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Abstract

Privacy preserving data mining – getting valid data min-
ing results without learning the underlying data values –
has been receiving attention in the research community and
beyond. It is unclear what privacy preserving means. This
paper provides a framework and metrics for discussing the
meaning of privacy preserving data mining, as a foundation
for further research in this field.

1. Introduction

There has recently been a surge in interest in privacy pre-
serving data mining[2, 1, 17, 14, 22, 18]. Even the popular
press has picked up on this trend[10, 16]. However, the con-
cept of what is meant by privacy isn’t clear. In this paper we
outline some of the concepts that are addressed in this line
of research, and provide a roadmap for defining and under-
standing privacy constraints.

Generally when people talk of privacy, they say “keep in-
formation about me from being available to others”. How-
ever, their real concern is that their information not be mis-
used. The fear is that once information is released, it will
be impossible to prevent misuse. Utilizing this distinction –
ensuring that a data mining project won’t enable misuse of
personal information – opens opportunities that “complete
privacy” would prevent. To do this, we need technical and
social solutions that ensure data will not be released.

Another view is corporate privacy – the release of infor-
mation about a collection of data rather than an individual
data item. I may not be concerned about someone know-
ing my birthdate, mother’s maiden name, or social secu-
rity number; but knowing all of them enables identity theft.
This collected information problem scales to large, multi-
individual collections as well. A technique that guarantees
no individual data is revealed may still release information

describing the collection as a whole. Such “corporate in-
formation” is generally the goal of data mining, but some
results may still lead to concerns (often termed a secrecy,
rather than privacy, issue.)

1.1. Secure multiparty computation

As an example of a definition of privacy, and its lim-
itations, let us look at Secure Multiparty Computation
(SMC)[23, 11]. The idea of SMC is that the parties involved
learn nothing but the results. Informally, imagine we have a
trusted third party to which all parties give their input. The
trusted party computes the output and returns it to the par-
ties.

SMC enables this without the trusted third party. There
may be considerable communication between the parties to
get the final result, but the parties don’t learn anything from
this communication. The computation is secure if given just
one party’s input and output from those runs, we can simu-
late what would be seen by the party. In this case, to simu-
late means that the distribution of what is actually seen and
the distribution of the simulated view over many runs are
computationally indistinguishable. We may not be able to
exactly simulate every run, but over time we cannot tell the
simulation from the real runs.

Since we could simulate the runs from knowing only our
input and output, it makes sense to say that we don’t learn
anything from the run other than the output. This seems like
a strong guarantee of privacy, and has been used in privacy
preserving data mining work[15, 7, 8].

We must be careful when using Secure Multiparty Com-
putation to define privacy. For example, suppose we use
a SMC technique to build a decision tree from databases at
two sites[15], classifying people into high and low risk for a
sensitive disease. Assume that the non-sensitive data is pub-
lic, but the sensitive data (needed as training data to build
the classifier) cannot be revealed. The SMC computation
won’t reveal the sensitive data, but the resulting classifier
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will enable all parties to estimate the value of the sensitive
data. It isn’t that the SMC was “broken”, but that the result
itself violates privacy.

1.2. Limitations on results

How can we constrain the results of data mining? There
has been work in this area, addressing specific problems
such as hiding specific association rules [3, 20] or limiting
the confidence in any data mining[5]. While these provide
some specific techniques, the means available to constrain
results can are quite limited. What is needed is a general
way to specify what is and is not allowed.

One possible approach is constraint-based data mining
[4]. This line of research is concerned with improving
the efficiency of algorithms and understandability of re-
sults through providing up-front constraints on what results
would be of interest. Would the languages used to de-
scribe these constraints also serve to define what results are
acceptable from a privacy standpoint? While the current
methods do not enforce that nothing outside the constraints
can be learned, they could provide a starting point for fur-
ther research.

The rest of this paper provides some specific suggestions
for methods to specify privacy constraints in ways that still
allow data mining. We start with a discussion of individual
privacy, and methods to protect it. We then discuss methods
for corporate privacy, or constraining what is learned from
a collection. We conclude with several orthogonal metrics
for defining and measuring privacy.

