$2, 85, S7, 810)-

request(a,p;, 5j.i)
effects : Ciqij(unset,p;,a,S;:)

e One participant makes its proposal (state ss, ss).

guards : {(tsystem < tmaz), (tsystem —
propose(p;,a, Pj, Qj)
ef fects : {Ciqzj(unset,a,p;, Pj|Qjv),
Ciasj(pending, p;, a, Qjv|Uj,v),
S truthvalue() = 1}

e If the value of the proposal is greater than the current

ask-price the auctioneer has to accept it (state s4, s9).

guards : v > A.askPrice();
condAccept(a,pj, Ciazj(unset,a,p;, Pj|Qjwv), W)
ef fects : {Ciazj (pending, a, p;, P;|[Qj.v, Wo)),
Vo' < v Wy truthvalue() = 0}

variable updates : {newAskPrice = v, tyia = tsystem }

e [f the value of the proposal is less than or equal to the
current ask-price the auctioneer has to reject it (state
S4, 89).

guards : v < A.askPrice();

reject(a,p;, Ciaz; (unset, a, pj, P;|Q;))
ef fects : {Ciaaj(cancelled, a, pj, Pj|Qj,v),
Uj,v.truth_value() = 0}

e The auctioneer can declare closed the auction only if
the time of inactivity is equal to the constant value
defined at the beginning of the auction or when the
fixed end time of the auction is reached (state ss3, ss).

guards : {(tsystem > tmaz) V

(tsystem — toid > tinactivity), A.state() =" open” }
declare(a, A.state = " closed”)

ef fects : {Whatuey, -truthvalue() = 1,

Uj vatuen s -truthvalue() = 1}

variable updates : {tend = tsystem,

valuewin = newAskPrice}

4.2 Interaction Diagram

The interaction diagram that specifies the English auction
Protocol is reported in Figure 2. It is possible to verify that
an actual interaction complies with the protocol by check-
ing that the sequence of communicative acts bring from the
unique start state to one of the final states. Moreover it is
possible to prove the soundness of this protocol specification.
In particular the contents of each state accessible through
different paths results equivalent. For states sg, S10, Si1,
that are in the loop of the protocol, it is necessary to iden-
tify a loop invariant describing p; as the client who made
the highest offer.

5.  CONCLUSIONS

In this paper we presented an application independent
method for the definition of interaction protocols, based on
the meaning of the exchanged messages, that can be used to
define patterns of interaction in open, dynamic, and hetero-
geneous agent systems. The method proposed is based on
a general ACL, whose semantics is defined in terms of com-
mitments, and on a further component defining protocol-
specific interaction rules. The resulting interaction protocols

tbid < tinactivity)}
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Figure 2: Interaction diagram of the English Auc-
tion Protocol.

are verifiable, in the sense that is possible to test whether
an agent is behaving in accordance to it. Moreover, sound-
ness condition are proposed to verify if a the structure of a
given interaction protocol is reasonable. We also show how
our method can be used to define a complex and common
interaction protocol, the English Auction.

With respect to our previous operational proposal [5] of a
commitment-based ACL semantics, in this paper we intro-
duce a treatment of conditional acceptance and of declara-
tions.

Our method for the definition of interaction protocols dif-
fers from most existing proposals, in that it is based on
the use of an application-independent library of commu-
nicative acts, whose meaning is fully preserved when they
occur in a protocol. With respect to the proposal put for-
ward by Yolum and Singh in [10], our approach is focussed
on the protocol design phase more than on the possibility
of shortcutting predefined interaction patterns at run time.
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Indeed, we expect that agents used in practical application
will mostly be simple reactive agents; if this idea is correct,
proving the soundness of a protocol at design time is more
important than allowing agents to plan intelligent variations
of existing protocols. In principle, however, a deliberative
agent with reasoning capabilities could understand our pro-
tocols on the basis of an ontology of commitment, linguistic
knowledge (i.e., knowledge of a Communicative Act Library
with semantics), and the ability to reason on interaction
diagrams (i.e., a version of finite state machines).

6.
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