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ABSTRACT

Tumour hypoxia is increasingly recognized as a major deleterious factor in cancer therapies, as it compromises treatment

and drives malignant progression. This review seeks to clarify the oxygen levels that are pertinent to this issue. It is argued

that normoxia (20% oxygen) is an extremely poor comparator for “physoxia”, i.e. the much lower levels of oxygen

universally found in normal tissues, which averages about 5% oxygen, and ranges from about 3% to 7.4%. Importantly, it

should be recognized that the median oxygenation in untreated tumours is significantly much lower, falling between

approximately 0.3% and 4.2% oxygen, with most tumours exhibiting median oxygen levels ,2%. This is partially

dependent on the tissue of origin, and it is notable that many prostate and pancreatic tumours are profoundly hypoxic. In

addition, therapy can induce even further, often unrecognized, changes in tumour oxygenation that may vary

longitudinally, increasing or decreasing during treatment in ways that are not always predictable. Studies that fail to

take cognizance of the actual physiological levels of oxygen in tissues (approximately 5%) and tumours (approximately

1%) may fail to identify the real circumstances driving tumour response to treatment and/or malignant progression. This

can be of particular importance in genetic studies in vitro when comparison to human tumours is required.

In the 1950s, tumour hypoxia was barely acknowledged, as
evidenced by the paucity of publications on this subject;
this is in contrast to the 10 000 articles that have been
published over the last decade (Figure 1). However, since
the seminal publications of Gray et al,1,2 the radiobiology
and radiotherapy (RT) communities have acknowledged
the importance that oxygen plays to RT responses. There is
abundant and convincing evidence that RT is more effec-
tive against better-oxygenated cells, whereas hypoxic cells
are significantly more radioresistant, with a marked fall in
sensitivity below 2.6% oxygen (20mmHg), which is par-
ticularly precipitate below 0.5% oxygen (3mmHg) (Figure 2).

Prior to 1990, information on hypoxiawas primarily obtained
from excised rodent tumours treated withmarkers of hypoxia
and/or vascular perfusion.4 When the Eppendorf electrode
became available, it allowed direct oxygen measurement in
situ and led to many studies which showed conclusively that
oxygen levels were severely reduced in human tumours.5 The
burgeoning interest in hypoxia was further fuelled by the
critical finding that hypoxia selects for stress-resistant, more
malignant tumour cells.6–8 This implied that tumour cells that
survive hypoxic stress were likely to be a significant source of
viable clonogens that can repopulate tumours with more
malignant/metastatic cells. Unfortunately, most treatment

protocols are less effective against hypoxic cells, which are
resistant not only to RT but also to standard cytotoxic
chemotherapy (CCT);9,10 although it has been reported
recently that, in a few situations, hypoxia may enhance the
effects of CCT.11

DEFINING TUMOUR HYPOXIA

Normoxia and physoxia
Despite the many studies on tumour hypoxia, there is
considerable confusion in the use of the terms “normoxia”
and “hypoxia”. Oxygenation measurements in normal tis-
sues show that they exhibit distinct normal ranges, which
vary between tissues (Table 1). However, “normoxia” is almost
universally used to describe the “normal” oxygen levels in tissue
culture flasks, i.e. about 20–21% oxygen (160mmHg). Al-
though this is not exact, as it is dependent on altitude and
added CO2, for most situations, 20% is a good approximation.
Despite the widespread usage of “normoxia”, this is far from an
accurate comparator for peripheral tissue oxygenation. Even in
lung alveoli, the oxygen level is reduced to about 14.5% oxygen
(110mmHg) by the presence of water vapour and expired
CO2.

13 It drops further in arterial blood and, by the time it
reaches peripheral tissues, themedian oxygen levels range from
3.4% to 6.8% with an average of about 6.1% (Table 2).13
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This clearly highlights the anomaly of the term “normoxia”. Since
normal peripheral tissues are exposed to oxygen levels about 75%
lower than inspired air, it is proposed that 5% oxygen (38mmHg)
is a more accurate approximation of tissue oxygenation and that
this should be recognized as “physoxia” against which other ex-
perimental conditions should be compared. Researchers do not
accept such an inaccurate value for other parameters such as pH,
glucose etc., yet, surprisingly, they ignore the importance of
controlling for oxygen, which has been known for many years to
be toxic.34 It should be noted that equilibration of culture media
to the oxygen level in a specific gassing mixture can take up to
3 h;35 this can be avoided if the gas mixture is in direct contact
with the cell monolayer, which can be achieved if cells are grown
in oxygen-permeable culture flasks (www.coylab.com). Since %
oxygen is more physiologically meaningful than mmHg, it is
proposed that% oxygen is a better unit for reporting oxygen levels
as it more adequately illustrates the relatively low, but clearly
normal, oxygen levels in many tissues; it also better highlights the
particularly low levels of oxygen found in tumours. (Note: the SI
unit for gas pressure is kpascal; fortuitously 100% oxygen is
equivalent to 101.3 kpascals, so these units are numerically almost
equivalent.)