2. Individual privacy

Typically people think of privacy as protecting individ-
ual data. Most legal efforts have been directed to this end.
For example, the European Community regulates personal
data[9]:

’personal data’ shall mean any information relat-
ing to an identified or identifiable natural person
(’data subject’); an identifiable person is one who
can be identified, directly or indirectly, in partic-
ular by reference to an identification number or
to one or more factors specific to his physical,
physiological, mental, economic, cultural or so-
cial identity;

and specifies that data can be

kept in a form which permits identification of
data subjects for no longer than is necessary for
the purposes for which the data were collected
or for which they are further processed. Mem-
ber States shall lay down appropriate safeguards

for personal data stored for longer periods for his-
torical, statistical or scientific use.

The key element here is “identifiable”: As long as the data
cannot be traced to an individual, the regulations do not ap-
ply.

The U.S. HIPAA rules[13] are similar – they apply to
protected health information, defined as individually iden-
tifiable health information:

Individually identifiable health information is in-
formation that is a subset of health informa-
tion, including demographic information col-
lected from an individual, and:

1. Is created or received by a health care
provider, health plan, employer, or health
care clearinghouse; and

2. Relates to the past, present, or future physi-
cal or mental health or condition of an indi-
vidual; the provision of health care to an in-
dividual; or the past, present, or future pay-
ment for the provision of health care to an
individual; and

(a) That identifies the individual; or

(b) With respect to which there is a rea-
sonable basis to believe the information
can be used to identify the individual.

Any information that cannot be traced to a specific in-
dividual falls outside the scope of most privacy laws. This
provides one solution to privacy and data mining projects:
As long as the data used is not individually identifiable,
there should be no problems.

Another factor in individual data is how the data is col-
lected and held. The U.S. HIPAA rules assume that data
is created and held by a healthcare provider. This gives
a corporate model – individually identifiable information
first “appears” within a collection held by someone other
than the individual. An alternative is the “world wide web”
model, where individuals provide the data in electronic
form themselves. These models lead to different solutions.
We first look at some generally applicable solutions, then
discuss some that are only relevant in the corporate model.

2.1. Obscuring data

One approach to privacy is to obscure data: making pri-
vate data available, but with enough noise added that exact
values (or approximations sufficient to allow misuse) can-
not be determined. One approach, typically used in census
data, is to aggregate items. Knowing the average income
for a neighborhood is not enough to determine the actual
income of a resident of that neighborhood. An alternative
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is to add random noise to data values, then mine the dis-
torted data. While this lowers the accuracy of data mining
results, research has shown that the loss of accuracy can be
small relative to the loss of ability to estimate an individ-
ual item. We can reconstruct the original distribution of a
collection of obscured numeric values, enabling better con-
struction of decision trees[2, 1]. This would enable data
collected from a web survey to be obscured at the source –
the correct values would never leave the respondent’s ma-
chine – ensuring that exact (misusable) data doesn’t exist.
A technique has also been developed for association rules,
enabling valid rules to be learned from data where items
have been randomly added to, or removed from, individual
transactions[18].

Data obscuration is effective both in the web and corpo-
rate model. Obscuration can be done by the individual (if
the receiver isn’t trusted), or by the holder of data (to re-
duce concerns about breached security.) However, obscur-
ing data falls into a legal gray area. Rules such as EC 95/46
and HIPAA would probably view individually identifiable
data with values obscured as protected, even if the exact
values are unknowable. However, obscuration could be as
or more effective than aggregation methods used on pub-
licly available census data at protecting actual data values.
Demonstrating the effectiveness of data obscuration in com-
parison with census data could improve public acceptance,
and lead to changes in legal standards.

Data obscuration techniques could also be used to en-
sure that otherwise identifiable data isn’t individually iden-
tifiable. Re-identification experiments have shown that data
that might be viewed as non-identifiable, such as birth date
and postal code, can in combination allow identification
of an individual[21]. Obscuring the data could make re-
identification impossible, thus meeting both the spirit and
letter of privacy laws.

2.2. Perfect privacy

One problem with the above is the tradeoff between pri-
vacy and accuracy of the data mining results. Can we do
better? Using the concept of Secure Multiparty Computa-
tion, the answer is clearly yes – in the “web survey” ex-
ample, the respondents can engage in a secure multiparty
computation to obtain the results, and reveal no informa-
tion that is not contained in the results. However getting
thousands of respondents to participate synchronously in a
complex protocol is impractical. While useful in the corpo-
rate model, it is not appropriate for the web model. Here we
present a solution based on a moderately trusted third party
– the party is not trusted with exact data, but trusted only
not to collude with the “data receiver”.

