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INTRODUCTION  

With currently over 14 million new cases and 8.2 million deaths per year worldwide 
(2012), cancer is one of the leading causes of mortality [1]. The total global burden is ex-
pected to increase to over 22 million new cases and 13 million deaths per year, mainly due 
to a general raise in life expectancy, as well as behavioral factors involving environmental 
carcinogens [2,3]. The result of this development urges for novel approaches to prevent, 
diagnose, and treat cancer more effectively. These active research areas already provide 
successful translation into a holistic cancer management strategy. For example, vaccines 
against human papillomavirus infection have already contributed in reducing the overall 
frequency of cervical cancers [4], mammography screening has led to a reduction in 
breast-cancer related death [5], and immunotherapy has the potential for unprecedented 
responses for certain patients [6,7]. 

Herein lies the general challenge in cancer management; cancers across patients 
are a particularly heterogeneous disease [8], which makes it imperative to select a per-
sonalized treatment combination in order to overcome resistances [9]. This paradigm of 
applying tailored treatment to every individual patient, is commonly referred to as ‘preci-
sion medicine’. This thesis investigates how novel quantitative radioimaging based diag-
nostic approaches to phenotype tumors can be used in conjunction with tissue based 
genotyping of tumors to assess tumors more accurately. We present results of multiple 
studies, in which we have documented mechanistic connections between radioimaging, 
gene expression traits, somatic mutations, and clinical outcomes including overall survival, 
progression-free survival, and pathologic histology. 

The core of this thesis are radiogenomic analyses linking radioimaging and mo-
lecular biology for precision medicine in cancer. In the following, the thesis objectives are 
formulated and the structure of the thesis is outlined. Next, we recapitulate the funda-
mental importance of precision medicine in cancer and the role of radiation oncology in 
clinical care. Subsequently, we introduce the concept of “radiomics”, an automated, quan-
titative approach to assess the radiographic phenotype of a tumor based on machine 
learning. Furthermore, we review current radiomics literature with a focus on prognostic 
and predictive value of radiomic approaches across several cancer types, as well as prelim-
inary results exploring molecular relationships. In addition, we will build on current radi-
omics literature to motivate the thesis goals of unraveling the mechanistic connections of 
radiomics, tumor biology, and clinical outcomes.  
 
Thesis Objectives  
 
Radiomics is a novel field that seeks to innovate current cancer management by automati-
cally converting standard medical images of tumors into actionable quantitative data. This 
data can then be objectively characterized using computational statistics and machine 
learning to create predictive models of disease progression. Despite the enormous poten-
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tial to complement current diagnostic approaches, including genomic profiling, little is 
known about the biological principles that underlie radiomics. 

The goal of this thesis is to elucidate biological mechanisms that drive radiomic 
imaging phenotypes in solid tumors, information that could be leveraged to predict bene-
fits of targeted drugs (i.e., imaging-biomarkers). To this end, we present integrative anal-
yses that combined quantitative imaging, molecular interrogation, and clinical parameters. 
These results were obtained on large, independent, and novel cohorts of patients with 
non-small cell lung cancer and glioblastoma multiforme, which are two of the most ag-
gressive and common cancer types in adults. Moreover, we made all underlying data as 
well as documented analysis code publicly available wherever possible, to ensure repro-
ducibility of our results and enable further translational research. 

 

 
 
Figure 1: Integrative Radiomics for Precision Medicine.  
The goal of this thesis is to create holistic views of solid tumors from three different combined angles: imaging, 
biology, and clinical factors. This is achieved by profiling tumors with radiomics, molecular methods, and clinical 
follow-up, respectively. The end goal of this holistic view is an advanced understanding of the current state of a 
tumor to assign more effective therapies to individual patients. 
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Outline 
 
This doctoral thesis is structured in five parts comprising ten chapters in total. Part 1 is a 
general introduction to radiomics, its potential impact of precision medicine in cancer, and 
the challenges of biological reasoning of radiomic based biomarkers. The core of this the-
sis is structured in Part 2 to 4 that present published studies conducting research on the 
underlying biology of radiomics, their implications on targeted therapies, and the need for 
rigorous and technical machine learning methods for radiomic prognostication. Finally, 
Part 5 discusses those results in the context of current clinical practice and future devel-
opments. We briefly summarize the thesis chapters below. 
 
Part 1: Introduction 
 
Chapter 1 provides background information and literature research on precision medicine 
in cancer, biomarkers, radiation oncology and its potential for cancer diagnostics, the 
emerging field of quantitative radiomics, and challenges in revealing the biological basis of 
radiomic based predictions for clinical decision support. 
 
Part 2: Radiomics and its Underlying Biology 
 
Chapter 2 defines the biological basis of radiomics by linking a broad set of radiomic fea-
tures extracted from CT lung tumor scans to molecular pathways based on global gene 
expression analyses. Furthermore, we link these results to clinical factors, including tumor 
stage, histology, and overall survival. Importantly, we validated our results on several lev-
els, including statistical validation with independent datasets and biological experiments. 
Finally, we shed light on the current academic discussion whether radiomics adds prog-
nostic value to existing predictors based on genomic or clinical data. 
 
Chapter 3 extends the results from Chapter 3 to associations between volumetric pheno-
typic features of glioblastoma derived from MRI and gene expression data. Chapter 4 adds 
novel insight about how such volumetric features are connected to somatic mutations of 
oncodriver and tumor suppressor genes.  
 