The lower limit of physoxia is about 3% oxygen (23mmHg)
(Table 1). Homeostasis maintains physiological parameters
within tight limits with individual tissues having preferred
median oxygen levels (Table 2; see also Carreau et al13). This var-
iation suggests that cells of different origins have different oxygen
sensitivities, and normal tissues are also known to have a range of
tolerances to reducing oxygen. Brain tissue is particularly sensitive
and can only survive about 3min without adequate oxygenation,
whereas other tissues are more tolerant, e.g. kidney and liver
(15–20min), skeletal muscle (60–90min), vascular smoothmuscle
(24–72h) and hair and nails (several days).36

Physiological hypoxia
“Physiological hypoxia” can then be defined as the oxygen level at
which tissues respond to maintain their preferred oxygen level.
This can be by physiological means, e.g. vasodilation, increasing
blood flow, and/or upregulation of hypoxia response genes.12

Since physoxia varies for individual tissues, they are likely to have
different hypoxic trigger points below which this occurs. In
normal tissues, this will presumably be transitory but sufficient to
return the tissue to its preferred oxygen level. However, since nor-
mal tissues are ordinarilymaintained at 3–7%oxygen, physiological
hypoxia is likely to be in the range 2–6% oxygen. This suggests that
hypoxia response elements may well upregulate at different oxygen
levels in different tissues. Currently, it is difficult to envisage how
“physiological hypoxia” can be measured since homeostasis should
work to reverse it almost immediately, so any manifestation would
be transitory. This will be maintained by a number of changes,
including increases in perfusion and temporary stabilization of
hypoxia inducible factor (HIF), while readjustments are made.37

When HIF1a and HIF1b expression was measured in cultured
HeLa cells from 0% to 20% oxygen, a maximal response was found
at 0.5% oxygen with a half maximal expression at 1.5–2% oxygen;
expression was significantly low above 4% oxygen,38 confirming
that HIF1 is active in the required range to control physiological
responses to oxygen deprivation (discussed further below).

Pathological hypoxia
Having identified the approximate range of “physiological hyp-
oxia”, this helps to delineate the oxygen levels which are found in
pathology. Indeed it begs the question, why in pathological tissues
do the homeostatic mechanisms not respond effectively to reverse
the falling oxygen levels? In ischaemic disease, which can be either
chronic (e.g. in diabetes, reduced lung function etc.) or acute (e.g.
stroke, coronary artery occlusion etc.), re-establishment of ho-
meostasis may not be possible owing to the loss/occlusion/
reduced flow of vessels feeding the tissue in question. However, in
tumours there is often enhanced angiogenesis; yet the oxygen
levels (even in untreated tumours) are significantly lower, ranging
from 0.3% to 4.2% oxygen (2–32mmHg), with almost all falling
below 2% (Table 2). It is generally recognized that the tumour
vasculature is chaotic and is composed of leaky vessels with blind
ends, shunts and a tendency to collapse.39 Clearly, the vasculature
fails miserably to maintain the oxygen levels, which are well below
the adjacent normal tissues (Table 2), despite evidence in many
situations that HIF1 is up-regulated.40

It is clear, therefore, that tumours are well adapted to grow and ex-
pand in this persistently oxygen-depleted tumour micro-environment

Figure 1. The number of publications on tumour hypoxia as

listed in PubMed, over the previous six decades. [The numbers

for 1948–52 (3) and 1953–62 (20) are too small to be visible.]

Figure 2. The relation between tissue oxygenation and

radiosensitivity. Schematic representation of the radiosensitiv-

ity of tissue summarising the data from many sources.

(Adapted from Hall and Giaccia3.) *Estimated approximate

mean/median from published data (summarized in Table 2).
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(TME). In defining “pathological hypoxia”, there are no absolutes;
however, the reality is that all tumours tend to have median tu-
mour oxygen levels ,2% and, within that estimation, individual
measurements can vary from about 6% (very rarely) down to zero
with a significantly marked skewing towards the lower end of
this range; frequently, most values are well below 1.3%
oxygen (10 mmHg), especially in the more hypoxic tumours.
Many examples of this non-gaussian distribution are found
in the publications cited in Table 2.

