Defining Software Ecosystems: A Survey of
Software Platforms and Business Network
Governance

1, 2

Slinger Jansen'? and Michael Cusumano

L Utrecht University, Utrecht, the Netherlands,
Slinger. jansenQuu.nl,
2 Massachusetts Institute of Technology, Cambridge, Massachusetts,
{Slinger, Cusumano}@mit.edu

Abstract. Currently, there is little understanding about how different
types of software ecosystems must be governed for the preservation and
improvement of ecosystem health. This paper explores the definition
of software ecosystems and provides a classification model for software
ecosystems. The classification model is applied to 19 cases previously
explored in software ecosystem literature, and governance tools are ob-
served for the different types of ecosystems. The governance tools are
summarized in a governance model that, when used correctly, serves
ecosystem coordinators in determining strategies to maintain and ulti-
mately improve software ecosystem health.

1 Introduction

While in the early days of software engineering a software product was the re-
sult of effort of an independent software vendor to create a monolithic product,
modern software strongly relies on components and infrastructure from third
party vendors or open source suppliers [11, 36, 10]. The relationships between
software development firms and service companies shaped the product software
landscape into software ecosystems, where suppliers and buyers of software prod-
ucts, components and technologies collaboratively create competitive value. One
could state that the success of a product software company therefore no longer
depends only on its own development quality but also on the way it manages its
relationships [16, 22, 15]. Software differs from physical goods in several ways.
Software has no physical limitation, therefore the main limitations are concep-
tual, social and economical [5, 31]. No other business has a gross profit margin of
99 percent on sold products [11]. In other words, reproduction costs for software
products are next to zero.

Just as participants in a value chain of physical products, partners in a soft-
ware value chain maintain ongoing business relationships. Up to the late 80s,
vertically integrated companies delivered complete system stacks [11]. These
stacks contained everything needed to serve a customer; hardware and soft-
ware; operating system and applications. In the late 80s and beginning of the

90s the horizontal layer structure of solution stacks changed into more modu-
lar clusters [23]. The ‘software stack’ is now split up in activity layers that are
complimentary to each other [16, 17] through interfaces and middleware. Be-
cause of this market structure, it is not uncommon that two software producing
organizations may collaborate on one activity level and be in competition on
another.

At the highest level of abstraction, software ecosystems are collections of
organizations that are related through software or a software related concept.
Please also note that software ecosystems are subsets of business ecosystems.
If we were to take all organizations in the world and define queries on it to
create specific collections of organizations, we could for instance use the query
“Toyota”. This would provide us with all the suppliers, partners, customers, and
resellers that do business with Toyata and their relationships. The collection
of organizations and relations gives us access to the business ecosystem of this
particular company, i.e., the Toyota ecosystem. The same can be done for soft-
ware concepts, to get the software scope instead of the generic business scope.
A non-exhaustive list of software concepts is provided with examples:

— Standards - XML, BPM, OSGi, J2EE, Corba, SEPA, etc.

— Products - OpenOffice, Microsoft Word, SAP BusinessOne, Grand Theft
Auto, etc.

— Hardware - Playstation 3, HTC Diamond, PDAs, BMW 5 series, etc.

— Platforms - .Net, Facebook, Android, OS X, etc.

The list can be used to identify types of ecosystems (again, non-exhaustive)
and to name specific instances, such as the “OS X Ecosystem”. Several notes
must be made with this list. The first issue concerns inclusion and exclusion
criteria or, put differently: at what point does a collection of organizations and
relations become a business ecosystem instead of a software ecosystem. The
answer to this question can be made complex, but it can be simplified by deter-
mining the aim of the research or “query” that is done within a specific business
ecosystem. If the query is not specifically software related (‘What companies use
SEPA for all their business transactions and how are these companies related?’)
the resulting set is a business ecosystem. If the query is software related (‘What
software providers have already adopted SEPA as the main language for their
APIs and how do these organizations relate to each other?’) the resulting set
can be used to compose a software ecosystem.

A second issue with software ecosystems is the type of participant. In a
commercial ecosystem participants are easy to determine: they are typically or-
ganizations that aim to survive and thrive, whether it is a one-man company
or a large ecosystem orchestrator, such as SAP, Microsoft, or Facebook. In the
scope of open source ecosystems participants can range from foundations (e.g.,
the Eclipse Foundation), to commercial organizations (e.g., RedHat), to inde-
pendent developers (e.g., David Heinemeier Hanson for the Rails ecosystem).
The question on what constitutes a participant in a software ecosystem depends
on the following criteria: is it relevant for the research question, is it contributing

to the ecosystem in a meaningful (but not necessarily significant) way, and is
the contribution software related?

One question that is often asked is whether customers are part of the software
ecosystem. If we draw the analogy to biological ecosystems, customers are the
‘plankton’ that keep the ecosystem alive and well, which by definition includes
them into the ecosystem. A smart query can be created, however, that excludes
customers altogether, such ‘what organizations build Apps for Android and how
are they related to each other?’ The extended answer to the question if customers
are part of the ecosystem thus is: it depends on the query. The term ‘plankton’
in this context is highly appropriate: without a (potential) market of sufficient
size it is risky for third-parties to join or co-create an ecosystem.

The second challenge that is handled in this work is the definition of a series
of governance tools for platform leaders, i.e., parties that can determine the
future of the ecosystem. Software ecosystem governance is defined as procedures
and processes by which a company controls, changes or maintains its current
and future position in a software ecosystem [1]. With this governance model
platform leaders can determine whether they are using the right methods for
their ecosystem governance to reach their strategic goals.