Part 3: Radiomics for Targeted Therapies 
 
Chapter 5 presents an extensive study that investigated prognostic value of radiomics for 
patients with recurrent glioblastoma treated with bevacizumab, an anti-angiogenic treat-
ment currently approved for recurrent glioblastoma in the US. This study was conducted 
on data from a clinical phase II trial that contributed to accelerated approval be the US 
FDA. 
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Chapter 6 aimed at defining a radiomic response phenotype to gefitinib, an EGFR inhibi-
tor. Similar to Chapter 5, this study investigated whether radiomics could be a valuable 
tool to predict an EGFR target in patients with non-small cell lung cancer. Here as well, this 
study was performed on data from a clinical phase II trial. 
 
Part 4: Prognostic Value of Radiomic Machine Learning 
 
Chapter 7 evaluates a diverse host of machine learning algorithms for radiomic prognosti-
cation in lung cancer. This study aimed at suggesting optimal machine learning methods 
for future radiomic studies using overall survival as clinical endpoint. 
 
Chapter 8 provides insights on how pathological response can be predicted in lung cancer 
by incorporating unsupervised machine learning methods. 
 
Chapter 9 extends those results by incorporating advanced supervised machine learning 
methods to optimize radiomic predictions. The clinical endpoint here was, for the first 
time, distant metastasis and included independent validation of the results. 
 
Part 5: Discussion and Future Perspectives 
  
Chapter 10 concludes this doctoral thesis by discussing the overall impact that our radio-
mic studies have on the general scientific and oncological community. Individual studies 
that are part of this thesis are linked to each other and embedded into future perspectives 
to innovate clinical decision making in cancer care. 
 
Precision Medicine and Tumor Heterogeneity 
 
Precision medicine refers to the paradigm of offering patients individualized treatment on 
the basis of their personal data. In oncology, different layers of patient data are already 
considered when treating patients, including tissue, family history, demographics, and 
blood markers [10–12]. More sophisticated approaches that take the biological makeup of 
a tumor into account are increasingly available in clinical practice [13–16], especially geno-
typing of tumors to test applicability of compounds that target specific genetic mutations.   

One of the major obstacles of individualizing patients with cancer is that cancer is 
a heterogeneous disease, which limits both diagnostics and treatment. It is well established 
that the degree of heterogeneity varies temporally [17], intensifying these issues in later 
stage cancers where diagnostic and treatment are even more decisive. Generally, the scien-
tific and clinical community distinguish between inter- and intra-tumor heterogeneity. 
 
Inter-tumor heterogeneity refers to the heterogeneity of tumors observed across different 
patients [18]. This entails that gene mutations, expression, and metabolism in tumors may 
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differ even for cancers of the same tissue. Consequently, the disease phenotype may dif-
fer as well, requiring adaptation of treatment. To date, however, treatment is largely 
based on tissue type, histology of the tumor, and risk factors such as age, gender, or other 
risk factors [19]; basing treatment on molecular profiling would enable to individualize 
treatment even further. Cases where molecular profiling has already been successful in 
treating patients mainly include genetic testing for targetable mutations [20]. 
 
Intra-tumor heterogeneity refers to heterogeneity of the population of cancerous cells 
that a tumor is comprised of [18]. The genetic and genomic landscape of these cells varies 
substantially explained by darwinian clonal evolution [9]. As a result, genomic profiling of 
tumors may deliver contradicting views on mutations, expression, and metabolism of a 
cell mass, depending on the spatial and temporal properties of the sampled tissue [8,9]. 
This means, for example, that even though a certain number of cancerous cells may con-
tain a specific mutation that is susceptible to a targeted drug, the tumor as a system can 
become resistant to that drug as soon as cells without the corresponding mutation have 
outgrown the other susceptible cells. This adaptation of disease phenotype is one of the 
most common mechanism of acquired drug resistance [21]. 
 
While molecular profiling via single-needle biopsy can account for inter-tumor heterogenei-
ty, single-needle biopsy driven assessment is limited by intra-tumor heterogeneity [8] as 
the spatial location of the tissue sample is crucial. Multiple approaches have been suggest-
ed to account for intra-tumor heterogeneity, including combination therapies, single-cell 
analysis,  and assessment of molecular cell-free DNA [22–25]. The ideal scenario of preci-
sion medicine in practice would be a holistic view that incorporates multiple of those ap-
proaches on a longitudinal scale for immediate intervention. Common goals of those ap-
proaches include understanding of the mechanisms of treatment response and combating 
the development of resistances to expand life expectancies of patients living with cancer.  
 
Biomarkers 
 
Biomarkers are a fundamental tool in precision medicine. Biomarkers are defined as an 
objective state of a biological process that can be measured reproducibly and which indi-
cates a medical condition of a patient [26,27]; examples range from blood pressure, over 
genomic assays, to radioimaging based parameters. Biomarkers are developed to predict 
clinical endpoints based on which treatment options can be designed to improve morbidi-
ty and mortality. The underlying assumption is that the same treatment may not show the 
same efficacy in patients that show different biological indications. 

In oncology, a variety of biomarkers have been proposed on the basis of nucleic 
acids (e.g. genetic mutations or expression), proteins, or antibodies [28]. Such biomarkers 
can be used for screening, differential diagnosis, prognosis, and prediction of treatment 
response or recurrence. Most often, these biomarkers have been developed from analyz-
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ing alterations to healthy individuals. A biomarker can also be a simultaneous measure-
ment of a group of biological processes; for example, the combined expression of a group 
of genes, termed gene signature, can be used for prognosis [29]. 
 
Biomarkers for cancer subtype identification: An important application of biomarkers in 
oncology is predicting tumor subtypes to stratify patients into more effective treatment 
groups. A prominent example of this is inhibition of epidermal-growth-factor-receptor 
(EGFR) in cases where a sensitizing mutation is present in this gene [30,31]. Drugs that 
target this mutation, such as Erlotinib, Gefitinib, and Afatinib, have shown dramatic effica-
cy in lung cancer [32] and similar results have been suggested for other EGFR targets in 
colon cancer [33]. Without an effective biomarker to assess mutational status of tumors, 
targeted drugs could not be prescribed.  
 