In tumours, it appears that the homeostatic processes are dis-
rupted for two main reasons. Firstly, the vasculature is of very
poor quality and cannot adequately and reliably provide oxygen to
the growing tumour. Indeed, if putative tumour cells were sen-
sitive to low oxygen they would die as the oxygen levels are in-
sufficient. This leads to the other main reason: clearly, the tumour
cells do not die, showing that a sizeable proportion of them are
significantly hypoxia tolerant. In part, this may be attributed to
their switch to glycolysis for the supply of most of their energy
requirements, a feature of tumours that was identified many years
ago by Warburg.41 In addition, exposure to prolonged patho-
logical hypoxia will select for hypoxia-tolerant tumour cells that
are stress resistant and more malignant (see below). It is difficult
to be precise about the exact level of oxygen at which this occurs;
however, it is almost certainly,1% oxygen (7.5mmHg) and may
well be significantly lower. It is noteworthy how well tumour cells
adapt to significantly lowoxygen levels. In one study, hypoxia only
caused death of tumour cells when oxygen levels were ,0.01%
(0.075mmHg) for more than 24 h.42 In our studies, a proportion

of LNCaP tumour cells survived exposure in vitro to 48 h or longer
of 0.1% oxygen.43 More recently, we have shown that the median
oxygen level of bicalutamide-treated LNCaP prostate xenografts
remained below 0.1% oxygen for more than 10 days.44 Overall,
survival in this extreme stress will drive selection for malignant
phenotypes that are governed by a Darwinian selection process.45

Variability in tumour oxygenation
Tumour oxygenation is normally reported as a median value;
however, there is significant heterogeneity within individual
tumours.5 In addition, microregional oxygenation is unstable,
and oxygen levels fluctuate within the tumour depending on the
functionality and proximity of local blood vessels.46 Indeed, it
has been shown in rat tumours that some of the variation in
oxygenation can be attributed to changes in red cell flux.47 The
“better-oxygenated” tumour cells around functioning capillaries
will receive some oxygen, although it is rarely as much as that
received by normal cells (Table 2). However, it is sufficient to
allow cell division and tumour growth, which is almost certainly
boosted by the enhanced level of glycolysis mentioned above.41

Indeed, it may also be facilitated by an associated reduction in
mitochondrial activity.48 As the cells divide and move away from
the capillaries, they receive less oxygen and the more distal cells
are chronically hypoxic;49 eventually, the cells die and the tissue
becomes necrotic. In histological sections, the viable cells are often
seen as “cords” of actively growing cells around perfused
blood vessels up to about 150mm, although this distance is
another variable which is variously quoted to range from 70
to 200mm.2,47,50,51 The variability is probably related to two

Table 1. Approximate levels of oxygen in normal tissues and tumours

mmHg % Oxygena Comment

760 100.0 Standard atmospheric pressure

160 21.0 Oxygen in air at normal atmospheric pressure

100 13.5 Inspired oxygen pO2 in alveoli; oxygen level affected by in/outflow of gases and water vapour

70 9.5 Arterial blood oxygen concentration

50 6.5 Approximate pO2 at venous end of circulation12

Suggested definitions

38 5.0
Physoxia: physiological oxygen level in peripheral tissues with an average of approximately 6%
(ranging from approximately 7.5% to 4% depending on the tissue). For experimental studies, 5% is
the proposed compromise since this is often used

15 2.0
Physiological hypoxiab—i.e. the lower level at which normal hypoxic responses are elicited (range:
lower limit approximately 1%; upper limit possibly #5%)

8 1.0
Pathological hypoxiac: shows persistence of poor oxygenation suggesting disruption to normal
homeostasis. Below this level pathological hypoxia applies

3 0.4
Radiobiological hypoxia: the oxygen level at which the cytotoxic effect of radiation is half maximal—
illustrated in Figure 2

aIt is impossible to put exact figures on tissue levels. The values provided are a guide derived from several sources (see also Table 2).
bNormal physiological responses to hypoxia occur above about 15 mmHg (2% oxygen). Normal tissues should not get below this since homeostasis
tends to return oxygen levels to physoxia. The exact oxygen level for the upregulation of hypoxia response genes is not known; it may vary between
different tissue/cell types since normal tissues have different median oxygen levels.
cThe presence of pathological hypoxia indicates that the tissue has not been able to revert to physoxia. In normal tissues, persistence of low oxygen
will cause tissue necrosis, which can have significant functional consequences. In tumours, this can also happen. Since the tumour is an abnormal
growth, loss of tissue through necrosis has no known functional significance. However, hypoxia-resistant tumour cells will initially become quiescent;
eventually, there will be selection for hypoxia-tolerant more malignant tumour cells.
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main factors: (i) the oxygen requirement of a particular tu-
mour cell type and (ii) its hypoxia tolerance. The more
metabolically active the cells, the smaller the tumour cords
will be. Once the cells become pathologically hypoxic, the
proportion of cells in this fraction will depend on their

hypoxia tolerance. The more tolerant they are, the longer they
will remain quiescent, yet still viable, resulting in a proportion-
ately more hypoxic tumour with a larger hypoxic fraction. Con-
versely, hypoxia-sensitive tumour cells will die more quickly, so the
hypoxic fraction will be smaller.

