
Defining Languages by Forbidding-Enforcing

Systems

Daniela Genova

Department of Mathematics and Statistics, University of North Florida,
Jacksonville, FL 32224, USA

d.genova@unf.edu

Abstract. Motivated by biomolecular computing, forbidding-enforcing
systems (fe-systems) were first used to define classes of languages (fe-
families) based on boundary conditions. This paper presents a new model
of fe-systems in which fe-systems define single languages (fe-languages)
based on forbidden and enforced subwords. The paper characterizes well-
known languages by fe-systems, investigates the relationship between fe-
families and fe-languages, and describes how an fe-system can generate
the solution to the k-colorability problem and model splicing.

Keywords: fe-languages, fe-families, formal languages, k-colorability prob-
lem, biomolecular computing, splicing.

1 Introduction

The rapid growth of biomolecular computing is interconnected with the quest
for new ways to define computation. Many computational models were defined
within the field of natural computing, e.g., self-assembly, splicing, membrane
systems (see [9,11,12,14,16]). Most of these models are rooted in classical formal
language theory. When computation is carried out by biomolecules, the nonde-
terministic behavior of molecules in a biochemical reaction inspires new non-
deterministic ways of defining languages. Motivated by such non-determinism,
and by abstracting molecules to strings and sets of molecules to languages,
the authors of [2,4,15] introduced forbidding-enforcing systems (fe-systems) as
language-defining systems, where “everything that is not forbidden is allowed”,
contrasting the determinism of grammars and automata where “everything that
is not allowed is forbidden”. They showed that fe-systems can generate solu-
tions to computational problems such as SAT and Hamiltonian Path Problem,
represent duplex DNA molecules and model splicing by an enzyme.

Forbidding-enforcing systems have been defined in the framework of mem-
brane systems (see [1]), where the authors show that the additional restrictions
imposed by membranes cause fe-systems to define yet other new classes of lan-
guages, and have been also defined to model self-assembly of graphs (see [5]).

A topological investigation of fe-families can be found in [8]. Such a study
of formal languages comes to interest only with the introduction of fe-systems,

B. Löwe et al. (Eds.): CiE 2011, LNCS 6735, pp. 92–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Defining Languages by Forbidding-Enforcing Systems 93

since, as it is shown in [8], none of the Chomsky families of languages correspond
to an open or a closed set in the defined metric space.

This paper uses the concept of forbidding and enforcing to present a new
way of defining languages, where one forbidding-enforcing system defines one
language instead of a family of languages. Such a motivation comes from labo-
ratory setting, where after a “wet” computation is performed the solution will
be a specific language of words (DNA molecules) over the DNA alphabet.

The paper is organized as follows. Section 2 defines fe-languages and their ba-
sic properties are discussed in Section 3. The relationship between fe-languages
and fe-families is investigated in Section 4. Section 5 provides characterizations
of well-known languages by fe-systems. Section 6 discusses forbidding through
enforcing. Generating solutions to the k-colorability problem is discussed in Sec-
tion 7 and Section 8 discusses modeling splicing by fe-systems.

2 Forbidding-Enforcing Systems

A finite set of symbols (alphabet) is denoted by A and the free monoid consisting
of all words over A is denoted by A∗. A subset of A∗ is called a language. The
length of a word w ∈ A∗ is denoted by |w| and Am is the set of all words of
length m, whereas A�m is the set of all words of length at most m. The empty
word, denoted by λ has length 0. The language A+ consists of all words over A
with positive length.

The word y ∈ A∗ is a factor (subword) of x ∈ A∗, if there exist s, t ∈ A∗, such
that x = syt. The set of subwords of a word x is denoted by sub (x) and the set
of subwords of a language L by sub (L), where sub (L) = ∪x∈L sub (x).

This paper uses the definitions and notation for fe-families as in [4] and for
maximal languages as introduced in [8]. For more details about properties of fe-
systems defining fe-families of languages, the reader is referred to [4,2,3,15,6,8].
Where not explicitly stated, assume that an alphabet A is given.