There are various means of achieving privacy, both tech-
nical and nontechnical. Part of the problem is the need to

create a solution which is feasible in terms of efficiency,
security, and without limitations in usability. Technical so-
lutions can be formulated without restrictions in usability,
by making suitable assumptions. By a judicious use of non-
technical mechanisms, we can realize these assumptions in
real life.

Perfect privacy in the SMC sense implies that there is
absolutely no release of any meaningful information to any
third party. Current e-commerce transactions have a trusted
(central) third party with access to all the information. The
“trust” is governed by legal contracts enjoining the im-
proper release of information. In some cases, the third
party is dispensed with and contracts exist between the in-
terested parties themselves. This is obviously insecure from
the technical perspective. Though it has been proven that a
SMC solution does exist for any functionality, the compu-
tation and/or communication required may be high. Other
factors, such as the need for continual online availability of
the parties, create further restrictions and problems in real-
world settings such as a web-based survey.

However, if we jettison the idea of using only the inter-
ested parties, we can obtain a middle ground solution that
does not require a fully trusted third party. We can instead
use a fixed number of untrusted, noncolluding parties/sites
to do the computation.

Assume the existence of k untrusted, noncolluding sites.

• Untrusted implies that none of these sites should be
able to gain any useful information from any of the
inputs of the local sites.

• Noncolluding implies that none of these sites should
collude with any other sites to obtain information be-
yond the protocol.

Then, all of the local parties can split their local inputs into
k random shares which are then split across the k untrusted
sites. Each of these random shares are meaningless infor-
mation by themselves. However, if any of the parties com-
bined their data, they would gain some meaningful infor-
mation from the combined data. For this reason, we require
that the sites be noncolluding. We believe this assumption
is not unrealistic. Each site combines the shares of the data
it has received using a secure protocol to get the required
data mining result.

The following is a brief description of this approach. Ev-
ery party is assumed to have a single bit of information xi,
identified by some key i. Each party locally generates a
random number ri and then sends (i, x̄i = xi ⊕ ri) to one
site and (i, ri) to the second site. Note that neither site will
be able to predict the xi. Due to the xor ⊕ (operation), the
input they see is indistinguishable from any uniformly gen-
erated random sequence. Given any data mining task(f )
defined on X = [x1, x2, . . . , xn], it suffices to evaluate
f(X̄⊕̄R) = f(X) since R = [r1, r2, . . . , rn] and X̄⊕̄R =
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Figure 1. The Data Warehouse approach to
mining distributed sources.

[x̄1 ⊕ r1, x̄2 ⊕ r2, . . . , x̄n ⊕ rn]. It is a known fact that with
the assumption of existence of trapdoor permutations (RSA
is assumed to be a trapdoor permutation), any functional-
ity g, (g : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ × {0, 1}∗) can
be evaluated privately in the semi-honest model.[11] Since
the initial xor operation can be easily represented as a cir-
cuit, given functionality f , we can define a functionality
g(X,R) = f(X̄⊕̄R). Thus, any data mining functionality
can be evaluated privately without revealing any informa-
tion other than the final result.

While the architecture is not especially efficient, indeed
not even necessarily very practical for large quantities of
data, it does demonstrate a method of maintaining perfect
privacy while computing the required data mining function.

3. Corporate privacy

In the corporate model, the privacy restrictions need not
be just on individually identifiable data. Often it is the body
of data that must be protected. Protecting individual data
items may not be enough – we may need to protect against
learning from the collection. This provides an interesting
conflict. Generally the goal of data mining is to learn trends
and patterns that hold across a collection of data. How can
we reconcile this with a desire to keep overall patterns and
trends secret?

Sometimes this involves limiting results, as described in
Section 1.2. Another situation where such corporate pri-
vacy issues arise is with distributed data sources. Here the
problem is one site learning results that hold at another site
(except, of course, for results that can be derived from the
global results.) Figure 1 illustrates this scenario. The typi-
cal approach to data mining of distributed data is to build a

data warehouse containing all the data, then mine the ware-
house. This requires that the warehouse be trusted to main-
tain the privacy of all parties - since it knows the source of
data, it learns site-specific information as well as global re-
sults. What if their is no such trusted authority? In a sense
this is a scaled-up version of the individual privacy problem,
however it is an area where the Secure Multiparty Compu-
tation approach is more likely to be applicable.