This paper continues with a description of the survey research in Section 2.
In Section 3 several terms related to software ecosystems, such as biological,
digital, and business ecosystems are discussed and contrasted against software
ecosystems to provide perspectives on the definition of software ecosystems. Sec-
tion 4 provides the table with the survey results of this work and a classification
model is extracted to classify and categorize software ecosystems by their defin-
ing characteristics. Four types of ecosystems are further studied in Section 5,
where different governance tools are identified through the survey of ecosystems
and summarized in the software ecosystem governance model for health preser-
vation and improvement, after we finalize with a short discussion and conclusion
in Section 6.

2 Research Approach

The main research question of this research is whether there exist common types
of software ecosystems and whether these ecosystems have similar factors in the
domain of governance, such as life threats, growth challenges, who is in control,
etc. To identify and select software ecosystems, two criteria were used: first the
definition of software ecosystems was followed closely, and if an ecosystem did
not adhere to this definition, it was not selected. Secondly, the ecosystems were
selected from papers as described in common software ecosystem literature [4],
to make sure that these ecosystems have also been identified by others as being
relevant software ecosystems.

The survey was stopped at the current number, because of time constraints
and for the sake of brevity. We therefore do not claim completeness: the contri-
bution of this work lies in the first classification of software ecosystems and in
the identification of common concerns for the governance of these ecosystems.

For each ecosystem a list of 16 questions was answered by performing docu-
ment and web site study. Each of the ecosystems was checked by at least one
other researcher for correctness. These sixteen questions were extracted from
the work on open software enterprises [27] and the work on software ecosystem
governance [1]. Based on the answers found for each of the surveyed software
ecosystems, statements were identified that enable someone to swiftly classify a
software ecosystem.

3 Background

In this section the comparison with other kinds of ecosystems is made. We start
with the comparison with biological ecosystems and then move to the super-
categories of ecosystems that can contain software ecosystems: business ecosys-
tems and digital ecosystems. We finalize with a definition of software ecosystems.

3.1 Biological Ecosystems

Considering the software ecosystems domain “borrows” part of its name from
the domain of (biological) ecosystems, there are some relationships between the
two, as others have established [14, 21]. Tansiti and Levien highlight the example
of the jaguar, which is known to eat up to 85 species, thereby controlling large
parts of the ecosystem, even though the elegant and nimble jaguar only takes up
a minute part of the ecosystem in total body mass. This could be compared to a
platform leader like Microsoft, which, although seemingly large with its 100,000
employees, only is a minute part (less than 1%) of the ecosystem in terms of
developers and revenues.

Dhungana et al. [14] go quite far in their comparison. In short, they equate
software and natural ecosystems on the following issues. First, both types of
ecosystems have a finite reservoir of resources. Secondly, participants in both
ecosystems will be included or forced out by changes in the dynamics in the
ecosystem. Thirdly, collaboration and competition occur in both types of ecosys-
tems. Finally, there are life cycles in both ecosystems (product versus organism).

The comparison to biological and natural ecosystem is easily made, but analo-
gies only stretch so far. The main difference between software and natural ecosys-
tems is that biological ecosystems are mainly studied to observe influences from
external factors, whereas software ecosystem dynamics are analysed mainly with
the aim of growth and success. Software ecosystems are also made up of par-
ticipants harboring intentionality, whereas the beings in a biological ecosystem
have no means to consciously be part of the ecosystem. The largest difference
between participants in software ecosystems and those in natural ecosystems,
however, is that in software ecosystems participants can consciously decide to
exit the ecosystem or even destroy it.

3.2 Business Ecosystems

Software ecosystems are perhaps a new concept, but business ecosystems have
been around much longer. Since the 90s, James F. Moore has used the concept
in multiple outlets, but most famously in his book entitled “The Death of Com-
petition” [33]. Moore defines business ecosystems as an economic community
supported by a foundation of interacting organizations and individuals: the or-
ganisms of the business world. The economic community produces goods and
services of value to customers, who are themselves members of the ecosystem.
The member organisms also include suppliers, lead producers, competitors, and
other stakeholders. Over time, they coevolve their capabilities and roles in sup-
ply chains, and tend to align themselves with the directions set by one or more
central companies. Those companies holding leadership roles may change over
time, but the function of ecosystem leader is valued by the community because
it enables members to move toward shared visions to align their investments,
and to find mutually supportive roles [32].

It must be noted that the concept has primarily found ground in the tech-
nical community. Furthermore, Moore is already referring here to “central com-
panies”, a concept that is later reformulated to “platform leaders” by Cumano
and Gawer [19]. It is commonly found that using business ecosystems to quickly
develop, prototype, and release new products has a positive influence on inno-
vation, since it is much quicker than more traditional “in-house only” product
development processes [12].