2.1 Forbidding Systems, f-languages

This paper introduces an fe-systems model, in which one forbidding-enforcing
system defines a single language as opposed to a family of languages. For the sin-
gle language model, only the definition of a forbidding set (Definition 1) remains
the same as in [4].

Definition 1. A forbidding set F is a family of finite nonempty subsets of A+;
each element of a forbidding set is called a forbidder.

Definition 2. A word w is consistent with a forbidder F , denoted by w con F , if
F �⊆ sub (w). A word w is consistent with a forbidding set F denoted by w con F,
if w con F for all F ∈ F. If w is not consistent with F, the notation is w ncon F.
The language L(F) = {w | w con F} is said to be defined by the forbidding set
F. A language L is a forbidding language or f -language, if there is a forbidding
set F such that L = L(F).

94 D. Genova

Example 1. Let F = {{ab, ba}, {aa, bb}}. Then L(F)={an, bn, abn, anb, ban, bna |
n ≥ 0}.
Example 2. Let A = {a, b} and F = {{b}}. Then L(F) = a∗.

Example 3. Let A = {a, b} and F = {{bb}}. Then L(F) contains words where
any two b’s are separated by at least one a. Note that a∗ ⊆ L(F).

The first part of the following remark simply says that if nothing is forbidden,
then everything is allowed.

Remark 1. 1. L(F) = A∗ if and only if F is empty.
2. The empty word λ is in L(F) for every F.

2.2 Enforcing Systems, e-languages

Definition 3. An enforcing set E is a family of ordered pairs called enforcers
(x, Y), such that x ∈ A∗ and Y = {y1, . . . , yn} where yi ∈ A+ for i = 1, . . . , n,
x ∈ sub (yi) and x �= yi for every yi ∈ Y . A word w satisfies an enforcer (x, Y)
(w sat (X, Y)), if w = uxv for some u, v ∈ A∗ implies that there exists yi ∈ Y and
u1, u2, v1, v2 ∈ A∗ such that yi = u2xv2 and w = u1u2xv2v1. A word w satisfies
an enforcing set E (w sat E), if w satisfies every enforcer in that set. If w does
not satisfy E, the notation is w nsat E. For an enforcing set E the language of all
words that satisfy it is denoted by L(E). A language L is called an e-language if
there exists an enforcing set E such that L = L(E).

In the case that x �∈ sub (w), w is said to satisfy the enforcer trivially. We call
enforcers in which x = λ brute. In this case, a word from Y has to be a subword
of w in order for w to satisfy the enforcer.

Remark 2. If y ∈ Y then y sat (x, Y).

Remark 3. L(E) = A∗ if and only if E = ∅.
An enforcer (x, Y) is called strict if |Y | = 1. The following example shows how
a brute strict enforcer and an infinite set of strict enforcers may not be satisfied
by any finite word.

Example 4. Let E = {(λ, {a})} ∪ {(ai, {ai+1}) | i ≥ 1}. Then, L(E) = ∅.

2.3 Forbidding-Enforcing Systems, fe-languages

Preserving the idea of a forbidding-enforcing system from [4], an analogous def-
inition for a forbidding-enforcing language (fe-language) is presented.

Definition 4. A forbidding-enforcing system is an ordered pair (F, E), such that
F is a forbidding set and E is an enforcing set. The language L(F, E) defined by
this system consists of all words that are consistent with F and satisfy E, i.e.,
L(F, E) = L(F) ∩ L(E). A language L is called an fe-language, if there exists an
fe-system (F, E), such that L = L(F, E).

Defining Languages by Forbidding-Enforcing Systems 95

Example 5. 1. Let F = {{ba}} and E1 = {(λ, {a})}∪{(ai, {ai+1, aibi}) | i ≥ 1}.
Then, L1 = L(F, E1) = {anbm | n ≤ m and n, m ≥ 1}.