As noted earlier, applicability of single-needle biopsy based biomarkers is limited in clinical 
practice due to intra-tumor heterogeneity. Therefore, alternative approaches towards 
biomarkers are currently being explored to augment molecular profiling of tumors. One of 
these approaches is tumor phenotyping based on radiographic imaging [34]. Imaging bi-
omarkers aim at assessing tumor phenotype by analyzing images of tumors generated 
from radiographic scanners [35]. 
 
Medical Imaging in Cancer 
 
Medical imaging is crucial to an integral cancer management and is used clinically, as well 
as pre-clinically [36]. Medical imaging can generate visualizations on multiple scaling lev-
els, ranging from molecular imaging (e.g., cell surface receptors) to anatomical imaging 
(e.g., organs) [36,37]. In clinical oncology, radiology deals with anatomical imaging tech-
niques to visualize solid and soft tissue within the body of patients, particularly tumors. 
Importantly, these techniques are non-invasive, meaning that tissue will not be damaged 
to create a visualization. Non-invasiveness also implies that radiographic interrogation can 
be applied longitudinally for long-term monitoring without additional acquisition risk to 
patients, which is a considerable advantage compared to invasive biopsies. Radiation on-
cologists utilize anatomical imaging to detect, locate, and diagnose a tumor [36]. Further-
more, imaging serves as guidance tool in surgical resection of tumors and is utilized in 
treatment planning in radiation therapy.  
 
Imaging modalities: Different imaging techniques have been developed; for example, X-
Ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), or Positron Emis-
sion Tomography (PET) [36]. These techniques are used for different purposes, mainly de-
pending on the tissue of the cancer. For example, while CT is the primary imaging modality 
to visualize lung cancer, MRI is the primary choice for brain cancer. Furthermore, PET pro-
vides functional images, which indicate metabolically active areas of tumors [38]. 
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Imaging criteria for disease assessment: Several imaging based criteria have been devel-
oped to assess characteristics, such as tumor stage or response to treatment, for example 
the Tumor Nodule Metastasis (TNM) system [39], the Response Evaluation Criteria in Solid 
Tumors (RECIST) [40], or the Response Assessment in Neuro-Oncology Criteria (RANO) 
[41,42]. While these criteria are widely implemented in hospitals treating patients with 
cancer, performance of these metrics is limited due to inherent oversimplifications. For 
example, treatment response by RECIST has been documented to not correlate with sur-
vival outcome in many cases [43], which from a clinical perspective it should. Similarly, 
reproducibility issues have been reported for TNM staging and response by RANO [44–46]. 
The greatest challenges with criteria such as RECIST, RANO, or TNM are A) that these re-
quire subjective human measurements [46], B) that these criteria incorporate only a lim-
ited subset of available information [47], and C) that these criteria provide qualitative as-
sessment only [48]. Hence, there is an urgent need for the development of objective and 
quantitative imaging metrics that leverage as much available information as possible. 
 
Radiomics 
 
Radiomics is an emerging field aiming at generating actionable insights from standard ana-
tomical imaging in an automated way. Hereby, the goal is to quantify the imaging pheno-
type of a tumor to inform treatment decisions [49]. As genomics refers to the collectivity 
of all genes within a cell, radiomics refers to the collectivity of all quantitative radiographic 
features of a subject of interest. Although radiomics can be applied to any condition that 
can be imaged, radiomics is most developed in oncology. Here, radiomics has the potential 
to improve human-derived imaging diagnostic and response criteria by providing an objec-
tive, comprehensive, and quantitative view of a tumor [37,50]. To achieve this, a large 
number of quantitative features defining tumor intensity, shape, and texture are automat-
ically extracted from the entire visually segmented tumor volume and subsequently char-
acterized using data mining and machine learning [51]. Human interaction in classification 
and scoring of tumors is not required, but quality control by a physician is desired. 
 
Radiomics for predictive disease modeling: Multiple studies have documented prognostic 
and predictive value of radiomics for several clinical endpoints [49,52–57]. Aerts et al. 
found significant prognostic value of a radiomic CT signature developed for overall survival 
that validated across multiple independent cohorts of patients with lung and head & neck 
cancer [49]. Prognostic value across several cancer types has been also observed in a radi-
omic PET signature [58,59], In colorectal cancer, a seminar study by Huang et al. described 
a radiomics nomogram to predict lymph node metastases [60]. Further studies suggest 
that radiomic approaches can distinguish between cancerous and non-cancerous tissue 
[61,62], which is especially relevant in population screening [5].   

These studies have in common that they investigated how radiomic quantities 
are associated with clinical outcomes to build prognostic and predictive models. The cen-
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tral hypothesis of radiomics is that medical images of tumors do not only visualize the tu-
mor burden, but deliver minable data about the tumor type that is currently not used clin-
ically [50]. Furthermore, these data are likely to be complementary to already clinically 
available data from patient history or biopsies [63]. In this case, radiomics could lead to 
the development of advanced clinical decision support system that incorporate automat-
ed medical image analysis into their workflow. 
 