The notion of platform leaders quickly leads to the typical three roles that
are mentioned in contexts of business ecosystems: platform leaders, niche play-
ers, and bridge players. platform leaders are typically orchestrators that largely
determine the growth of an ecosystem. A specific type of platform leader is the
dominator, a platform leader that quickly swallows up large parts of the ecosys-
tem, such as IBM did in the 80s, and more recently Twitter, that, by doing a
number of strategic acquisitions, made new entrants into the Twitter ecosys-
tem reluctant to join. The niche players are those parties that use technology
from the platform leaders to approach certain niche markets and are typically
smaller, but still highly successful. An example of a niche player in a software
ecosystem is for instance a provider of technical drawing software for heating in
buildings, built on top of AutoCAD. The adagium ‘get big, get niche, or get out’
is a popular rewording of the platform leader-niche player phenomenon. Finally,
the bridge player is a player that bridges certain ecosystems. An example of
such a player in a number of software ecosystems is PhoneGap, a platform that
enables the release of software applications in different mobile ecosystems with
one version of the software code.

Software ecosystems have been the subject of much debate before the concept
was defined formally. They have always been seen as yet-another-instance of
business ecosystems and have been studied in that way with much merit [20,
34, 30]. In the previous section it has been explained that software, however, is
different and therefore deserves its own subcategory under business ecosystems.

3.3 Digital Ecosystems

A digital ecosystem is defined as a distributed adaptive open socio-technical sys-
tem with properties of self-organisation, scalability and sustainability [9]. The
field of digital ecosystems is rapidly evolving. Previously, digital ecosystems were
described to be a form of evolution from traditional monolithic and service-
oriented architectures towards collaborative architectures in which autonomous
agents, orchestration, and service choreography are the main topics addressed.
Increasingly, however, the term digital ecosystem is being used in policy and re-
search to describe digital business ecosystems. For sake of simplicity, we consider
software ecosystems subsets of digital ecosystems.

3.4 Software Ecosystems

Several scholars conducted in-depth studies to explain ties between companies
in software ecosystems. These studies range from strategic level [17, 15, 8, 22]
through operational level [28] down to the technical level [26, 25]. Scope changes
of the interpretations of software ecosystems result in differing definitions as well.
At present several different definitions exist of the term software ecosystems.

— Kittlaus and Clough [29] define a “software ecosystem as an informal network
of (legally independent) units that have a positive influence on the economic
success of a software product and benefit from it”.

— Bosch [7] defines a software ecosystem as “consisting of the set of software
solutions that enable, support, and automate the activities and transactions by
the actors in the associated social or business ecosystems and the organizations
that provide these solutions”.

Three shared concepts stand out in these definitions: (1) actors, organizations
and businesses, (2) networks and social or business ecosystems, and (3) software.
Based on these shared concepts Jansen, Finkelstein, and Brinkkemper [24] con-
structed the definition that is used throughout this article:

A software ecosystem is a set of actors functioning as a unit and in-
teracting with a shared market for software and services, together with
the relationships among them. These relationships are frequently un-
derpinned by a common technological platform or market and operate
through the exchange of information, resources and artifacts.

Software ecosystems are usually governed and steered by one or more coor-
dinating parties who profit when the ecosystem thrives. Typically, these coor-
dinators also control the ‘underpinning technology’ on which the ecosystem is
based, such as a commercial company that builds a software platform. There
are also less traditional ecosystem coordinators, however, such as consortia be-
hind open source platforms or even single developers who may have influence on
the ecosystem. Software ecosystem coordinators are defined as beneficiaries of

software ecosystem growth who have instruments available to influence the de-
velopment of the platform or the surrounding ecosystem. Typically they are also
(partly) respounsible for the further development of the underpinning technology.

The role of software platforms in software ecosystems is undeniable. If
an ecosystem is to be formed around anything, the controlling entity needs to
allow a degree of freedom for value creation of which the controlling entity re-
ceives only a small part [18, 19]. As Iansiti and Levine [21] articulate: “Out-
side complementors will be attracted to the platform if there is option value
in the complements, provided the platform owner does not expropriate all the
value they create.” In this paper we use the platform definition of Gawer and
Cusumano [19]: “A foundation technology or set of components used beyond a
single firm and that brings multiple parties together for a common purpose or
to solve a common problem”. Furthermore, Gawer and Cusumano state that
the value of the platform increases exponentially with (a) more complementary
products and services, and (b) more users.

4 Survey and Classification Model

In table 4 the software ecosystems that were studied for this work are listed, along
with the four classification factors. The classification factors were extracted from
sixteen properties that were extracted from the work by Baars and Jansen [1]
and the work on the Open Software Enterprise [27]. The sixteen properties were
left out for reasons of brevity, however, factors were included such as a detailed
description, the underlying base technology, the population, a typical example
within the ecosystem, and the estimated size of the ecosystem in terms of number
of platform extenders’.

Typology and classification models have been created for business ecosys-
tems. The model of Boons and Baas [6], for instance, identifies product life
cycle, material life cycle, geographical area, sectoral, and miscellaneous ecosys-
tems. Our classification, however, specifically looks at four factors, being;:

Base Technology - The definition of a software ecosystem suggests that in
general there will be some technology underpinning the ecosystem. The survey
in this paper suggests that all software ecosystems are underpinned by a tech-
nology. The types of technology found here are a software platform, a software
service platform, and a software standard. Most software ecosystems in the sur-
vey are underpinned by one software platform, such as AutoCAD, Ubuntu, or
Wordpress. Some software ecosystems are even underpinned by multiple soft-
ware platforms, such as the Microsoft ISV ecosystem, which is underpinned by
Microsoft CRM, Sharepoint, Exchange, and many other underlying platforms.
The third type of base technology for software ecosystems is a software service
platform, where an online service is provided around which other ecosystem par-
ticipants can gather, such as the Force.com platform and the HubSpot platform,