Table 2. Summary of reported values of the partial pressure of oxygen (pO2) in human tumours and related normal tissues

Tumour
type

n
Median
tumour
pO2

Median
% oxygen

n
Median

normal tissue
pO2

Median
% oxygen

Fold pO2

decreasea
Reference

Brain (6) 104 13.0 1.7 104 26.0 3.4 2.0 5

Head and neck
cancer (13)

592 10.0 1.3 ND 5.9 4.5 5

30 12.2 1.6 14 40.0 5.3 3.3 14

23 14.7 1.9 30 43.8 5.8 3.0 15

65 14.6 1.9 65 51.2 6.7 3.5 16

Lung cancer
6 14.3 1.9 ND 5.6 3.0 17

20 16.6 2.2 42.8 5.6 2.6 18

Breast cancer
(10)

212 10.0 1.3 212 52.0 6.8 5.2 5,19

Cervical cancer
(12)

730 9.0 1.2 5

48 42.0 5.5 4.7 20

Liver 4 6.0 0.8 4 30.0 3.9 5.0 21,22

Pancreatic
cancer

7 2.7 0.4 7 51.6 6.8 19.1 23

1 2.0 0.3 22.7 24

Prostate cancer

59 2.4 0.3 59 30.0 3.9 12.5b 25

55 4.5 0.6 ND 6.7b 26

10 9.4 1.2 2 26.2 3.4 2.8c 27

Vulval cancer

29 11.0 1.4 ND 28

15 13.0 1.7 ND 29

19 11.0 1.4 ND 29

20 10.0 1.3 ND 30

Melanoma 18 11.6 1.5 20 40.5 5.3 3.5 31

Renal cell
carcinoma

3 10.0 1.3 3 37.6 4.9 3.8 32

Rectal
carcinoma

14 32.0 4.2 52.0 6.8 1.6 21,22

15 19.0 2.5 52.0 6.8 2.7 33

Sarcoma (14) 283 14.0 1.8 283 51.0 6.7 3.6 5

Averages or
total

2257 10.27 1.4 685 45.8 6.0 4.6

Range of
medians

2.0–32.0 0.3–4.2 26.0–51.6 3.4–6.8

n, number of patients; ND, not determined.
The data included in the table are primarily a summary from a meta-analysis carried out by Vaupel et al.5 The number of studies included for each
tumour type is indicated by the number in the “tumour type” column. Other data are from single studies, as referenced. The final “average” values for
tumour and normal tissue oxygenation are indicative only; they are provided to illustrate the disparity between the two values. The range is
considerable and reflects the different tissue origin of the tumours; despite this, there is very limited overlap with the normal tissue data. (The averages
were calculated adjusting for the number of values in each cohort.)
aFold reduction of tumour vs normal tissue is based on all the data presented in the table (except prostate; see further notes).
bFold reduction calculated on contemporaneous measurements in the psoas muscle.
cData from a pilot study that included values from the “normal” prostate of two bladder cancer patients.
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In addition, since the blood vessels are inadequate and the
lymphatic drainage is nearly non-existent, the interstitial pres-
sure fluctuates, causing intermittent vascular collapse. The cells
around a collapsed blood vessel will become “acutely hypoxic”;
how long this lasts can vary but it has been shown in animal
tumours to range from 20min to several hours.52,53 Clearly, this
is a dynamic situation and again may be much longer/shorter
than the figures quoted since the figures relate to the times
selected in the published studies (reviewed by Bayer and
Vaupel54). Cells in this compartment (if they do not die) are still
likely to be in cycle, especially if the acute hypoxia is short. They
will be capable of repopulating the tumour more quickly than
the “chronically hypoxic” quiescent cells. However, they will be
protected from RT (owing to lack of oxygen) or CCT (owing to
lack of delivery), if the vessels are closed during the treatment
exposure period. There is some evidence to suggest that it is the
acutely hypoxic cells that are more likely to contribute to ma-
lignant progression.54–56

Variations in tumour oxygenation readings are therefore to be
expected; indeed, individual readings do vary across a tumour,
albeit at oxygen levels that are mainly in the pathological
range.46 In clinical studies, median levels in different tumour
types from different studies are often, though not always, similar
(Table 2). This gives confidence that the measurements are real
and the medians, although based on a significant spread of in-
dividual readings, do provide a genuine indication of the median
oxygenation in the tumour mass. In LNCaP xenografts, we have
found that the median oxygen level in vehicle-treated tumours is
significantly reproducible (discussed below).44 In humans, it has
been shown that the median oxygen level in normal breast tissue
was remarkably constant irrespective of the level of haemoglobin
in the blood. This was in contrast to breast tumours, which
showed both a markedly lower level of pO2 than the normal
tissue and also a fall, in this already low level, as the haemo-
globin concentration decreased.57