Radiomic innovation for clinical cancer management: Radiomics has several novel and 
complementary advantages compared to more traditional approaches, including single-
needle biopsy based diagnostics [64]. First, radiomics is medical imaging based and there-
fore non-invasive, which allows longitudinal monitoring at low additional acquisition risk 
to patients. Second, radiomics uses objective measurements that are predefined and 
hence can be reproduced by any physician given the same data. Third, radiomics provides 
quantitative, not just qualitative, measurements. Fourth, radiomics is comprehensive and 
not subject to intra-tumor heterogeneity as the entire (visible) tumor is taken into ac-
count, not just a sample from it. Finally, radiomics has unprecedented potential to play a 
central role in clinical cancer management, as imaging is routinely and frequently used in 
oncology and therefore avoids major additional costs of a novel technology; the innova-
tion of radiomics is not the generation of data, but the translation and analysis of existing 
and previously unconsidered data.  
 
Radiomics workflow 
  
The radiomic workflow can be grouped into the four steps: 1) image acquisition, 2) tumor 
segmentation, 3) high-throughput feature extraction, and 4) integrated analysis (Figure 2). 
All of these steps are active research areas that are hypothesized to ultimately lead to bet-
ter risk stratification of patients into more beneficial treatment groups. 
 

 
Figure 2: The Radiomics Workflow. Radiomics is organized in four steps, starting with the acquisition of medical 
images of a tumor via radiographic imaging modalities, such as computed tomography (CT) or magnetic reso-
nance imaging (MRI). On the basis of these images, tumors are segmented in 3D, usually along the axial dimen-
sion. From the segmented tumor volumes, quantitative radiomic features are automatically extracted in high-
throughput, including first-order statistics, shape features, and texture features. Finally, these features are ana-
lyzed and can be further integrated with other sources, such as gene expression data and clinical records. 
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1) Image acquisition: The first step in the radiomics pipeline is the acquisition of images of 
the region of interest, in this case the tumor. Image acquisition has experienced substan-
tial advances over the last decade, especially in terms of hardware and image reconstruc-
tion algorithms [36,37]. In addition, standardized imaging protocols have contributed in 
harmonizing images across hospitals [37,65]. From those images, segmentations are of the 
tumors are obtained. 
 
2) Segmentation: Delineation or segmentation of the three dimensional tumor volume is 
the basis of extracting radiomic tumor imaging features, although historically features 
were also extracted from two dimensional slides [66–68]. Segmentation of tumors is usu-
ally performed on axial slices following the image acquisition of radiographic modalities. 
While manual segmentation of tumors is the current standard for most tumors and imag-
ing modalities, semi-automated and fully automatic tools are available. For instance, the 
GrowCut algorithm implemented into the 3D-Slicer platform (www.slicer.org) is a freely 
available semi-automatic segmentation algorithm [69,70]. An example for fully automatic 
segmentation of brain lesions is given by the BraTumIA (Brain Tumor Image Analysis) algo-
rithm [71], which has been shown to readily yield accurate segmentations [72,73]. Regard-
less of whether automated procedures have been employed or not, the final tumor seg-
mentation has to be verified by an experienced radiation oncologist. 
 
3) Feature extraction: Quantitative imaging features are extracted from the segmented tu-
mor images in high-throughput and can broadly be grouped into first-order statistics, tumor 
shape, and tumor texture [37]. First-order statistics are distributional parameters of the 
gray-level intensity values of the tumors that include minimum, maximum, mean, variance, 
dynamic range, kurtosis, skewness, entropy, and energy. Shape features include compact-
ness, sphericity, volume, diameter, and elongation. Texture features are an important 
group; these features quantify re-occurring gray-level patterns within an image. For exam-
ple, how often gray-levels of the same discretized values are adjacent to each other, or the 
number of voxels (i.e., pixels in three dimensions) that a stretch of increasing gray-level 
values has. In this way, texture features can be a proxy to quantifying intra-tumoral hetero-
geneity. In fact, texture features seem to be amongst the most promising features in terms 
of prognosis [49,55,74,75]. First-order statistics and texture features are often also extract-
ed after filtering methods, such as wavelets or Laplace of Gaussian, have been applied to 
the original image. A comprehensive open source package for radiomic feature extraction is 
PyRadiomics, available through GitHub at https://github.com/Radiomics/pyradiomics. 
 
4) Integrated analysis: Finally, the crucial part of the radiomics workflow is the analysis of 
the extracted features. From all features, the most informative are selected with unsuper-
vised and supervised feature selection procedures [63]. A number of current studies also 
employ a stability dataset for preprocessing to filter for highly reproducible features 
[49,68,76]. As all features are quantitative, statistical models can be fitted to test for cor-
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relations and predictive power for clinical endpoints, including overall and progression-
free survival [64]. In addition to clinical records, an important step is integrating the radi-
omic imaging data with molecular data, such as gene expression and mutation. Hereby, 
the goal is to gain wider insights of the disease progression by leveraging as many data 
sources as possible while assuming that these data types deliver complementary infor-
mation to each other. 
 
Other Type of Image Features 
 
While this thesis deals with automated quantitative radiomic features, other types of fea-
tures can be extracted from medical imaging [64]. The available feature sets range from 
qualitative to quantitative features. Semantic features, such as the MRI scoring scheme VA-
SARI (Visually AcceSAble Rembrandt Images, https://wiki.nci.nih.gov/display/CIP/VASARI), 
provide semantic meaning to their annotation. The advantage of these features is that they 
are typically developed by an expert radiologist. However, this also implies that human as-
sessment is required and therefore intra- and inter variability and time management may 
become issues. Furthermore, these features cannot provide quantitative annotations, but 
yield a qualitative, and sometimes ordinal, perspective. Other types of standardized lexica 
similar to VASARI have been described and documented [77–81]. 
 