2. Let F = {{ba}} and E2 = {(λ, {b})} ∪ {(bi, {bi+1, aibi}) | i ≥ 1}. Then,
L2 = L(F, E2) = {anbm | n ≥ m and n, m ≥ 1}.

3 Basic Properties of Forbidding-Enforcing Systems

The proposition below includes some immediate properties of forbidding and en-
forcing sets and the languages that they define. These properties are reminiscent
of the ones proved for fe-families of languages [4,15].

Proposition 1. Let F and F′ be forbidding sets, E and E′ be enforcing sets, and
u and w be words.

1. If u ∈ sub (w) and w con F, then u con F.
2. If F′ ⊆ F, then L(F) ⊆ L(F′).
3. If E′ ⊆ E, then L(E) ⊆ L(E′).
4. If F′ ⊆ F and E′ ⊆ E, then L(F, E) ⊆ L(F′, E′).
5. L(F ∪ F′) = L(F) ∩ L(F′).
6. L(E ∪ E′) = L(E) ∩ L(E′).
7. L(F ∪ F′, E ∪ E′) = L(F, E) ∩ L(F′, E′).

Example 6. Consider the fe-systems from example 5. It follows from Property 7
above that L = L1 ∩ L2 = {anbn | n ≥ 1} = L(F, E1 ∪ E2).

4 Relationship between f -families and f -languages

Given an alphabet A consider a generating tree TA∗ . The root of the tree is λ.
If u is a node in the tree, then ua is a child of u for all a ∈ A. Clearly, this
tree contains all words in A∗. For more details on properties of TA∗ see [6]. It
is obvious that for every language L ⊆ A∗, if the vertices that are not in L
are removed from TA∗ , then the vertices of the resulting graph are precisely the
words in L, but the resulting graph is not necessarily a tree. The resulting graphs
for factorial languages, i.e. those for which L = sub (L) however, are trees, as
observed in the next section.

Consider again the forbidding set F = {{aa, bb}, {ab, ba}}. It was discussed
in [4,2,15,6,8], where it was used to define a family of languages. In [8] it was
observed that L(F) has four maximal languages. Note that L(F) from Example
1, is precisely the union of these four languages. The next theorem states that
this is always the case. Figure 1 depicts the generating tree for L(F).

Theorem 1. Let F be a forbidding set. Let M(F) be the set of maximal lan-
guages for F and L(F) the F-language. Then, L(F) = ∪L∈M(F)L.

Proof. Let F be given. Consider w ∈ L(F). Since F �⊆ sub (w) for every F ∈ F,
w is in some language K ∈ L(F). Hence, w is in some maximal language L in
M(F). It follows that L(F) ⊆ ∪L∈M(F)L. Conversely, let w ∈ ∪L∈M(F)L. Then,
w ∈ L for some L ∈ M(F). It follows that for every F ∈ F, F �⊆ sub (w). Thus,
w ∈ L(F).
�

96 D. Genova

Fig. 1. The tree representing L(F) from Example 1

5 Characterizing Formal Languages by Forbidding-
Enforcing Systems

This section presents some characterizations of formal languages by fe-systems.
It begins with the straightforward characterization of local languages.

Proposition 2. L is local if and only if there is F = {{v1}, . . . , {vn}}, such that
L = L(F).

Proof. A language L is local if and only if there exists a finite set of words H =
{v1, . . . , vn} such that L = A∗\A∗HA∗, which holds if and only if no word from L
has a subword from H , i.e., if and only if L = L(F), where F = {{v1}, . . . , {vn}}.

�
The following proposition states that not all languages are f -languages.

Proposition 3. There exists a language that is not a forbidding language.

Proof. Let L = {a, ba}. Observe that the word b is forbidden if and only if {b}
is a forbidder, in which case ba is forbidden. Thus, L is not an f -language.
�
This leads to the conclusion that if a factor (subword) u of a word x from a
language L is such that u �∈ L, then forbidding u leads to forbidding x which
means that L cannot be an f -language. Thus, a finite language is not necessarily
an f -language, but it is an fe-language, as shown later in this section.