Tumour hypoxia and malignant progression
Not unsurprisingly, it is now clear that hypoxia causes a multi-
tude of genetic changes predominantly, but not exclusively,
mediated through HIF1 and HIF2.40 As discussed above, in
normal cells, HIF1 expression is involved in maintaining tissue
oxygenation within normal limits. Its response is designed to be
almost instantaneous since the active transcription factor HIF1
is composed of the constitutively expressed HIF1b and the
unstable protein HIF1a. The latter is constantly produced and
broken down, thereby keeping its level significantly low in phys-
oxic cells. As soon as the oxygen level falls, the removal of HIF1a
is inhibited allowing the formation of the HIF1 complex; this
immediately precipitates a plethora of changes, which in normal
cells elicits a return to physoxic conditions.37,58 However, in
tumours, HIF1 expression often persists irrespective of the oxygen
level; this suggests that there is an adaptive response in tumour
cells that makes them much less dependent on oxygen. In some
tumour cells, this can be a constitutive change in HIF expression,
and, in others, it is caused by a genetic change to one or more of
the complex array of proteins that closely control HIF expression
in normal cells.37,58 This establishes a very different phenotype
from normal (physoxic) cells. Advantageously, the adapted

tumour cells acquire a much reduced requirement for oxygen;
this leads to a markedly improved ability to survive in hypoxic
conditions that is associated with their ability to use glycolysis
to provide for their energy needs.41,48

The switch to a HIF1-regulated phenotype promotes selection for
hundreds of genes, many of which are associated with a more
malignant phenotype. For example, there is a switch to a more
angiogenic phenotype with upregulation of genes, such as vas-
cular endothelial growth factor (VEGF) and interleukin 8 (IL8),
whereas angiogenesis inhibitors are downregulated, e.g. angio-
statin and endostatin. Other genes/pathways implicated in this
hypoxic response include nuclear factor k B, activator protein-1,
mammalian target of rapamycin kinase and the unfolded protein
response.59–61 Although these genes/pathways are activated in-
dependently, indicating redundancy in oxygen-sensitive path-
ways, there is also evidence that they can respond to hypoxia in an
integrated manner.62

Early studies have shown that hypoxia selected for cells with
defects in apoptosis.6 Further reports have confirmed that
hypoxia can impose a selection pressure that allows clonal var-
iant expansion in vitro43,63,64 and in vivo.55 Studies in our lab-
oratory showed that mice bearing LNCaP xenografts exposed to
bicalutamide-induced hypoxia had increased metastasis to the
lungs; this correlated with an increase in Bcl2 and reduction in
Bax.44 Gene amplification has also been reported in rodent tu-
mour cells exposed ex vivo or in vivo to hypoxia; this was as-
sociated with an increase in metastases.65,66 In both tissue
culture and animal models, acute hypoxia/reoxygenation have
been linked to the induction of DNA strand breaks and clearly, if
these breaks are not repaired, they will result in further muta-
tions. Indeed, there is considerable evidence that DNA repair
processes in tumours are also modified by hypoxia and that this
is related to increases in genetic instability.67

Other studies have shown that hypoxia can increase malignant
progression/metastasis by upregulating metastasis-related genes,
such as osteopontin, lysyl oxidase, CXCR4, IL8 and VEGF and
many others, primarily through the stabilization of HIF1.68–70

This may also be associated with an increase in MDM2, which is
an inhibitor of p53, and in vivo this leads to apoptosis resistance
and increased metastasis formation.71,72 Recently, it has been
shown that radiation treatment can also select for tumour cells
that overexpress HIF1. Following irradiation, in vivo HIF1-
overexpressing cells relocate towards the tumour blood vessels;
inhibition of HIF1 blocks this effect and also reduces regrowth of
the tumour.73

It is impossible to discuss all of the genetic changes reported in
response to hypoxia (for more detailed reviews see 59,74–76).
However, there is one issue that needs comment. Genetic changes
caused by hypoxia are often measured in vitro and compared with
“normoxia”. This is most frequently described, or presumed if
undefined, as air containing 5%CO2 (i.e. approximately 20%O2);
surprisingly, it is rare to find any comment about the validity of
this assumption. However, as discussed above, it would be more
relevant to normal tissue if control cells were maintained in
physoxia, i.e. 5% O2, and compared with physiological hypoxia
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(1–3%) and pathological hypoxia (0.5–0.1%). (These figures are
given as ranges, as the oxygen level pertinent to a particular in-
vestigation will depend on the origin of the tumour and normal
tissue of interest—see Table 2 for relevant values.) However, ox-
ygen levels are infrequently taken into account in genetic studies
in vitro, although it is likely to be critical to clearly defining and
comparing what occurs in whole tissues or tumours.

The lack of correlation between in vitro cells and solid tumours is
confirmed in a recent study that identified hundreds of androgen
receptor binding sites (ARBSs) in human prostate tumour bi-
opsies. The majority of these ARBSs were not identified in LNCaP
prostate tumour cells grown in vitro; however, many were found
in the same cells grown as xenografts in androgen-deprived
(castrated) mice. A 16-gene signature set was identified from the
human biopsies that outperformed a larger signature derived
from cultured cells; it was also identified in the xenografted
LNCaP tumours but not in LNCaP cells grown in vitro, indicating
that the TME has a major influence in the control of androgen
receptor signalling in prostate tumours.77 This again emphasizes
that caution should be used when comparing data from in vitro
studies, especially when cells are grown in “normoxia”.