The Biological Foundation of Radiomics 
 
A fundamental concern about efforts aiming at clinical translation of radiomics is that the 
underlying biology of radiomics is poorly understood. As an increasing number of studies 
document prognostic and predictive value of radiomic features, it is crucial to enrich these 
associations with their biological rationale to reason about the validity of radiomics based 
predictive tools. For example, a central hypothesis of radiomics is that molecular hetero-
geneity of tumors can translate into macroscopic imaging features [82,83]. Furthermore, 
enhancing radiomics with biological knowledge would allow a more holistic view of the 
disease state of a tumor and thereby close translational gaps of imaging biomarkers. 
These goals could be achieved by developing and applying integrative analyses that com-
bine radiomic image analysis, molecular information, and clinical records. 
 
Gene expression analyses: Preliminary studies have investigated associations of radiomic 
derived features and molecular data. In terms of expression of genes, Segal et al. [84] 
were among the first to suggest that global gene expression patterns in primary human 
liver cancer could be decoded by radiomic features derived from CT imaging. The authors 
hypothesized that a combination of 28 features could reconstruct 78% of expressed genes, 
revealing cell proliferation and liver functions. A more targeted approach was conducted 
by Kuo et al. [85] who investigated whether predefined imaging phenotypes correlated 
with transcriptional responses to doxorubicin in hepatocellular carcinoma. Similarly, Diehn 
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et al. [86] studied how semantic neuroimaging features in glioblastoma multiforme (GBM) 
relate to expression of genes, such as EGFR. Associations of radiomic features, gene ex-
pression, and patient survival in non-small cell lung cancer (NSCLC) was first well described 
by Gevaert et al. [66]. More recently, Itakura et al. [75] also suggested three novel radio-
mic imaging phenotypes in GBM. In a seminal study by Aerts et al. [49], the authors re-
vealed biological pathways that were associated with four feature of a prognostic radiomic 
signature that validated across multiple datasets [49,87]. 
 
Mutations in the genome: In terms of genomic mutations, a number of studies focused on 
investigating whether radiomics yields predictive value for a small number of widely ac-
cepted oncogenetic driver mutations. For example, Liu et al. [88] demonstrated that radi-
omic features predict the presence of EGFR mutations in an Asian cohort of patients with 
peripheral NSCLC adenocarcinoma. Similarly, a recent study suggested that radiomic fea-
tures can predict EGFR mutation status across multiple cohorts [89]. Associations of radi-
omics and genetic mutations in NSCLC, including EGFR, KRAS, and ALK, have been also de-
scribed by other work [90–93]. 
 
The biological challenge of radiomics: Various further preliminary studies have been pub-
lished with regard to radiomics and some type of molecular characterization [94–101], but 
validity of these studies has generally been hampered by the fact that those results are 
based on small sample sizes, lack independent validation, or focused only on a subset of 
radiomic features and biological entities, such as genes. Furthermore, the canonical links 
between radiomics, its underlying biology, and the final clinical patient outcome have not 
been described with a convincing body of data driven evidence yet. To this end, this thesis 
aims at uncovering the underlying biology of radiomics and interpreting those results in 
the context of clinical patient outcome. The end goal of these studies is to point out both 
phenotypic (on the imaging level) and genotypic (on the molecular level) differences 
across patients who are treated for solid tumors to gain a holistic view of the disease state 
of the cancer and enable possibilities of offering more personalized treatments. 
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ABSTRACT    

Medical imaging can visualize characteristics of human cancer noninvasively. Radiomics is 
an emerging field that translates these medical images into quantitative data to enable 
phenotypic profiling of tumors. While radiomics has been associated with several clinical 
endpoints, the complex relationships of radiomics, clinical factors, and tumor biology are 
largely unknown. To this end, we analyzed two independent cohorts of respectively 262 
North American and 89 European patients with lung cancer, and consistently identified 
previously undescribed associations between radiomic imaging features, molecular 
pathways, and clinical factors. In particular, we found a relationship between imaging 
features, immune response, inflammation, and survival, which was further validated by 
immunohistochemical staining. Moreover, a number of imaging features showed 
predictive value for specific pathways; for example, intra-tumor heterogeneity features 
predicted activity of RNA polymerase transcription (AUC = 0.62, p=0.03) and intensity 
dispersion was predictive of the autodegration pathway of a ubiquitin ligase 
(AUC = 0.69, p<10-4). Finally, we observed that prognostic biomarkers performed highest 
when combining radiomic, genetic, and clinical information (CI = 0.73, p<10-9) indicating 
complementary value of these data. In conclusion, we demonstrate that radiomic 
approaches permit noninvasive assessment of both molecular and clinical characteristics 
of tumors, and therefore have the potential to advance clinical decision-making by 
systematically analyzing standard-of-care medical images.  
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ELIFE DIGEST 

Medical imaging covers a wide range of techniques that are used to look inside the body, 
including X-rays, MRI scans and ultrasound. A process called radiomics uses computer al-
gorithms to process the data collected by these techniques to identify and precisely 
measure a large number of features that would not otherwise be quantifiable by human 
experts. By doing so, radiomics can automatically measure the radiographic characteristics 
of a tumor. For example, radiomics can establish the size, shape and texture of a tumor to 
help to diagnose cancer and guide its treatment. 

Research has suggested that radiomics can predict certain clinical characteristics 
of cancer, such as how far through the body the cancer has spread, how likely it is to re-
spond to treatment, and how likely a patient is to survive. However, these radiomic char-
acteristics have not yet been precisely linked to the biological processes that drive how 
cancer develops and spreads. 

Cancers develop as a result of genetic changes that activate “molecular path-
ways” in the cells and trigger processes such as cell division and inflammation. To work 
out exactly which changes are behind a particular tumor, a sample of the tumor from bi-
opsy or surgery is analyzed using genomics techniques. Linking radiomics features to the 
molecular processes active in a tumor can generate further information that can comple-
ment the molecular data. Images are routinely collected on all cancer patients yet molecu-
lar data is not. Hence, in some cases, the images can be used to infer the molecular un-
derpinnings of cancer in individual patients. 

