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DEFINING NORMAL SUBGROUPS

OF UNIPOTENT ALGEBRAIC GROUPS

A.FAUNTLEROY1

ABSTRACT.  Let  G  be a connected unipotent algebraic group defined

over the perfect field  k.   We show that polynomial generators  X., • • • , x

for the ring  k\G\ can be chosen so that if N  is any connected normal k-

closed subgroup of  G,  then  1(N) can be generated by  codim N p-polyno-

mials in x  , ■ ■ ■ , x     where  p = char k.   Moreover  k\_G/N\ can also be gen-

erated as a polynomial algebra over k by p-polynomials.

Introduction.   These results are essentially an extension of a theorem of

Rosenlicht [4, Theorem l].

We use the notation and conventions of [l] throughout this paper.

Recall that a ^-polynomial in k[T] is a linear form if p = 0 and a polyno-

mial all of whose exponents are powers of p  if p > 0.  A ^-polynomial in

k[x., • • • , x  ] is a sum of p-polynomials in each of the single variables  x

• • • , x  .  A function / £ k[G] will be called additive if f(ab) = f (a) + f(b) for

all closed points  a, b  in  G.

1.  Frattini coordinates.   Let  G  be a unipotent algebraic group.  The Frat-

tini subgroup of  G  is the intersection of all closed subgroups of codimension

one.  We shall denote this group by  Fr(G).

Proposition 1.   // G  is a unipotent algebraic group then  Fr(G) is a closed

characteristic subgroup of G.   If G  is connected and defined over the perfect

field k,   then Fr(G) is connected and defined over k.   Moreover in the con-

nected case  G/Fr(G) has the structure of a vector group (over k  if G  is de-

fined over k) and is the maximal such quotient.

Proof.   The first assertion is immediate.   Let  H C G be a closed subgroup

of  G of codimension one.  Since  G/H ä G  ,  H contains the commutator sub-

group of G  and the group generated by the pth powers of the elements of  G.

It follows that Fr(G) also contains these subgroups.

Thus  G/Fr(G) is connected, commutative and of exponent p  hence by
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[3, Proposition 2] has the structure of a vector group.  If N C G  is any normal

subgroup such that  G/N is isomorphic to  G^  for some integer r,  then con-

sider the natural map G — G/N » Gra  followed by projection LT. onto each

factor,   1' — 1, 2, • • • , r.  Each  LT. is a homomorphism with kernel say  H. and

ft H. = N.   Since  H. has codimension one,   N 3 Fr(G) and  G/N is an image

of  G/Fr(G) which establishes the maximality assertion.

As for rationality and connectedness, let  N be the closed normal sub-

group generated by the commutator subgroup and pth powers of the elements

of  G.   Then  N C Fr(G), N is connected and  G/N has the structure of a vec-

tor group [3, Proposition 2] so N = Fr(G). Since  N is defined over k  so is

G/N [l, 6.8].  This completes the proof.

Now let G be a connected unipotent algebraic group and Fr(G) the Frat-

tini subgroup of G.   If G is defined over the perfect field k then by [4, Corol-

lary 2 of Theorem l], k[G] is   ¿-isomorphic to k[G/Fr(G)] ®k[Fr(G)]. Let

Xj, • '.'■ * x   be additive coordinates for the vector ¿-group G/Fr(G) (cf. [3,

§1]). Then k[G] = k[xv • • • ., xf]  ® k[Fr(G)].  By the proposition Fj = Fr(G)

is again connected and defined over  k  and we may continue this process un-

til we arrive at a complete set of polynomial generators for  £[G].  A set of

polynomial generators x     • • • , x     obtained in this way will be called a set

of Frattini coordinates for  G.

In case  G  itself has the structure of a vector group, these coordinates

have essentially been studied by Rosenlicht [3], [4] and Tits [7, III, 3-3]. In

particular the following proposition is easily deduced from their results.

Proposition 2. Let V be a connected unipotent algebraic group defined

over the perfect field k. Suppose V has the structure of a vector group over

k and x-, • • • , x    are Frattini coordinates for  V.   Then

(i) if W  is any k-closed subgroup of V then ¡(W)  is generated by

codim W  p-polynomials in x., ■• • , *  ;

(ii) the Frattini coordinates of k[V/W] C k[V] are p-polynomials in the

Frattini coordinates of V.