! The full survey can be found here:
http://www.softwareecosystems.org/empirical /governancesurvey/

Table 1. Ecosystems Under Study and their Classification according to the Ecosystem

Classification Model

Name Underpinning| Coordinators | Extension market Accessi-
technology bility
AutoCAD plug-ins [platform privately owned |a list of extensions paid
Ubuntu platform consortium multiple extension markets for free
Android platform privately owned |a commercial extension market [screened
iOS platform privately owned |a commercial extension market |paid
Eclipse platform consortium an extension market screened
XBMC platform consortium multiple extension markets for free
Joomla platform consortium a list of extensions screened
GX platform privately owned |an extension market screened
Ruby platform consortium multiple extension markets for free
Ogre3D platform consortium a list of extensions screened
MS ISV Partners platforms privately owned |a commercial extension market |paid
‘Wordpress service platform |consortium an extension market screened
HubSpot service platform |privately owned |a commercial extension market [screened
SalesForce service platform |privately owned |a commercial extension market [screened
Spotify service platform |privately owned |an extension market screened
‘World of Warcraft service platform |privately owned |multiple extension markets for free
XBRL standard consortium a list of extensions paid
Open Design All. standard consortium a list of extensions paid
OSGi standard consortium a list of extensions paid

which are only available online and cannot be installed individually on a cus-
tomer’s server. Finally, an ecosystem can be underpinned by a software standard,
such as the XBRL ecosystem or the Open Design Alliance, which bases most
of its technology around AutoDesk’s DWG standards. Please note that some
technologies are based on other technologies and therefore may have an overlap
with those ecosystems. The case of Joomla, for instance, relies on a database,
a web server, and an operating system and its participants are all also partic-
ipant (sometimes unknowingly) in these other ecosystems. Furthermore, please
also note that we abstract from the technology used for platform extension (i.e.,
API, service call, plug-ins, apps). For an extensive discussion on extension pat-
terns the work of Jansen et al. [26] can be used as a starting point.

Coordinators - The coordinators of an ecosystem are perhaps the largest
influence on governance: the owners have full control over the tools and methods
that are used to increase the success of an ecosystem. A software ecosystem is
either owned by a community or owned by a private party. An ecosystem that
is controlled by a community is the Eclipse ecosystem. The Eclipse consortium
controls the ecosystem and represents the wishes and commands of the consor-
tium members, ideally. An ecosystem in which the technology is privately owned
by a commercial party with typical commercial interests, usually exerts more
control over the ecosystem. An example of a commercially controlled ecosystem
is the i0S ecosystem, where Apple (the private owner of the underpinning tech-
nology) for instance determines what types of applications are accepted to the
application store.

Extension Markets - Many of the software ecosystems are centralized
around a market of extensions, also known as app stores or app markets. A
software ecosystem can have no extension market, a simple list of extensions, an
actual extension market, a comercial extension market, and multiple extension

markets. When a software ecosystem has no explicit extension market, compo-
nents may be available through known third-parties. An example of this is the
AutoCAD ecosystem, where there is a short list of components on the Autodesk
community site, but there exist many more extensions available only through
third-parties that do their own marketing. A more mature way of handling ex-
tensions is a list of extensions. The methods of getting on the list are determined
by the accessibility of the extension market. An example of the extension list is
provided on the site of the three dimensional graphics platform Ogre3d, where
developer contributions to the ecosystem are listed on a simple web page. The
next level of extension market actually enables parties to distribute and even
sell their extensions on the market. An example of this is the Firefox Extensions
market, where third parties can offer their extensions, without having to pay
the Firefox consortium. A commercial extension market is used by the owner to
make money, with the obvious examples being the Android App Market and the
iOS App Stores. Finally, some ecosystems, such as the XMBC and World of War-
craft ecosystems, have multiple extension markets. In the case of the World of
Warcraft software ecosystem, the maker of the game did not want to create their
own add-on store and left it to the market to create solutions for that. Several
development hubs and add-on markets have been created, such as “curse.com”
and “wowace.com”.

Accessibility - Accessibility to an ecosystem is one of the defining factors
for an ecosystem: the ability to join an ecosystem and its barriers to entry deter-
mine what types of participants will play a part in it. For software ecosystems
three accessibility possibilities have been identified: open source, screened but
free, and paid. An open source ecosystem is one where it is possible to add
contributions to a project, create and publish components in the extension mar-
ket, etc., without any barriers. An example of such an open source ecosystem
is the Rails ecosystem, where developers can simply add components (gems) to
the community without anyone performing another check. Typically, however, a
committee performs some quality control to make sure that a developer’s contri-
bution is of the right quality, such as with Eclipse Plug-ins and plug-ins for the
Chrome browser. The most restricted is an ecosystem for which must be paid.
An example of such an ecosystem is the iOS ecosystem, where a developer must
pay a small amount before being able to publish applications in the extension
market of Apple. When combining these four qualifiers the following defining
sentence results:

The [NAME] software ecosystem is based on a {software platform,
software service platform, software standard} and is coordinated by a
{privately owned entity, community } with {no extension market, a list
of extensions, an extension market, a commercial extension market, mul-
tiple extension markets} to which participants can submit extensions
{for free, after a screening, after making a payment}.

For example, the Apple i0S software ecosystem is described as follows:

The Apple iOS software ecosystem is based on a software platform and
coordinated by a privately owned entity with a commercial extension
market to which participants can submit extensions after making a pay-
ment.