Grossmann et al. have now analyzed radiomic, genomic and clinical data collect-
ed from approximately 350 patients with lung cancer. The analysis revealed links between 
biological processes normally detected by genomics – in particular, inflammatory respons-
es – and radiomics features. Furthermore, these features could also be associated with 
clinical characteristics, such as tumor type and patient survival rates. These results were 
further validated by using a technique called immunohistochemical staining on tumor tis-
sue obtained by surgery. 

Further investigation revealed that certain radiomics features can predict the 
state of molecular pathways that are key to cancer development (such as the inflammato-
ry response). Furthermore, Grossmann et al. found that combining data from radiomics, 
genomics and clinical parameters predicts how the cancer will progress better than any of 
these parameters can predict on their own. These results demonstrate the complemen-
tary value of radiomic data to genomic and clinical data. 

There are many different algorithms that can be used to process images for radi-
omics. Before radiomics can be used clinically to assess the biological processes underlying 
the tumors of patients, a specific algorithm needs to be decided upon and then tested in 
prospective clinical trials. 
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INTRODUCTION 

‘Precision medicine’ promotes the molecular characterization of a patient’s tumor with 
genomic approaches, which requires tissue extraction usually obtained via biopsy. A num-
ber of examples demonstrate successful translation of genomic information obtained from 
biopsies into clinical applications (Doroshow and Kummar, 2014), but these approaches 
also have inherent limitations, such as their invasive nature or sampling artifacts caused 
by intra-tumor heterogeneity (Sottoriva et al., 2013; Fisher et al., 2013; Gerlinger et al., 
2012). These limitations can be addressed by medical imaging that has served as crucial 
diagnostic tool and treatment guidance in clinical oncology. In contrast to biopsies, medi-
cal imaging is usually noninvasive, can be applied longitudinally, and provides information 
about the entire visible tumor volume. In this way, medical imaging has the potential to 
characterize phenotypic information of tumors and thus complement molecular interroga-
tion (Choi et al., 2016). As imaging is already used routinely throughout the course of 
treatment this facilitates ready access to this type of data. Therefore, imaging has the po-
tential to serve as valuable diagnostic tool in clinical decision making by complementing 
biological interrogation or serving as a surrogate in settings where biospecimen-derived 
diagnostics is not feasible, such as in longitudinal monitoring. 

Radiomics is an emerging field that translates these medical images into minea-
ble data by extracting a large number of quantitative imaging features that objectively 
define tumor intensity, shape, size, and texture (Gillies et al., 2016; Aerts, 2016; Lambin et 
al., 2012; Kumar et al., 2012) in a robust and reproducible way (Zhao et al., 2016; Fried et 
al., 2014; Balagurunathan et al., 2014; Leijenaar et al., 2013). As this approach is applied to 
existing standard of care images, radiomics can be cost-effectively integrated with ge-
nomics or serve as surrogate in cases where biopsies are not feasible (O'Connor et al., 
2015). Hence, such strategies can be of value for the development of clinical biomarkers 
for diagnosis, prognosis, and prediction of response to specific treatments (Choi et al., 
2016; Huang et al., 2016a, 2016b; Aerts et al., 2016; Nicolasjilwan et al., 2015; Parmar et 
al., 2015a, Parmar et al., 2015b; Aerts et al., 2014; Chong et al., 2014; Coroller et al., 
2015; Gevaert et al., 2012; Ganeshan et al., 2012; Win et al., 2013; Mattonen et al., 
2016; Grossmann et al., 2017). Due to the enormous potential for precision medicine, an 
increasing number of studies have investigated associations between imaging and tumor 
biology in different cancer types (Aerts et al., 2014; Gevaert et al., 2012; Diehn et al., 
2008; Grossmann et al., 2016; Gutman et al., 2015; Segal et al., 2007; Li et al., 2016; Yoon 
et al., 2015). However, these studies focused on specific genetic associations, or tended to 
be underpowered due to a limited number of available samples and lacked validation via 
independent datasets. 

Here, we present a broad radiomic-genomic analysis in independent and large 
cohorts of patients with lung cancer. We rigorously investigated the mechanistic connec-
tions between imaging phenotypes and underlying molecular pathways. Furthermore, we 
validated key associations via immunohistochemical staining and related these associa-



 The underlying biology of radiomics 

                                                                                                                                   33 

tions to clinical factors. In addition, we developed and validated radiomic predictors of 
pathway activation status, and investigated the prognostic value of combining radiomic 
biomarkers with genetic and clinical data. In this study, we aimed at uncovering whether 
radiomic approaches have the potential to predict both molecular and clinical characteris-
tics of tumors noninvasively and therefore have the potential to augment clinical decision-
making using data extracted from standard of care medical images. 

RESULTS 

To uncover the mechanistic connections between radiomic phenotypes, molecular path-
ways, and clinical information, we performed an integrated radiomic-genomic analysis of a 
lung cancer discovery cohort (Dataset1, n = 262), and validated our results on an inde-
pendent validation cohort (Dataset2, n = 89). We defined and extracted 636 radiomic fea-
tures from CT scans (Figure 1A) quantifying tumor intensity, shape, and texture (Figure 
1B), detailed in Supplementary file 1. Our approach to integrate radiomic, genomic, and 
clinical data is outlined in Figure 2 and clinical cohort characteristics are given in Table 1.  
 