The following lemma states that only factorial languages can be f -languages.

Lemma 1. Let F be a forbidding set. Then, L(F) is factorial.

Proof. Let F be given and w ∈ L(F). Let u ∈ sub (w). If F ⊆ sub (u) for some
F ∈ F, then F ⊆ sub (w), which contradicts our assumption. Hence u ∈ L(F)
and L(F) is factorial.
�

Defining Languages by Forbidding-Enforcing Systems 97

The converse question, whether every factorial language is an f -language, is
investigated next. In the case of f -families, it was shown in [8] that even though
every maximal language in an f -family is factorial, not every family of languages
for which the maximal languages are factorial is an f -family.

Remark 4. Every factorial language L can be represented by a directed tree TL

where the labels of the vertices are exactly the words in L.

Given a factorial language L, consider the tree TL obtained from TA∗ as follows.
For each w �∈ L let u be the longest prefix of w, such that u ∈ L and let w = uav
where a ∈ A and u, v ∈ A∗. Then, the tree TL does not contain vertex ua along
with all paths that begin at ua, i.e., the entire branch rooted at ua is removed
from TA∗ . It is easy to see that the labels of the vertices of TL are precisely the
words in L.

Lemma 2. Let L be factorial. Then, L is an f -language.

Proof. Let L be a factorial language. From the tree TL construct F = {{ua} |
u ∈ V (TL), ua �∈ V (TL), a ∈ A}. Then, w ∈ L(F) if and only if x �∈ sub (w) for
all {x} ∈ F if and only if w ∈ V (TL), i.e., w ∈ L. Consequently, L = L(F).
�
The next theorem follows from Lemmas 1 and 2 above.

Theorem 2. A language is factorial if and only if it is an f -language.

Some well-known languages can be characterized by enforcing systems only. Ex-
ample 4 shows that an enforcing set that generates only infinite words, defines
the empty language. Hence, the empty language is an e-language.

Proposition 4. There exists a non-semilinear language that is an e-language.

Proof. Let A = {a} and L = {a2n | n ≥ 0}. Then, the enforcing set E =
{(λ, {a, aa})} ∪ {(a2i+1, {a2i+1}) | i ≥ 1} defines L, i.e., L = L(E).
�
Proposition 5. There exists a non-regular linear language that is an fe-language.

Proof. Let F = {{ba}}, E = {(λ, {a}), (λ, {b})} ∪ {(ai, {ai+1, aibi}) | i ≥ 1} ∪
{(bi, {bi+1, aibi}) | i ≥ 1}. Then, as noted in Example 6, L = {anbn | n ≥ 1} =
L(F, E).
�
Proposition 6. There exists a non-linear context-free language that is an fe-
language.

Proof. Let L1 = {anbn | n ≥ 1} and consider L = L1L1. Then, L = L(F, E)
where F = {{baibia} | i ≥ 1} and E = {(λ, {a, b})} ∪ {(ai, {ai+1, baibi, aibia}) |
i ≥ 1} ∪ {(bi, {bi+1, baibi, aibia}) | i ≥ 1} ∪ {(bjaibi, {bj+1aibi, ajbjaibi}) | j ≥
1, i ≥ 1} ∪ {(aibiaj , {aibiaj+1, aibiajbj}) | j ≥ 1, i ≥ 1}.
�
Proposition 7. There exists a non-context-free language that is an fe-language.

98 D. Genova

Proof. Let F = {{ba}, {ca}, {ac}, {cb}} and E = {(λ, {a, b, c})} ∪ {(ai, {ai+1,
aibici}), (bi, {bi+1, aibici}), (ci, {ci+1, aibici}) | i ≥ 1}. Then, L(F, E) = {anbncn |
n ≥ 1}.
�
Example 2 and Propositions 5, 6 and 7 prove the following statement. Assume
that FIN , REG, LIN , CF , and CS denote the classes of finite, regular, linear,
context-free, and context-sensitive languages respectively.