Oxygen homeostasis in the tumour
microenvironment and response to treatment
Why do homeostatic mechanisms not respond to restore oxygen
homeostasis in tumours? It is clear that angiogenesis is stimulated,
but the vasculature formed is insufficient to maintain oxygen at
physoxic levels despite extensive capillary formation in many
tumours. If, in response to a prolonged hypoxic stress, the tumour
cells adapt/mutate to produce even more amplified levels of pro-
angiogenic factors, then they will provide the tumour with
a survival advantage. Once the pro-angiogenic factors get to
critical levels, then the vasculature will improve (possibly nor-
malize)78 and the tumour will regrow. Unfortunately, when this
happens, it is likely to be repopulated with pro-angiogenic,
hypoxia-tolerant, more malignant tumour cells.

This is exactly what happened when mice bearing LNCaP
tumours were treated daily with bicalutamide, a drug widely
used in locally advanced prostate cancer. Untreated LNCaP
xenografts were poorly oxygenated (0.8% oxygen; 6mmHg); this
was similar to oxygen levels found in clinical studies (0.9%
oxygen, 7mmHg; Table 2). When mice were treated daily with
bicalutamide for 28 days, the oxygen level dropped precipitately
over 1–3 days to #0.1% oxygen; this profound hypoxia was
maintained for more than 10 days. However, during the next 10
days, oxygen levels increased, returning to almost pre-treatment
levels. When tumours were grown in vivo in window chambers,
a marked loss of blood vessels was seen in the first 14 days of
bicalutamide treatment followed by an angiogenic burst. This
distinctive biphasic response was attributed to a small fall, and
then a larger increase, in pro-angiogenic factors, including VEGF
and most markedly IL8. Clearly, the tumour cells can survive
exposure to the profound hypoxic insult and, despite the an-
drogen blockade, growth inhibitionwas eventually reversed by the
production of sufficient pro-angiogenic factors to stimulate
neovascularization. The tumour cells were clearly able to switch
use of their limited energy supply to synthesize these critical

factors. After 28 days of treatment, excised tumour cells were
more invasive and more resistant to docetaxel than tumour cells
excised from a vehicle-treated mouse. In addition, mice treated
with bicalutamide had a marked increase in metastatic spread to
the lungs, although this could be blocked successfully by treat-
ment on Day 7 with a single dose of banoxantrone (AQ4N),
a prodrug that specifically targets hypoxic cells.44

The initial antivascular effect of the anti-androgen bicalutamide is
not widely recognized, although previous studies, mostly using
castrationmodels, have provided much evidence that it is likely to
occur (discussed in 44). Our studies showed that prostate tumour
cells are very hypoxia tolerant. In other tumour types, this may
vary somewhat; however, it should be noted that pancreatic tu-
mour cells may be particularly hypoxia tolerant because they
survive oxygen levels$19-fold lower than those found in normal
pancreatic tissue (Table 2).23 When patient-derived xenografts
were established orthotopically in nude mice, the extent of hyp-
oxia, measured using the hypoxic marker EF5, predicted for ag-
gressive growth and spontaneous metastasis.79 Human pancreatic
tumours are particularly treatment resistant, a characteristic that
has been attributed to their extensive stroma.80 It is tempting to
speculate that treatment resistance may also result from the se-
lection for cells that have the ability to survive oxygen levels much
lower than those found in the normal pancreas and which, con-
sequently, have a particularly malignant phenotype.

If exposure to drugs which cause hypoxia can select for hypoxia-
tolerant/more malignant tumour cells, it is possible that any
treatment that causes increased and prolonged hypoxia can do
the same thing. This may be the foremost reason why vascular
targeting drugs, used as single agents, are not as successful as
originally expected. Indeed, considerable redundancy in angio-
genic pathways has been observed and revascularization has also
been found after initial early antivascular responses (for review
see 81). Most anticancer treatments either (i) target blood vessels
directly or (ii) target the tumour cells that support the func-
tioning, however inadequately, of the tumour vasculature.
Therefore, it is possible that many treatments cause early (often
unrecognized) antivascular effects and an associated increase in
hypoxia. Since the oxygen levels in most tumours are already in
the pathological range, this may well result in a critical hypoxic
insult.