It must be noted that several qualifiers were excluded, but may play a defining
role in describing a software ecosystem. One of those candidates was stickiness,
based on the characteristics “network effects”, “switching costs”, and “multi-
homing”. The main problem with stickiness, i.e., how hard it is for participants
in an ecosystem to switch to another, is that it can only be defined in continuous
scales instead of discrete terms as the qualifiers do now. A second qualifier that
was excluded was entry barriers, which are highly dynamic and can change
frequently. Another factor that defines an ecosystem that was left out of the
defining statement is the number of markets that the ecosystem brings together.
Most software ecosystems concern only two markets, such as AutoCAD users and
AutoCAD plug-in builders. For other ecosystems, however, this is much more
complex, such as for a mobile ecosystem in which extension builders, phone users,
hardware providers, phone service companies and a central platform coordinator
are brought together in one ecosystem. Finally, the market size has been excluded
because a considerable (potential) market is considered a prerequisite for any
software ecosystem.

Observation 1: Standards are a special kind of ecosystem. When studying
the data, some patterns can be discovered. To begin with, standards are an
interesting foundation for an ecosystem: multi-homing (i.e., the use of multiple
standards) is always possible, they are generally managed by consortia with paid
memberships, and standards are usually promoted using showcases as opposed
to an extension market for software platforms.

Observation 2: Market ownership tells the story. Typically, in case a private
entity manages the platform the ownership of the market lies in the hands of
that entity. As a consequence, when there are multiple extension markets the
platform is typically managed by a community (with the exception perhaps, of
Android, which has multiple extension markets and a commercial one). If the
extension market is a “commercial” market, i.e., money can be made by selling
an extension in the market, it is always owned by a private party. When an
ecosystem has multiple extension markets, they are typically openly accessible
and do not require a fee up front. When extenders need to pay for an extension
market to get their extensions in there, switching costs are typically high.

Observation 3: Freely accessible ecosystems also allow multi-homing. All
ecosystems encountered that do not have a paid membership or entry barrier,
as a logical consequence typically also allow multi-homing.

Observation 4: Extension lists have relatively high entry barriers. When an
ecosystem coordinator manages a list of extensions instead of an extension mar-
ket, it is typically hard to get onto the list. For most community-managed ecosys-
tems getting onto the list means the extension needs to be approved by the core
team of developers. For privately managed ecosystems, it requires approval of
the platform leader and frequently involves joining the partner program.

Observation 5: Service platforms are always in the hands of privately owned
parties. Due to the running costs of an online service, online service platforms
are always managed by commercial organizations. Even Wordpress.com, which
is based on the open source content management platform Wordpress, is man-
aged by Automattic, a commercial entity that contributes to the Wordpress
community actively.

5 Governance Tools

Coordinators of software ecosystems have little insight into the governance tools
that are available to them. In this section a governance model for ecosystem
health preservation and improvement is presented, that provides ecosystem co-
ordinators with a set of tools for maintaining and improving the health of
the ecosystem, by stimulating growth, economic activity, and robustness of the
ecosystem. For each of the ecosystem health aspects, being robustness, niche
creation, and productivity, governance tools are provided. These governance
tools are provided for four different kinds of ecosystem coordinators. Software
ecosystem governance is defined as procedures and processes by which a com-
pany controls, changes or maintains its current and future position in a software
ecosystem [1]. Although the definition applies to any company in the software
ecosystem, we focus on the efforts that the “platform leaders” are directing at
improving their position in the software ecosystem. Furthermore, the health mea-
sures of Tansiti and Levien [21] and the operationalization of Den Hartigh [13]
are taken as the starting point for the governance methods, in the sense that we
focus on robustness, niche creation, and productivity as the core of ecosystem
health. Furthermore, the typology from the previous section is taken into ac-
count, to illustrate the difference between a community run software platform, a
commercially run software platform, a community run standard, and a commer-
cially run standard. The governance model for ecosystem health preservation is
presented in figure 1 and is based on the results from the case studies, the Open
Software Enterprise model [27], the governance model of Baars et al. [1], and the
work of Den Hartigh et al. [13]. Please note that this work provides a top-down
view for the governance of an ecosystem. For a more practical bottom-up ap-
proach one might consult the work “The Art of Community” [2], which provides
concrete tools for creating, maintaining, and growing an open source community.

5.1 Software (Service) Platform Governance

Community-driven software platform - Community driven software plat-
forms are typically large open source products, but sometimes, such as in the
case of IntelliCAD, closed source products that are managed by a consortium.
Coordinators of such communities have to deal with independent individuals
and organizations that use the platform for their own means, and these coor-
dinators have to make sure the platform and its development process remain

Software (service) platform Standard
Community Private Entity Community Private Entity

Expand applicability Expand applicability Expand applicability Expand applicability
° g Make strategy explicit Make strategy explicit Make strategy explicit Make strategy explicit
£ = | Create APIs Create APls Form subgroups Form subgroups
] g Do co-development Do co-development
2z G | Contrib to comp. platforms Dev. complementary platforms

Develop new business models

Form consortium Create partnership model Form consortium Protect the standard legally
» Grow consortium Do marketing Grow consortium Do marketing
3 Create subgroups Grow profits Raise memberships Raise memberships
c Raise entry barriers Partner development programs Form alliances Evolve platform
? Form alliances Form alliances Make consortium explicit Make partners explicit
_g Stabilize APIs Stabilize APIs Open up governance Start certification program
8 Make consortium explicit Raise entry barriers Start certification program