Theorem 3. For every X ∈ {REG−FIN, LIN−REG, CF −LIN, CS−CF}
there exists L ∈ X such that L is an fe-language.

We conclude this section with an fe-characterization of finite languages.

Proposition 8. Every finite language is an fe-language.

Proof. Let L = {x1, x2, . . . , xn} be a finite language with m = max{|w| | w ∈
L}. Construct F = {{w} | w ∈ Am+1} and E = {(w, {u | u ∈ L and w ∈
sub (u)} ∪ {vw | vw ∈ Am+1 and w ∈ sub (vw)}) | w �∈ L and w ∈ A�m}.
We show that L = L(F, E). Assume that w ∈ L. Obviously, w con F. If there
is a (x, Y) such that x ∈ sub (w), then w ∈ Y . Hence, w sat E. Consequently,
L ⊆ L(F, E). Conversely, if w �∈ L, then either |w| ≥ m + 1 which implies
that w ncon F or |w| ≤ m which implies that there exists an enforcer (w, Y) ∈
E and therefore, w nsat E. In either case, w �∈ L(F, E). Hence, L(F, E) ⊆ L.
Consequently, L = L(F, E).
�
Using the proof of the above proposition, we now construct an fe-system that
defines the non-forbidding language L = {a, ba} from the proof of Proposi-
tion 3. The fe-system (F, E) where F = {{aaa}, {aab}, . . . , {bbb}} and E =
{(λ, {a, ba, aaa}), (b, {ba, bbb}), (aa, {aaa}), (ab, {aba}), (bb, {bba})} is such that
L = L(F, E).

6 Forbidding through Enforcing

The concept of minimal connect introduced below is used to replace forbidders
by enforcers.

Definition 5. Let F be a finite set of words. A word y is called a connect of F
if F ⊆ sub (y). A word x is called a minimal connect of F if x is a connect of F
and for every connect y of F it holds that y ∈ sub (x) implies y = x. The set of
minimal connects of F is denoted by Cmin(F).

Theorem 4. For every forbidding set F there exists an enforcing set E, such
that L(F) = L(E).

Proof. Let F be a forbidding set and a ∈ A be some symbol. Given F ∈ F, consider
Cmin(F) and for every u ∈ Cmin(F) define EFu = {(u, {ua}), (ua, {uaa}), . . . ,
(uan, {uan+1}), . . .}. Let EF = ∪u∈Cmin(F)EFu and E = ∪F∈FEF . If w nsat E,
then there is an enforcer (uai, {uai+1}) which is not satisfied, which implies that

Defining Languages by Forbidding-Enforcing Systems 99

uai ∈ sub(w) and one of its copies in w is not enclosed in uai+1. Hence, u ∈ sub(w)
and since u ∈ Cmin(F) for some F ∈ F, w ncon F. Conversely, if w ncon F there
exists an F ∈ F and u ∈ Cmin(F) such that u ∈ sub(w). Since w is a finite word,
it cannot satisfy the enforcing set EFu . Hence w nsat E.
�
Remark 5. Note that the above result does not necessarily make forbidding sets
obsolete. Even though every forbidding set may be replaced by an enforcing set,
replacing a finite forbidding set with an infinite number of enforcers may be
undesirable.

7 k-colorability Problem

Forbidding-enforcing systems can generate solutions to computational problems.
In [7] a more general, categorical description of the model was presented and a
solution to the k-colorability problem defined by an fe-system in the category of
sets was presented to illustrate information processing capabilities of fe-systems.
This section shows how a solution to this well-known NP-complete problem can
be described by fe-systems defining languages.

The k-colorability problem asks whether given a graph and a finite set of k
colors it is possible to assign one color to each vertex in such a way that adjacent
vertices have distinct colors. Such assignment of colors is called a k-coloring.