 

 
 
Figure 1 
(A) Workflow of extracting radiomic features: (I) A lung tumor is scanned in multiple slices. (II) Next, the tumor is 
delineated in every slice and validated by an experienced physician. This allows creation of a 3D representation of 
the tumor outlining phenotypic differences of tumors. (III) Radiomic features are extracted from this 3D mask, and 
(IV) integrated with genomic and clinical data. (B) Representative examples of lung cancer tumors. Visual and 
nonvisual differences in tumor shape and texture between patients can be objectively defined by radiomics fea-
tures, such as entropy of voxel intensity values (‘How heterogeneous is the tumor?') or sphericity of the tumor 
(‘How round is the tumor?'). 
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Figure 2 
Schema of our strategy to define robust radiomic-pathway-clinical relationships. 
Two independent lung cancer cohorts (D1 and D2) with radiomic (R), genomic (G), and clinical (C) data were ana-
lyzed. D1 (n = 262) was used as a discovery cohort and D2 (n = 89) was used to validate our findings. A gene set 
enrichment analysis (GSEA) approach assessed scores for radiomic-pathway associations. These scores were bi-
clustered to modules that contain features and pathways with coherent expression patterns. These modules may 
overlap and vary in size. Clinical association to overall survival (red), pathologic histology (purple), and 
TNM stage (yellow) was statistically tested in both datasets, and results were combined in a meta-analysis to 
investigate relationships of modules. 
 
 
Association modules of radiomic features and molecular pathways 
 
To investigate the main associations of radiomics and underlying molecular pathways, we 
developed association modules describing radiomic-pathway coherency. Bi-clustering al-
lowed simultaneous grouping of coherently expressed features and pathways into a single 
module, thereby reducing dimensionality. Using this approach, we identified thirteen ra-
diomic-pathway modules in Dataset1 that were independently validated in Dataset2 
(FDR < 0.05). Figure 3A and Table 2 summarize these modules, while a detailed version of 
every module is given in Figure 3—source data 1. 
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Table 1 
Proportions of clinical characteristics in Dataset1 and Dataset2, Figure 2. Histology and TNM stage were based on 
pathology were available. 
 
 

 Dataset1 Dataset2 
Gender   
  Male 100 (45%) 59 (68%) 
  Female  124 (55%) 28 (32%) 

Histology   

  Adenocarcinoma 129 (58%) 42 (48%) 
  Squamous 61 (27%) 33 (38%) 
  Other 34 (15%) 12 (14%) 
Stage   
  I 123 (55%) 39 (45%) 
  II 35 (15%) 26 (30%) 
  III 46 (21%) 12 (14%) 
  Other 20 (9%) 10 (11%) 
Smoking Status   
  Current 66 (29%) NA 
  Former 141 (63%) NA 
  None 17 (8%) NA 
Tumor site   
  Primary 224 (100%) 87 (100%) 
Endpoints    
  Overall survivals 134 (60%) 41 (47%) 
  Overall deaths 90 (40%) 46 (53%) 
  Follow up 
  (median months) 32 31 
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Figure 3 
(A) Clustering of significantly validated radiomic-pathway association modules (FDR < 0.05). Normalized enrich-
ment scores (NESs) have been biclustered to coherently expressed modules. Every heatmap in this figure corre-
sponds to a module (M1 - M13) with radiomic features in columns and pathways in rows. Heatmap sizes are pro-
portional to module sizes. Elements are NESs given in Z-scores across features, and are displayed in blue when 
positive and green when negative. Horizontal color bars above every module indicate radiomic feature groups 
(black = first order statistics, orange = texture, purple = shape, red = wavelet, and pink = Laplace of Gaussian). 
Representative molecular pathways are displayed. (B) Clinical module network. We investigated if modules were 
associated with overall survival (red), stage (yellow), histology (purple), or no clinical factor (white). Relationships 
of modules based on their number of shared radiomic features (thickness of blue lines) are displayed by a net-
work. While we found that most modules yield clinical information, overlaps of modules did not indicate relation-
ships to similar clinical factors. 
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Table 2 
Summary of common themes in all of the identified radiomic-pathway association modules. Columns 1–3 display 
the module name, the number of radiomic features (nr), and pathways (np), respectively. Columns 4–5 hold the 
radiomic and pathway themes present in each module. 
 
Module nr np Radiomic Pathway 

M1 6 7 Wavelet texture gray-level runs Lipid and lipoprotein metabolism, Notch 
signaling, circadian clock 

M2 58 5 Wavelet intensity entropy; Laplace of 
Gaussian intensity standard deviation 

Immune system, p53 

M3 4 17 Wavelet minimum intensity Neural system, axon guidance 

M4 25 14 Intensity variance and mean; wavelet 
minimum intensity min 

Biological oxidations, signaling by insulin 
receptor, signaling by GPCR, neuronal 
system 

M5 58 8 Wavelet texture gray-level runs; wave-
let intensity range and median; (wave-
let) texture information correlation and 
cluster tendency 

Axon guidance and synaptic transmis-
sion, lipoprotein metabolism, cell type 
determination 

M6 64 7 Laplace of Gaussian standard devia-
tion; wavelet texture gray-level runs; 
wavelet texture cluster tendency 

Circadian clock, signaling by Notch 

M7 39 8 Laplace of Gaussian intensity entropy; 
wavelet intensity variance; Laplace of 
Gaussian texture information correla-
tion 

Mitochondria, Pol III transcription 

M8 20 17 Laplace of Gaussian standard deviation TCA cycle and electron transport, TGF-
beta receptor signaling, response to 
stress, transcription regulation, protein 
synthesis, 

M9 8 30 Intensity variance; wavelet intensity 
variance 

Immune system, p53, cell cycle regula-
tion checkpoints, cell-cell interaction, 
circadian clock 