Open up governance Make partners explicit

Propagate operation knowledge

2 Organize dev days Organize dev days Create showcases Create showcases
S Create knowledge hubs Collaborative marketing Create knowledge hubs Collaborative marketing
"3 Participate in contests Create sales partner program Create new sales channels
_g Create new sales channels
<
o

Fig. 1. Governance Model for Ecosystem Health Preservation and Improvement

active and healthy [35]. Coordinators have to make sure that sufficient niche
creation is happening for other parties to join in. Steps that can be taken are
the creation of APIs, the extension of the applicability of the platform (for in-
stance by venturing into new domains), and the strategy of the platform must
be made explicit. By making the strategy explicit, i.e., product lifecycle, acqui-
sition strategy, platform strategy, and ecosystem strategy, niche players can rest
assured that their position in the ecosystem will remain safe. Furthermore, com-
munity coordinators can do co-development and co-funding requests with third
parties to attract them to the ecosystem. Finally, for niche creation, commu-
nity coordinators can contribute to complimentary platforms, because as those
complimentary platforms grow, so does the platform of the coordinators.

In regards to robustness, community coordinators must make sure the com-
munity remains as lively and stable as possible, to provide a strong core to which
third parties can commit safely. In the beginning, community coordinators can
form a community to formalize the way in which contributors and third-parties
can assist in keeping the ecosystem healthy. Once the consortium is explicit,
it can be grown by attracting new members. Furthermore, subgroups can be
created to bring together domain specialists in an ecosystem, thereby further
mobilizing the community itself. To make the ecosystem more stable, a commu-
nity can further raise the barriers of entry, to create a critical mass of dedicated
core members who are fully committed to the platform: in the case of the Eclipse
platform several companies are providing millions of dollars in development for
the platform, simply to be a strong steering member in the Eclipse ecosystem.

Next to that, ecosystem coordinators can form alliances with other ecosystems
to create further complimentaries and subgroups within the ecosystem. Further-
more, by stabilizing the API, the platform can become a slowly evolving core of
functionality for the community. Finally, the consortium must be made explicit
to show the world who are key members of the organization. As a final step,
the consortium can open up governance, to have the consortium govern itself
through the years.

With respect to productivity, community managers have several tools avail-
able to make the ecosystem create more value. A typical tool to use is to raise
awareness and activity surrounding the platform by organizing development days
and by organizing and participating in contests that require the use of the plat-
form. Finally, the creation of knowledge hubs enables participants in the com-
munity to share and find knowledge, thereby making them more productive and
effective.

Privately owned software platform - Private owners of software plat-
forms, such as Microsoft, Apple, and Autodesk, want to maximize their value
by penetrating the market as deeply as possible. This penetration is reached
mostly by associating with domain specific parties that leverage the platform
within the ecosystem to create value for customers that would have never been
reached without these domain experts (i.e., niche players). Coordinators of these
platform-based ecosystems are similar to communities in that they too want to
continuously increase the use of the platform, however, the main difference is
that these coordinators want to maximize their profit as well. When looking at
niche creation, all the same tools can be used as community coordinators do:
expand the applicability of the platform, make the strategy explicit, create APIs,
do co-development with partners, and develop or contribute to complimentary
platforms. Coordinators of commercial platform ecosystems, however, can also
create niches and business opportunities by introducing new business models
for third parties. A relevant example is that of the commercial extension mar-
kets that are on the increase, which enable third parties to make profits from
customers they previously could not reach.

To increase robustness, the private company can do several things to create
stability and stimulate activity in the ecosystem. Typically, these start with the
development of a partnership model that enables third parties to participate
and create value in the ecosystem according to set roles and positions in the
ecosystem. Furthermore, the general strengthening of the hub and ecosystem
by doing marketing, raising prices, and growing profit stabilizes the ecosystem
significantly (within limits). Partners with potential or weak partners can play
a strong role in (de)stabilizing the ecosystem, so the introduction of a partner
development program can strengthen weak participants and bring high poten-
tials closer to the ecosystem. An example of this is when Microsoft pays for
the development of new extensions in their Windows Mobile Application Mar-
ket. Also, the forming of alliances with other hubs in ecosystems, the raising of
entry barriers, and the propagation of software operation knowledge (i.e., how
the software and its extensions run at customers) throughout the ecosystem can

raise quality and stability [37]. Raising entry barriers can increase the robustness
of the ecosystem. By increasing membership fees, raising quality levels, starting
certification programs, and assigning different levels within the partnership pro-
grams, the ecosystem will grow a stable core of committed members. Finally,
the stabilizing of APIs creates consistency within the ecosystem and enables
partners to create trustworthy and stable extensions to the platform.

With respect to productivity, coordinators of a privately owned platform can
also organize development days to increase activity. Furthermore, collaborative
marketing and sales can be done, to emphasize that smaller extending third par-
ties have a respectable relationship with the platform leader. Finally, the creation
of new sales channels to enable more revenue for the ecosystem participants can
play a big part in productivity of the ecosystem.

5.2 Software Standard Governance

Software standards are different from software platforms in that they represent
not a platform or a software artifact, but a set of standardized interfaces to
enable communication and exchange of information across different organiza-
tions. These standards organizations guard the standard and grow the ecosys-
tem around it. Governance of these ecosystems is different in several aspects:
the core of the ecosystem is knowledge, not a software platform. It is highly
uncommon for a privately owned organization to set a standard, however ex-
amples are the DWG format of Autodesk, previously Adobe’s PDF format, and
Microsoft’s Office file formats. In the data set we did not find many commercial
organizations managing a standard, so the fourth column in figure 1 is mostly
based on literature.