We have shown this in PC3 prostate tumours with the cytotoxic
drug docetaxel, which caused an early antiangiogenic effect that
was further potentiated with dexamethasone. This may explain
why there is a short-term (although not long-term) efficacy of
this combination in patients with metastatic prostate cancer.82

As discussed above, the antiandrogen bicalutamide has a similar
initial and profound effect on tumour vasculature, an effect that
we have also found with other mechanistically different anti-
tumour drugs (our unpublished data). However, tumours can
adapt to this hypoxic insult and they recover with a more pro-
angiogenic, and potentially malignant, phenotype.44,83,84 This
problem may be overcome in part, at least, by combination with
other CCT. Hypoxia-activated prodrugs (HAPs) (discussed be-
low) offer an additional approach, since they specifically target
hypoxic cells. Clearly, a greater understanding of longitudinal
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changes in tumour oxygenation induced by current therapies is
required, to more effectively schedule drug combinations, in-
cluding HAPs.

THE IMPORTANCE OF TUMOUR HYPOXIA ON
SURVIVAL OUTCOMES FOLLOWING
CANCER THERAPY
In the last 20 years, evidence has shown that median oxygen
levels vary between tumour types (Table 2), and variability is
found even within the same histological group.5 There is now
considerable clinical evidence that tumours with a higher pro-
portion of hypoxic cells have a poor prognosis (reviewed by
Vaupel et al5). This was found even in patients treated by sur-
gical excision, where all of the hypoxic cells would, at least in
theory, be removed.85,86 In assessing the data summarized in
Table 2, it should be noted that general anaesthesia can improve
tumour oxygenation and potentially cause an underestimation
of tumour hypoxia; therefore, if at all possible, it is preferable to
use some form of local anaesthesia when measuring tumour
oxygenation.24,27,87 Estimation of oxygenation in the prostate
provides an additional problem, since the tumour often infil-
trates throughout the gland, which may affect measurement of
“normal” oxygen levels. It has been reported that the “normal”
tissue is not significantly different in oxygen level from
tumours;26,88 however, it is possible that the normal tissue is
influenced by the presence of tumour. In one study, the normal
prostate was assessed in two patients prior to surgery for bladder
cancer and they showed a mean of 3.4% oxygen (26.2mmHg).27

This indicates that the level of oxygenation in the normal
prostate is low, compared with other normal tissues; however, it
is significantly higher than the low levels found in untreated
prostate tumours of approximately 0.5% oxygen (3.90mmHg).
In other studies, this group used psoas muscle as their reference
normal tissue, which had a similar median pO2 of 4% oxygen
(30mmHg). They found the level of tumour to muscle pO2 was
a strong predictor of prognosis.25,27,87,89,90

All of the studies listed in Table 2 have shown that a patient had
a markedly poorer prognosis when their tumour was more
hypoxic. It is likely that these patients will have a larger number
of hypoxia-tolerant, more malignant cells free in the circulation
and/or already in secondary sites, factors which will impact on
recurrence and survival. Tumours are also known to contain
small subpopulations of cancer stem cells (CSCs), which are
thought to repopulate tumours following treatment.91,92 It is
perhaps not surprising that hypoxic niches are a preferred loca-
tion for CSCs93,94 and that HIF1 has an important role in control
of these cells.95,96 Indeed, it has been stressed that physiologically
relevant levels of oxygen are critical for the culturing of stem cells
including CSCs.97 Whether it is predominantly the CSCs or
a subpopulation of more malignant tumour cells that contribute
to treatment resistance, clearly hypoxia has a role to play in
protecting both these populations and selecting for the most
hypoxia-tolerant stress-resistant cells.

The hypoxic fraction and treatment response
RT is a potential treatment for .50% of cancer patients.98 For
several reasons, RT is normally administered as a fractionated
regimen; this is because there is improved targeting of previously

hypoxic cells, as they reoxygenate between fractions.3 In the
1980s, radiation sensitizers were developed to enhance the effects
of RT through improving the radiosensitivity of hypoxic tumour
cells. For a number of reasons, most of these drugs are no longer
in use. However, nimorazole was found to provide a significant
enhancement of the effects of radiation, and it is still used in some
European countries, predominantly Denmark.99 A meta-analysis
has been performed of clinical trials designed to improve hypoxic
cell eradication, through either improved oxygenation strategies
or direct cytotoxicity. Significant improvement has been shown
using several outcome measures, yet, regrettably, these approaches
have not been widely adopted by the clinical community.100

Overcoming the radioresistance of hypoxic tumours has also been
attempted using a variety of methods that improve tumour oxy-
genation.101 One of the earliest methods was to use hyperbaric
oxygen. However, this was found to have logistical limitations and
carried the risk of additional adverse events. A recent meta-analysis
has shown that there is some evidence for its utility, however there
is currently little interest in this approach.102 Tumour oxygenation
has also been improved through increasing red cell numbers by
treatment with erythropoietin (EPO). However, results have been
equivocal, and, in some cases, the outcome was worse.103–105 This
was unexpected but may be linked to the presence of EPO in tu-
mour cells, which has been shown to independently predict for
a worse prognosis.105,106 Additionally, since the effect of EPO
develops over several days, the hypoxic fraction may adjust as
the oxygenation improves, although the evidence for this is
equivocal.107,108