Addressing these issues requires understanding the rea-
sons behind them. We now discuss two issues that lead to
privacy concerns in collections of data, and ways to under-
stand those that enable data mining to proceed.

3.1. Secrecy

Individual privacy concerns can lead to corporate privacy
concerns. The holder of a collection of individual data may
be trusted by those individuals, but if that data is revealed,
this trust (often protected contractually) is broken. The col-
lection holder may be willing to participate in a distributed
data mining project, but only if it can ensure that its own
data items are not revealed. Secure Multiparty Computation
would seem to provide a solution to this, however the prob-
lem of results revealing private information still remains.

Another issue is protecting the data holder. For ex-
ample, a medical study may want to use data mining to
establish overall trends from hospital data. Even if the
techniques used protect patient privacy, they may reveal
hospital-specific information. Rules establishing conditions
that lead to a high complication rate for a particular opera-
tion would be useful study results. However, if these condi-
tions are tied to a particular hospital, there may be liability
(or at least public relation) implications. Such implications
may limit willingness to participate in such a study. We
can develop efficient techniques for data mining that pro-
tect such study[14].

In other cases, participants in the data mining project
may have specific secrets they wish to withhold, such as
trade secrets. An industry consortium may want to mine
data to find ways that all members can use to improve their
processes. However, learning a particular member’s trade
secret, and sharing that with the rest of the consortium, is
inappropriate. The ability to protect secrets while otherwise
participating in a data mining exercise will expand the ap-
plicability of data mining.

3.2. Limitations on collaboration

At other times, it may not be the participants that are
concerned about sharing data, but external parties. As an ex-
ample, U.S. antitrust regulations limit the ability of compa-
nies to collaborate. The basic premise is protecting the con-
sumer: collaboration that harms the consumer (e.g., price-
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fixing cartels) are illegal. The problem is establishing that
collaboration is to the consumers benefit. If the CEOs of
Ford and General Motors meet privately, the public doesn’t
know if there is illegal collaboration, likely triggering an
investigation. Privacy preserving data mining techniques
provide a solution to this. If we can prove that no infor-
mation is shared other than the results, it is easier to justify
that the collaboration is for legal purposes. As we discuss
in the next section, this leads to a “need to know” metric for
determining acceptable information sharing.

4. Metrics

We have discussed some issues imposing privacy con-
straints on data mining. How do we translate these into
solutions that address the issues? The key is an ability to
measure privacy. Since privacy has many meanings, we re-
quire a set of metrics. Several suggestions are given in this
section.

4.1. Bounded knowledge

The data obscuration approach leads to a bounded
knowledge metric. Here we state that some information
about a protected attribute may be revealed, but that the ac-
tual value can only be estimated. This may be based on hard
bounds (e.g., by adding noise from a random variable uni-
formly distributed within the bounds), or probabilistic esti-
mates (e.g., by adding noise from a gaussian distribution).

A good measure for quantifying privacy based on such
bounded estimation is given by Agrawal and Aggarwal[1].
They propose a measure based on the differential entropy
of a random variable. Specifically, if we add noise from a
random variable A, the privacy is:

Π(A) = 2
−

∫
ΩA

fA(a)log2fA(a)da

where ΩA is the domain of A.
This metric has several nice features. It is intuitively sat-

isfying in simple cases, e.g., if U is a uniformly distributed
random variable between 0 and a. Furthermore, if a se-
quence of random variables Ai converges to B, then Π(Ai)
converges to Π(B). These properties provides a meaningful
way to relate non-uniform distributions to the easily under-
standable uniform distribution case.

The authors extend this definition to conditional privacy,
which captures the possibility that the inherent privacy from
obscuring data may be reduced by what we can learn from
a collection. They show how this can be applied to measure
the actual privacy after reconstructing distributions of the
original data to improve the accuracy of decision trees build
on the obscured data[2, 1]. Similar analyses on other data
obscuration techniques would provide an effective way to
compare those techniques.