Now let  G  be any connected unipotent group defined over the perfect

field k.   Let  N C Fr(G) = F be a ¿-closed normal subgroup of G.   Then since

G/N =* G/F x F/N we have k[G/N] =* k[G/F] ® k[F/N]. It follows from

(ii) above that if  Fr(F) = e  then a set of Frattini coordinates for G/N may

be taken to be p-polynomials in any fixed set of Frattini coordinates of  G.

Theorem.   Let the connected unipotent algebraic group  G be defined

over the perfect field k.   Let x     ■ ■ ■ ., x     be a fixed set of Frattini coordi-
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nates for G.   Suppose Z   is a closed connected central one dimensional sub-

group of G defined over k.   Then there exists a set of Frattini coordinates

of G/Z  in R = klG/Z] C k[G] which consists of p-polynomials in x     • • • , x  .

Proof.   Let  F0 = G^>F.= Fr(G) D • • • D Fs D e  be the Frattini series of

G.  We argue by induction on the length, s, of the series.  Thus, suppose

s = 1.  If Z C Fj  then G/Z » G/F x F/Z, hence k[G/Z] =* k[G/F] ®k[F/Z].

But by the remarks above,  k[G/Z] has p-polynomials in x,, • • • , x    as Frat-

tini coordinates.

If Z n F.   is finite we distinguish two cases.

Case 1.  Z H F    - e.   Then ZF JF.   is a direct factor of G/F.   and is

not equal to  G/F.   since Z  is contained in a subgroup of codimension one.

Let L D F.   be a connected ¿-closed subgroup of G such that L/F.    is

a complement of ZF./F.   in G/F.   [3, Proposition l]. Then codim L = 1,

hence  L  is normal in G.  If N = L O Z  then NF./F   = e, hence  N C Z nF.

Thus  L O Z = e  and clearly  LZ = G.

Consider the commutative diagram

G/Fj

■ZFj/Fj xL/Fj - e

where   i is inclusion,   77 the quotient morphism,  m and  m    multiplication,

and v = n\z x w|, .

We obtain a commutative diagram of Lie algebras

di ca^\ drr
£(Fj) £(G) £(G/Fj) -0

(KerizVA^e^F^-^Z) 0 £(L)-^» ¿(ZF/Fj) ©£(L/Fj)

Since a and dm are surjective so is dm. Thus dm is an isomorphism

and 772 is separable. It follows from [l, Chapter II, 6.1] that m: Z x L —► G

is an isomorphism.

Now choose new Frattini coordinates  y ,,•••., y , x  ,,,••■, x    such

that V(yj, • •• , y ) = F,   and  V(yj) = L.   Then y., • • ■ , y   ate p-polynomials

1' and k[G/Z] = ¿[L] = ¿[y,, •".yP.*,+i. •■•'V

Case 2. A = Z O F ^ e.   Then in  G/A we have the conditions of Case 1.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NORMAL SUBGROUPS OF UNIPOTENT ALGEBRAIC GROUPS 17

Hence  k[G/Z] = ¿[G/A/Z/A] C k[G/A] is generated by p-polynomials in any

set of Frattini coordinates of  G/A.  But we may assume these last are p-poly-

nomials in x., • • • , x  .  Hence  k[G/Z] has a set of Frattini coordinates con-

sisting of p-polynomials in x., • • • , x     and the case  s = 1   is done.

If s > 1  we form the chain

G D F'^F^F^D F2D ■ ■ O F¡ DZ De

where  F'./Z  is the z'th term in the Frattini series of  G/Z    and  F,/Z  has
7 i

the structure of a vector group over  k.   Each  F.   may be taken to be connect-

ed, closed and defined over ¿.

Suppose l>2. Then F. 3 Z. By induction k[F./Z] C ¿[F,] has a set

of Frattini coordinates which consists of p-polynomials in x ,,-■•, x . It

then follows as before from the isomorphism k[G/Z] « k[G/F,] ® k[F./Z]

that G/Z has the desired property.

If  I = 1   then  F./Z  has the structure of a vector group.  But then  F,C

F.   and if  ZCF.   we are done arguing as above.   If not,  ZDF.   is finite

and  F. —» F./Z flF.   is an isogeny whose image is a vector group.  Hence

F.   itself has the structure of a vector group so s = 1  a contradiction.   This

completes the proof.