A more successful approach for improving tumour oxygen is
the use of accelerated radiotherapy in combination with
carbogen (95% oxygen, 5% CO2) breathing and oral nico-
tinamide (ARCON).109 A study of 345 patients with laryngeal
cancer compared accelerated RT alone against ARCON. There
was no improvement in local tumour control at 5 years,
however regional control was significantly better with
ARCON (93%) than with accelerated RT (86%, p5 0.04);
this was specific to patients with hypoxic tumours (p5 0.01).
Toxicity was the same in both arms of the trial.110 The utility
of ARCON has also been shown in a Phase II trial for bladder
cancer.111

Antiangiogenic/antivascular agents offer a more specific way to
starve a tumour of oxygen and nutrients.112 However, this ap-
proach will almost certainly increase hypoxia, even if only for
a limited period. In some situations, this approach has led to
a normalization of blood vessels, which conversely tends to im-
prove tumour oxygenation and hence improve sensitivity to RT
and CCT.78 Although, initially, vascular targeting provides for
better tumour control the longer term outcome is not so
clear.112,113 It is possible that responses may depend on whether
tumours go through an initial hypoxic phase while readjusting to
the exposure to the drugs. If there is a significant period of en-
hanced hypoxia this may leave the tumour repopulated withmore
hypoxia-tolerant, more malignant cells. It is also possible that
some tumours are intrinsically resistant to angiogenesis in-
hibitors and/or can adapt to use other pathways to promote
angiogenesis.114
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Direct targeting of hypoxic tumour cells with
hypoxia-activated prodrugs
Hypoxic tumour cells can be targeted directly using HAPs, also
called bioreductive drugs.11,112,113,115 These chemically disparate
agents are grouped together based on the principle that they are
only metabolized in hypoxic cells (usually below about 1% oxy-
gen), providing for tumour specificity, since hypoxia is rare in
normal tissues.116,117 Combining HAPs with standard RT and
CCT has much to recommend it, since they kill the most malig-
nant cells while only causing a limited (if any) increase in systemic
toxicity. Several HAPs have entered clinical trials although, as yet,
none has been successfully licenced. Tirapazamine (TPZ) is the
most extensively studied HAP, and it was shown to provide good
antitumour enhancement in Phase II clinical trials.118 This was
not confirmed in Phase III trials, which failed to report a sig-
nificant increase in survival in comparison with conventional
therapy.119,120 However, these patients were not categorized based
on their level of tumour hypoxia.When patients were stratified on
the basis of hypoxia-induced hepatocyte growth factor and IL8,
elevated plasma levels were found to correlate with a beneficial
response to TPZ combined with chemoradiotherapy.121 This
highlights the need for patient stratification on the grounds of
hypoxia, preferably using a non-invasive technique that can fol-
low oxygenation changes longitudinally. Many new radiological
techniques are currently in development; it is hoped that non-
invasive approaches that can accurately and reliably image
tumour hypoxia will become available in the next few years. This
has recently been reviewed by Horsman et al.122

AQ4N is a unique HAP, since it has the additional advantage of
forming a stable cytotoxin as a result of an irreversible reduction
in hypoxic cells.118 AQ4N was showing promise in clinical trials
but was withdrawn for commercial reasons. It is now superseded
by OCT1002, which has similar, if not better, characteristics (our
unpublished data); this compound is currently in pre-clinical
development. An analogue of TPZ, SN30000 (also called CEN

209), is currently awaiting commencement of a clinical tri-
al.117,123 Other HAPs already in clinical trial include TH-
302124 and Proacta.125,126 If successful, these new HAPs could
provide for a direct method to eradicate hypoxic cells, improve
tumour control and reduce metastasis. Clearly, scheduling of
treatment combinations should be informed by the knowledge
of tumour oxygenation before, and also during, treatment to
ensure the drugs are used when they will have their maximal
effect.

CONCLUSIONS
Tumour hypoxia is a critically important parameter, which
compromises treatment and promotes malignancy. It is wide-
spread in human tumours, and it has amarked effect on responses
across most treatments irrespective of their mode of action. In
experimental studies, it is crucial that investigators control for
oxygenation to mimic, as far as is possible, the significant low
oxygen levels found in most human tumour cells; that is at or
,1%, and often ,0.1% oxygen (7.5 to ,0.75mmHg).

Many antitumour treatments affect blood vessels either directly
or indirectly, causing even more profound (often unrecognized)
treatment-induced hypoxia. Many tumour cells are well adapted
to survive this hypoxic insult and unfortunately tumours often
recur following treatment, repopulated by more malignant cells.
One approach, to target hypoxic cells directly, is to use HAPs.
Although this approach has had variable results in clinical trials,
newer agents are showing promise. In conclusion, unless an
effective method of eradicating hypoxic tumour cells is found,
complete control of many solid tumours is unlikely to be
achieved.
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