4.2. Need to know

The Need to know concept is well established in control-
ling access to data. In the U.S., access to classified data
requires both a security clearance and a justification of why
the data should be accessed. The same concept appears in
the EC95/46 directive:

Member States shall provide that personal data
may be processed only if:
(a) the data subject has unambiguously given his
consent; or
(b) processing is necessary for the performance of
a contract to which the data subject is party or in
order to take steps at the request of the data sub-
ject prior to entering into a contract; or ...

Note clause (b): It is acceptable to use individual data if it
is needed to achieve a result requested by the individual.

This same standard also applies to corporate privacy
problems. A need to know standard can be used to de-
cide if collaboration between companies falls afoul of an-
titrust regulations. For example, airlines in the U.S. make
their fares available on shared reservation systems used by
travel agents (Sabre, Apollo). This allows easy comparison
of prices by both consumers and the airlines – and a quick
check will show that the airlines generally offer the same
prices on the same routes. This gives the appearance of il-
legal price fixing, and the airlines were found to engage in
such price fixing. Airlines would put out a notice of pro-
posed prices, and if other airlines didn’t match the price the
notice would be removed.

Operations today are similar – the shared reservations
systems exist and prices are the same on the same routes.
The only change is that the proposed prices no longer exist.
Instead, an airline must actually change its prices, then see
if other airlines go along. Why is this allowed?

The key is that the current system provides two key ben-
efits to consumers:

1. Price competition among the airlines – they are al-
lowed to offer as low a price as they want; and

2. Easy comparison shopping – consumers can check
prices, and take the lowest.

These benefits cannot be accomplished without allowing
airlines to change their prices. Giving consumers the ability
to see and compare prices also enables the airlines to see
and compare prices. Sharing currently available prices thus
meets the need to know standard. The previous “notice of
proposed pricing” approach did not, as this information was
not shared with or useful to consumers.

Secure Multiparty Computation [23, 11] provides a basis
for data mining that meets the need to know standard, but it
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is not sufficient. We still need to ensure that the data mining
results (or potential results) will meet the standard.

Need to know is interesting in that it is a binary measure.
A result is either acceptable (it is required to accomplish the
end goal), or unacceptable. It is also difficult in that it can
apply to a collection of results rather than a single result;
two different result sets may each be sufficient to achieve
a goal (either alone meets the need to know standard), but
knowing both result sets exceeds need to know. Formal defi-
nitions of this metric are probably domain specific, however
the legal and social acceptability of this “metric” suggests
that further research is warranted.

4.3. Protected from disclosure

Another problem is when we have specific items we want
to protect. This may be individual data items, specific rules
we don’t want disclosed, or even general classes of knowl-
edge that must be protected. The database security commu-
nity has developed effective techniques for inference pre-
vention[6, 12, 24]. This work is for “provable facts”, or
inferences that are always true. Data mining finds infer-
ences that are interesting, but do not always hold. Meth-
ods have been proposed to alter data to bring the support
or confidence of specific rules below a threshold[3, 20], but
choice of an appropriate threshold is still difficult. Alterna-
tively, we may want to protect against association rules that
involve a particular outcome (e.g., any rules that pertain to
equipment failures), but the problem of defining when a rule
is considered strong enough to violate privacy concerns is
still a problem.

One option is to use classification as a measure. Many
data mining problems can be expressed in terms of classifi-
cation, e.g., association rules can be used as decision rules.
If the ability to classify is limited, many other types of data
mining will be limited as well. This idea has been used to
evaluate the risk posed by data mining when the knowledge
to be protected is not known[5]. However, this assumes the
goal is prevention of any data mining. Use of classifica-
tion as a metric to prohibit learning specific facts is ripe for
exploration. For example, we could state “it should be im-
possible to learn a classifier from the data that can predict a
person having AIDS with P (falsehit) < .9” – any classi-
fier suggesting someone had AIDS would be wrong at least
90% of the time. This would alleviate concerns that even
if the individually identifiable data didn’t contain the pro-
tected attribute (has AIDS), the data might enable someone
to learn that attribute.

4.4. Anonymity

The goal during the privacy-preserving data mining pro-
cess is to achieve results without revealing the identity of the

individual users or any information that may result in identi-
fying different people. As discussed in Section 1.1, current
definitions of security such as secure multi-party computa-
tion may not be enough. Ensuring that the results do not
violate privacy requires more.