Let G = (V, E) be a graph with n vertices, i.e. V = {v1, v2, . . . , vn} and C be
a set of k colors, i.e. C = {c1, c2, . . . , ck}. A k-coloring can be viewed as a word
over the alphabet A = V ∪ C with specific properties.

fe-system construction. A combination of brute enforcing and forbidding is
used to design an fe-system that corresponds to assigning exactly one color to a
vertex. The enforcing set E ={(λ,{vc1, vc2,. . . , vck}) | v ∈ V } ensures that every
vertex is assigned at least one color. The forbidding set F = {{vc, vc′} | v ∈ V
and c, c′ ∈ C with c �= c′} allows only these vertices that are assigned at most
one color. Thus, every word in L(F, E) contains every vertex colored in exactly
one color. Also, no two adjacent vertices should be colored the same. This is
obtained from the forbidding set F′ ={{uc, vc} | {u, v} ∈ E and c ∈ C}.

Following the above notation and construction we have the next result.

Theorem 5. G is k-colorable if and only if L(F ∪F′, E) �= ∅. Furthermore, any
word w ∈ L(F ∪ F′, E) represents exactly one k-coloring of G.

Proof. Assume that G is k-colorable. Then, there exists a k-coloring c. Construct
the word w = v1ci1v2ci2 . . . vncin where cij ∈ C and is the color ci from the color-
ing c which corresponds to vertex vj . Then, by construction of the fe-system w ∈
L(F∪F′, E). Conversely, if the fe-language is not empty, there is w ∈ L(F∪F′, E)
which is a word over A. Since w sat E there is at least one vcj ∈ sub(w) for ev-
ery v ∈ V and some cj ∈ C. Furthermore, no adjacent vertex to v can be
colored by the same color because w con F′ and no subword of w is of the form

100 D. Genova

vci where j �= i since w con F. Observe that vcj may have many copies in w, but
w represents exactly one k-coloring of G.
�

8 Modeling Splicing

In [2,4] the authors show how fe-systems can define fe-families that describe
cutting by an enzyme, recombination, and can model splicing. For details about
the computational model of splicing systems, the reader is referred to [9,10,13,14].
This section shows how fe-systems defining fe-languages can be used to model
these operations.

Cutting by an enzyme and recombination. Let xuvy be a string modeling a
double stranded DNA molecule where uv models the restriction site for some
restriction enzyme, which upon cutting between u and v produces either two
sticky overhangs or two blunt ends. Then, the language L(F), where F = {{uv}}
contains all molecules resulting after the cutting by this enzyme, as well as all
other molecules that do not have the uv restriction site. Consequently, starting
from L(F), as a next step, one can model recombination by the enforcing set
E = {(u, {uv} ∪ {ua | a ∈ A}), (v, {uv} ∪ {av | a ∈ A})}. This contrasts the fe-
families model presented in [2,4] where both overhangs and ligated strands are
present in the fe-family. Another difference is that the above E is finite, whereas
the enforcing set for the fe-families is infinite.

Splicing. Consider the words x1u1v1y1 and x2u2v2y2 and the splicing rule
r = (u1, v1; u2, v2), according to which the two words can be spliced to obtain the
word x1u1v2y2, and by symmetry, the word x2u2v1y1. Observe that the enforcing
set Er = {(u1, {u1v1, u1v2} ∪ {u1a | a ∈ A}), (u2, {u2v1, u2v2} ∪ {u2a | a ∈ A}),
(v1, {u1v1, u2v1} ∪ {av1 | a ∈ A}), (v2, {u1v2, u2v2} ∪ {av2 | a ∈ A})} models
splicing for the splicing rule r and words over the alphabet A. This system is
finite as opposed to the fe-family model which uses infinitely many enforcers to
model one splicing rule.