Community Driven Standard - Most standards are driven by a thriv-
ing community of participating organizations, all with different aims with the
standard but with a common goal. Examples of such organizations are W3C,
ISO, and many others. To create niches for a standard, its applicability can be
extended to include new domains. Furthermore, when a standards organization
makes its strategy explicit to the community, participants become aware of why
and how the standard will benefit them and whether they are in direct conflict
with the community or not. Finally, the establishment of subgroups is beneficial
for the creation of new niches in which the standard can be applied.

In regards to robustness, different tools can be applied to increase it, such as
the formation of a formalized consortium, the growing of the community, or the
raising of memberships to strengthen the community organization and ensure
its continuation in the future. The formation of alliances with other (compli-
mentary) standards or platforms may also be beneficial, as it encourages further
adoption of the standard. Also, the community can open up the governance of
the consortium, for instance by establishing how decisions within the consortium
must be made. Finally, a certification program enables an ecosystem coordinator
to raise quality standards and establish certain partners as being highly valuable
for the ecosystem.

In regards to productivity, it is hard for the standards organization to de-
termine tools for increasing adoption and use of the standard. However, two
tools that are available and widely used are the use of showcases of how the
standard has benefited the organization that uses it, and also the creation of
knowledge hubs to inform participants from different domains about the use of
the standard.

Privately Owned Software Standard - There are some occurrences of
privately owned software standards, such as the Microsoft Office File Format and
the DWG File Format of Autodesk, used for the exchange of the 3D drawings.
The way in which these ecosystems are formed and stimulated are similar to those
owned by a community or consortium, with the only exception that the standard
is typically partly closed and protected by intellectual property laws, to leverage
the advantages of owning a widely used standard, such as the sale of APIs and
libraries for the reading of such libraries. In regards to niche creation, private
coordinators can apply the same tools as communities: expand applicability,
make the strategy of the standard explicit, and form subgroups.

To increate robustness, the standard can be legally protected by using user
licenses and intellectual property law. Furthermore, robustness is determined by
the strength of the standard, so raising usage fees and doing abundant market-
ing for it will increase market penetration and stability. Also, the evolution of
the standard keeps the standard relevant and outmanoeuvres competition. Fi-
nally, the usage of a partner program and possibly partner certification, further
stabilizes the ecosystem.

In regards to productivity, knowledge hubs must be created, showcases can
be used to show the effect of using the platform, and collaborative marketing en-
ables standards users to leverage their partnership with the standard ecosystem
coordinator. Also, the ecosystem coordinator can assist by creating new sales
channels, for instance by connecting niche players with potential customers in
specific domains.

The governance model as presented leads from the results from the survey,
and to a small extend from standards literature. The model does not, however,
claim to be complete. To achieve completeness, a structured literature survey
needs to be conducted, which is considered future work. The model can then to
be extended with the coring and tipping methods of Cusumano and Gawer [18],
Cusumano’s “levers” [19], and standards governance methods [3, 35].

6 Discussion and Conclusion

This paper presents a model for classifying software ecosystems and hopes to
present a de facto standard for presenting cases and survey results on software
ecosystems. The model has been kept deliberately simple, but aims to illustrate
the defining characteristics of software ecosystems. With this model software
ecosystem researchers can quickly gain insight into the characteristics that define
any particular ecosystem. The classification model has been used to identify four
different classes of software ecosystems. For each of these classes governance tools

have been identified and presented in the software ecosystem governance model
for health preservation and improvement.

At the current stage it is hard to claim completeness of both the classification
model and the governance model for ecosystem health preservation and improve-
ment. Part of the future work is to further evaluate the model with ecosystem
coordinators and to perform a more extensive survey of software ecosystems for
improved validation of the models. Now that a list of governance tools has been
created, the applicability of the tools and the dependent situational factors must
be determined. In the future we hope to create a software ecosystem governance
maturity model that provides guidelines for improving software ecosystem gover-
nance, depending on the maturity of a software ecosystem and other situational
factors.

References

[1] A. Baars and S. Jansen. A framework for software ecosystem governance.
In Proceedings of the Third International Conference on Sw Business 2012,
Boston, MA, USA, 2012.

[2] Jono Bacon. The Art of Community - Building the New Age of Participa-
tion. O’Reilly, 2009.

[3] Paul Bannerman and Liming Zhu. Standardization as a business ecosystem
enabler. In Proceedings of the International Workshop on Enabling Service
Business Ecosystems (ESBE08), 2008.

[4] O. Barbosa and C. Alves. A systematic mapping study on software ecosys-
tems. In Proceedings of the 3rd Workshop on Sw Ecosystems. http://ceur-
ws.org/Vol-746/, 2011.

[5] B. Beizer. Software is different. Annals of Software Engineering, 10:293-310,
2000.

[6] FAA Boons and L.W. Baas. Types of industrial ecology: the problem of
coordination. Journal of Cleaner Production, 5(1):79-86, 1997.

[7] J. Bosch. From software product lines to software ecosystems. In Proc.
of the 13th Int’l Sw Product Line Conf., pages 111-119. Carnegie Mellon
University, 2009.