One method for protecting privacy is k-anonymity[19].
Roughly, the goal of k-anonymity is to only release data
where for all possible queries, at least k results will be
returned. To achieve this result, generalization and sup-
pression techniques are used. In generalization techniques,
some attributes are replaced with more general values so
that k people will be found with any attribute value. For ex-
ample, exact ages are replaced by some age ranges. In sup-
pression techniques, data points that may cause too much
generalization may be eliminated or a column that has iden-
tifying information can be deleted. Although this approach
works well for individual data, it is not directly applicable
to restricting privacy-preserving data mining results.

We propose the following definition of individual pri-
vacy that maintains the spirit of k-anonymity, but protects
against data mining results that can be used to predict infor-
mation about an individual.

Definition 4.1 Two records (X1 ∈ X,X2 ∈ X) that be-
long to different individuals are p-indistinguishable if for
every function f : X 7→ {0, 1} (X is the domain of the user
provided data) that can be evaluated in polynomial-time
|Pr{f(X1) = 1} − Pr{f(X1) = 1}| ≤ p

where 0 < α < 1

Definition 4.2 A data mining process said to be p-
individual privacy preserving if at every step of the process,
any two individual records are p-indistinguishable.

Example: Assume that we are using the model described
in Section 2.2 to find the count of particular attribute value,
e.g., we are looking for the number of people that have a
particular cancer type, and that this information is repre-
sented as binary attribute. According to architecture de-
scribed in Section 2.2, each user i (i is assigned by the Orig-
inal site) sends (i,Xi

⊕
ri) to the original site and sends

(i, ri) to the Non-colluding Storage Site, where ri is a ran-
dom bit and

⊕
is the xor operation. Clearly the data gather-

ing process is individual privacy preserving, because what
both sites see about individuals is indistinguishable from
random data. So the probability of any particular individual
having the cancer is the same. Now let us find the count of
the individuals who have the cancer. To do this, assume the
Original site and the Non-colluding Storage Site add d(1−p)

p

(d is number of actual data entries) noisy data items to ac-
tual data and count the amount of of fake support. The pro-
cessing site joins the (ij , Xi

⊕
ri) with (ij , ri). Due to po-

tential re-use of the data actual id’s i is replaced by random
permutation and fake data is randomly distributed among
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the original data. When the original site receives the count,
it subtracts the amount of fake support and learns the ac-
tual result. Clearly, the original site does not learn anything
from this process. After the process, the probability that any
given individual has the cancer is the same, even though
there may be huge difference between prior and posterior
probabilities.

We now show that p-Indistinguishability holds for any
two data entries on the processing site. Assume that
the processing site compares two randomly ordered data
items. Since with probability p any item compared is
fake, the probability that any statement is true is less than
p. In other words, Pr{f(Xorg) = 1|Xseen} = p ∗
Pr{f(Xorg) = 1|Xseen is true} + (1 − p) ∗ 0 ≤ p. We
can see that |Pr{f(X1) = 1|X1 is seen} − Pr{f(X2) =
1|X2 is seen} ≤ p. (In the worst case, one probability will
be zero and one will be p.) Since p-Indistinguishability is
satisfied for any given data item pairs on the processing site,
we can conclude that the data mining process is individ-
ual privacy preserving under the semi-honest model (no site
colludes to reveal the original values).

5. Conclusions

Privacy preserving data mining has the potential to in-
crease the reach and benefits of data mining technology.
However, we must be able to justify that privacy is pre-
served. For this, we need to be able to communicate what
we mean by “privacy preserving”. The current mixture of
definitions, with each paper having its own definition of
what “privacy” is maintained, will lead to confusion among
potential adopters of the technology.

This paper presents some suggestions for defining and
measuring privacy preservation. We show how these relate
to both privacy policy and practice in the wider community,
and to techniques in privacy preserving data mining.

This is by no means the definitive word on the subject.
While some measures, such as the differential entropy met-
ric of [1], have clear mathematical foundations and appli-
cations, others (such as using classification accuracy as a
means of protecting rules from disclosure) have strong po-
tential for further development. Adopting a common frame-
work for discussion of privacy preservation will enable next
generation data mining technology to make substantial ad-
vances in alleviating privacy concerns.
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