9 Concluding Remarks

Similar to grammars and automata, forbidding-enforcing systems are structures
that define languages. Unlike grammars and automata where a language is
defined by generating or accepting every word symbol by symbol, forbidding-
enforcing systems define a language by imposing restrictions on its subwords. Use
of forbidding-enforcing systems, in which one fe-system defines a single language
as opposed to a family of languages presents a new way of defining languages.

It was shown that the Chomsky classes of languages have representatives
that can be defined by fe-systems. Characterizations of finite languages, local
languages, and factorial languages by fe-systems were presented. It will be in-
teresting to investigate which other classes of languages can be defined by fe-
systems. Further applications of fe-systems to biomolecular computing should
be investigated both theoretically and experimentally.

Defining Languages by Forbidding-Enforcing Systems 101

Acknowledgement

The author thanks the anonymous referee whose comments and suggestions im-
proved a previous version of this paper. This work has been partially supported
by a UNF Faculty Development Scholarship Grant.

References

1. Cavaliere, M., Jonoska, N.: Forbidding and enforcing in membrane computing.
Natural Computing 2, 215–228 (2003)

2. Ehrenfeucht, A., Hoogeboom, H.J., Rozenberg, G., van Vugt, N.: Forbidding and
enforcing. In: Winfree, E., Gifford, D.K. (eds.) DNA Based Computers V. AMS
DIMACS, Providence, RI, vol. 54, pp. 195–206 (2001)

3. Ehrenfeucht, A., Hoogeboom, H.J., Rozenberg, G., van Vugt, N.: Sequences of
languages in forbidding-enforcing families. Soft Computing 5(2), 121–125 (2001)

4. Ehrenfeucht, A., Rozenberg, G.: Forbidding-enforcing systems. Theoretical Com-
puter Science 292, 611–638 (2003)

5. Franco, G., Jonoska, N.: Forbidding and Enforcing Conditions in DNA Self-
assembly of Graphs. Nanotechnology: Science and Computation, Natural Com-
puting Series, Part I 105–118 (2006)

6. Genova, D.: Forbidding and Enforcing of Formal Languages, Graphs and Partially
Ordered Sets, PhD Thesis, University of South Florida (2007)

7. Genova, D., Jonoska, N.: Defining structures through forbidding and enforcing
constraints. Physica B: Condensed Matter 394(2), 306–310 (2007)

8. Genova, D., Jonoska, N.: Topological Properties of Forbidding-Enforcing Systems.
Journal of Automata, Languages and Combinatorics 11(4), 375–397 (2006)

9. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bull. Math. Biology 49(6), 737–759 (1987)

10. Head, T., Păun, G., Pixton, D.: Language theory and molecular genetics: generative
mechanisms suggested by DNA recombination. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 2, pp. 295–360. Springer, Berlin (1996)

11. Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA
graphs. Journal of Genetic Programming And Evolvable Machines 4(2), 123–138
(2003)

12. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
13. Păun, G., Rozenberg, G., Salomaa, A.: Computing by splicing. Theoretical Com-

puter Science 168, 321–336 (1996)
14. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing, new computing

paradigms. Springer, Heidelberg (1998)
15. van Vugt, N.: Models of Molecular Computing, PhD thesis, Leiden University

(2002)
16. Winfree, E., Yang, X., Seeman, N.C.: Universal Computation via Self-assembly of

DNA: Some Theory and Experiments. In: Landweber, L., Baum, E. (eds.) DNA
computers II. AMS DIMACS series, vol. 44, pp. 191–198 (1998)

	Defining Languages by Forbidding-Enforcing Systems
	Introduction
	Forbidding-Enforcing Systems
	Forbidding Systems, f-languages
	Enforcing Systems, e-languages
	Forbidding-Enforcing Systems, fe-languages

	Basic Properties of Forbidding-Enforcing Systems
	Relationship between f-families and f-languages
	Characterizing Formal Languages by Forbidding-Enforcing Systems
	Forbidding through Enforcing
	k-colorability Problem
	Modeling Splicing
	Concluding Remarks
	References