Corollary 1.   Let  G  be a connected unipotent group defined over the per-

fect field k.   Let N  be a connected closed normal subgroup of G also de-

fined over k.   Then the Frattini coordinates of G/N  in  ¿[G/A/] can be taken

to be p-polynomials in any fixed set of Frattini coordinates of G.

Proof.   Any connected closed subgroup normal in  G  and defined over  k

contains a central connected subgroup of dimension one defined over  k by

[5]-  The corollary now follows by induction on the dimension of  N.

Corollary 2.  Suppose G and k    are as above.   Then every normal closed

connected subgroup N of G which is defined over k can be defined by d =

codim N p-polynomials in x     • • • t x .   Moreover these may be chosen so as

to generate the ideal I (N).

Proof.  We have  G/N x N  a* G and by Corollary  I,  k[G/N]  is generated

by p-polynomials in a fixed set of Frattini coordinates for G.   Say ¿[G/A/] =

Wl> * • * 1 fji C ¿[G] where d = codim N and the /., i = 1, • : • ., d,  ate p-poly-

nomials in Xj, • ■ • ., x  .  Then each /. is constant on the fibres of 77: G~*G/N

and vanishes on  N.

Since  k[G/N] — k[G/N]  ® k[N] = ¿[G] is a polynomial extension by [4,
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Corollary 1 of Theorem l] the ideal (/,,•••, /j)¿[G] is prime in ¿[G]. Hence

/(N) = (/j, ••• , fd)k[Gl

Remarks. 1. Corollary 2 is false without the assumption of normality on

N C G.   Consider the following example suggested by Rosenlicht.

Let  G  be the group of 3 x 3  upper triangular unipotent matrices

<     0    1    y    :   x, y, z £ K, chat K 4 2 \

(Lo   0    lj j

Let x, y and z be the obvious Frattini coordinates.  Then

¿72"
t £ K'

|p    t     zV21

is a connected subgroup of G.   The ideal I (N) = (x - y, z - x /2) is clearly

not generated by two p-polynomials.

Moreover if  H C G  is the subgroup defined by x - y = 0 and  N C H is

defined by x^ - x = z - x  /2 = 0,  then A/  is a finite normal subgroup of  H

which cannot be defined by two p-polynomials in the Frattini coordinates  x,

z of H.   Thus the assumption of connectivity is also necessary in Corollary 2.

2. If  G  and  k ate as in Theorem 1 and  H  is any ¿-closed subgroup of

codimension one (connected or not), then H can be defined by a single p-poly-

nomial in any set of Frattini coordinates.  More generally, any ¿-closed sub-

group of G  containing the Frattini subgroup of G  can be defined by p-poly-

nomials.  Simply note that  codimc N = codimr ,p .„ N/Fr(G) and apply Prop-

osition 2(i) and (ii).

3. An interesting application of Frattini coordinates is the following

theorem of Sullivan.

Theorem [6, Theorem 4]. A connected unipotent algebraic group defined

over a field of characteristic p > 0  is conservative if and only if it has di-

mension one.

Proof.   Recall that an algebraic group is conservative if the following

condition holds.

Let  W be the group of all algebraic group automorphisms of  G.   If / £

K[G] then   V, = {w^f): w £W\ is finite dimensional.

By [2, §l] this is equivalent to saying that W may be given the structure

of an algebraic group in such a way that the natural map W x G —»G is a mor-

phism of varieties.

Now let dim G > 1   and  K[C] = K[xj, • • • , x^] where X., i = 1, •• • , n,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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are Frattini coordinates for  G.   Then it is easily checked  (cf.  [4, Corollary

2, p. 101]) that the assignments

x.— x., ¿ = 1, ... , «_1,

xn~" xn+ P(x,)i        P  a p-polynomial in x

give an automorphism of  G.   In particular  Vx     is not finite dimensional.   It is

well known that  Aut ., (G ) = G     the multiplicative group.
Alg group      a 777 r £>       r

4. If char K = 0, then with respect to the isomorphism of G with A"

given by a fixed set of Frattini coordinates, every normal subgroup is a lin-

ear subvariety.

5. The converse of Corollary   2  is  easily  seen to be false.   If G  is the

group of Remark 1 above and  H is the subgroup y = z = 0,  it is easily seen

that H is not normal in G.
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