[8] Sjaak Brinkkemper, Ivo van Soest, and Slinger Jansen. Information Systems
Development, chapter Modeling of Product Software Businesses: Investiga-
tion into Industry Product and Channel Typologies, pages 1-19. Springer
US, 2009.

[9] G. Briscoe and P. De Wilde. Digital ecosystems: evolving service-orientated
architectures. In Proceedings of the 1st international conference on Bio
inspired models of network, information and computing systems, page 17.
ACM, 2006.

[10] E. Carmel. Cycle time in packaged software firms. Journal of Product
Innovation Management, 12(2):110-123, 1995.

[11]

[12]

[13]

[14]

M.A. Cusumano. The Business of Sofware: What Every Manager, Program-
mer and Entrepreneur Must Know to Succeed in Good Times and Bad. Free
Press, New York, NY, 2004.

JB DeLong. Why the valley way is here to stay. Fortune, 141(11):36-37,
2000.

Erik den Hartigh, Michiel Tol, and Wouter Visscher. The health measure-
ment of a business ecosystem. In Proceedings of the Furopean Network on
Chaos and Complexity Research and Management Practice Meeting, 2006.
D. Dhungana, I. Groher, E. Schludermann, and S. Biffl. Software ecosystems
vs. natural ecosystems: learning from the ingenious mind of nature. In
Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume, pages 96-102. ACM, 2010.

Barbara Farbey and Anothny Finkelstein. Software acquisition: a business
strategy analysis. In Proceedings of the 5th IEEE International Symposium
on Requirements Engineering, pages 67-83. IEEE Computer Society, August
2001.

Lucia Gao and Bala Iyer. Analyzing complementarities using software stacks
for software industry acquisitions. J. Manage. Inf. Syst., 23(2):119-147,
2006.

Lucia S. Gao and Bala Iyer. Partnerships between software firms: Is there
value form complementarities? In Proceedings of the 41st Hawaii Interna-
tional Conference on System Sciences, 2008.

A. Gawer. Platforms, Markets and Innovation. Edward Elgar, 2009.
Annabelle Gawer Gawer and Michael A. Cusumano. Platform Leadership.
Harvard Business School Press, Boston, MA, USA, 2002.

B.A. Huberman. The laws of the Web: Patterns in the ecology of informa-
tion. The MIT Press, 2003.

Marco lansiti and Roy Levien. Strategy as ecology. Harvard Business
Review, 82(3):68-78, March 2004.

B. Iyer, C.H. Lee, and N. Venkatraman. Managing in a 'small world ecosys-
tem’: Lessons from the software sector. California Mgmt. Review, 48(3):28—
47, 2006.

Bala Iyer, Chi-Hyon Lee, and David Dreyfus. Competing in the era of
emergent architecture: The case of packaged software industry. Hawaii In-
ternational Conference on System Sciences, 0:209b, 2007.

S. Jansen, A. Finkelstein, and S. Brinkkemper. A sense of community:
A research agenda for software ecosystems. 2009. In 31st International
Conference on Software Engineering, New and Emerging Research Track.
Slinger Jansen, Sjaak Brinkkemper, and Anthony Finkelstein. Component
assembly mechanisms and relationship intimacy in a software supply net-
work. 15th International Annual EurOMA Conference Special Interest Ses-
sion on Software Supply Chains, 2008.

Slinger Jansen, Sjaak Brinkkemper, Ivo Hunnik, and Cetin Demir. Prag-
matic and opportunistic reuse in innovative start-up companies, 2008.

[27]

[28]

[29]

[30]

31]

Slinger Jansen, Sjaak Brinkkemper, and Lutzen Luinenburg. Shades of
grey: Opening up a software producing organization with the open software
enterprise model. Journal of Systems and Software, 2012.

Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. Providing
transparency in the business of software: A modelling technique for software
supply networks. In Proceedings of the 8th IFIP Working Conference on
Virtual Enterprises, pages 677-686, 2007.

Hans-Bernd Kittlaus and Peter N. Clough. Software Product Management
and Pricing: Key Success Factors for Software Organizations. Springer-
Verlag Berlin, Heidelberg, 2009.

Y.R. Li. The technological roadmap of cisco’s business ecosystem. Techno-
vation, 29(5):379-386, 2009.

David G. Messersmschitt and Clemens Szyperski. Software Ecosystem: un-
derstanding an indispensable technology and industry. The MIT Press, Cam-
bridge, Massachusetts, London, England, 2003.

James F. Moore. Predators and prey: A new ecology of competition. Har-
vard Business Review, 71(3):75-86, May 1993.

James F. Moore. The death of competition: Leadership and strategy in the
age of business ecosystems. HarperBusiness, New York, 1996.

B.F. Nattrass and M. Altomare. The natural step for business: Wealth,
ecology and the evolutionary corporation. New Society Pub, 1999.

Siobhn OMahony and Fabrizio Ferraro. The emergence of governance in
an open source community. Academy of Management Journal, 50(5):1079—
1106, 2007.

S. Sawyer. Packaged software: implications of the differences from custom
approaches to software development. Furopean Journal of Information Sys-
tems, 9(1):47-58, 2000.

H. van der Schuur, S. Jansen, and S. Brinkkemper. The power of propa-
gation: on the role of software operation knowledge within software ecosys-
tems. In Proceedings of the International Conference on Management of
Emergent Digital EcoSystems, pages 76-84. ACM, 2011.