M10 5 83 Shape surface (SH); wavelet texture 
gray-level runs 

Axon guidance, neuronal system, (in-
nate)  immune system, hemostasis, 
FGFR signaling, TGF-beta receptor sig-
naling, Notch signaling, circadian clock 

M11 17 66 Wavelet intensity range; wavelet tex-
ture information correlation 

Hemostasis, neural system 

M12 32 27 Wavelet texture entropy; intensity 
variance; wavelet texture cluster ten-
dency 

P53, immune system 

M13 39 26 Intensity entropy Gene expression regulation, Pol II/III 
transcription 

 
 
In general, we found that distinct radiomic features were associated with distinct biologi-
cal processes. For example, texture entropy and cluster features, as well as voxel intensity 
variance features were associated with the immune system, the p53 pathway, and other 
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pathways involved in cell cycle regulation in modules M2, M9, and M12 (Table 
2 and Figure 3A). In another module (M8), we found those features to also be associated 
with transforming growth factor beta (TGF-β) receptor signaling. 

Further examples for radiomic-pathway links included two modules (M13 and 
M7) that were highly enriched for pathways involved in mitochondrial pathways, tran-
scription, translation, and RNA regulatory mechanisms; with only one exception, all fea-
tures in the larger module (M13) were voxel intensity entropy features. In addition to this 
feature type, the smaller module (M7) contained mainly textural variance and information 
correlation features. 

 
 

Table 3 
Pathway prediction and clinical association. For every module, the independent validation performance of the 
strongest radiomic based pathway predictors is indicated per module by the area under the curve (AUC) of 
the receiver operator characteristic. In addition, we highlight whether a module was significantly associated 
with overall survival (OS), TNM stage (ST), or pathologic histology (HI) (p<0.05). 
 

Module Strongest radiomic based pathway prediction AUC OS ST     HI 

M1 
Wavelet (HHH) texture (GLCM) correlation  
Cholesterol biosynthesis 

0.64, 
p=0.014 

   

M2 
Laplace of Gaussian intensity standard deviation  
Autodegration of the E3 Ubiquitin ligase COP1  

0.69, 
p=8e-4 

x x  

M3 
Wavelet minimum intensity   
Trafficking of GLUR2 containing AMPA receptors 

0.67, 
p=0.003 

   

M4 
Wavelet intensity minimum  
Glutathione conjugation 

0.68, 
p=9e-4 

 x  

M5 
Texture information correlation  
Trafficking of GLUR2 containing AMPA receptors 

0.69, 
p=7e-4 

 x x 

M6 
Wavelet texture cluster prominence  
Notch1 intracellular domain regulation of transcription 

0.66, 
p=0.007 

 x x 

M7 
Laplace of Gaussian intensity entropy  
RNA polymerase III transcription 

0.62, 
p=0.031 

 x  

M8 
Laplace of Gaussian intensity standard deviation  
Pyruvate metabolism and citric acid TCA cycle 

0.72, 
p=6e-5 

 x  

M9 
Wavelet intensity variance  
Trafficking of GLUR2 containing AMPA receptors 

0.64, 
p=0.020 

x   

M10 
Shape compactness and shape sphericity  
 TRAF6 mediated NFkB activation 

0.66, 
p=0.003 

 x x 

M11 
Wavelet  texture cluster tendency  
Platelet aggregation plug formation 

0.69, 
p=6e-4 

 x x 

M12 
Wavelet texture entropy  
G0 and early G1 

0.65, 
p=0.007 

x x x 

M13 
Laplace of Gaussian intensity entropy  
RNA polymerase II transcription initiation and promoter open-
ing 

0.68, 
p=0.001 

 x  

 
  



 The underlying biology of radiomics 

                                                                                                                                   39 

Clinical information contained in modules 
 
For every module, we assessed prognostic association to overall survival (OS) and associa-
tions to stage and histology based on the radiomic features of a module (Figure 
3B and Table 3). Three modules (M2, M9, and M12) were significantly prognostic for OS 
(p<0.02), ten modules (M2, M4-8, and M10-13) were significantly associated with stage 
(p<0.01), and five modules (M5, M6, and M10-12) were significantly associated 
with histology (p<0.05). The exact p-values of all modules are given in Supplementary file 
2. 
 
We examined and summarized the relationships of clinical status, module size, and over-
lap of modules in a network (Figure 3B and Table 3). We found that smaller modules tend-
ed not to be associated with the tested clinical factors. The total number of shared fea-
tures or pathways was generally low (mean Jaccard index 0.22, range [0.01, 0.59]). Inter-
estingly, certain modules with higher overlap still showed different clinical associations. 
 
 
Radiomic predictors of pathway status 
 
To test whether radiomic features can predict if a pathway is activated or deleted in indi-
vidual patients, we fitted univariate models of radiomic features on Dataset1 and selected 
for every module the strongest predictor in Dataset1 according to the area under the 
curve (Fawcett, 2006) (AUC) for validation in Dataset2. As shown in Table 3 and Table 3—
source data 1, the overall biological and radiomic themes in a module were well repre-
sented by these individual predictors. For example, a Laplace of Gaussian intensity stand-
ard deviation feature was predictive of the autodegration pathway of the E3 ubiquitin lig-
ase COP1 (AUC = 0.69, p<10−4) in module M2, which was also associated with p53. Im-
portantly, COP1 mediates p53 and may interact with autophagy (Rabbani et al., 
2014; Kobayashi et al., 2013), which are known drivers of tumorigenesis. Indeed, this 
module M2 was associated with OS. We found further examples of this radiomic-genomic-
clinical link to be important: For example, a texture feature (information correlation) pre-
dicted trafficking of GLUR2 containing AMPA receptors (AUC = 0.69, p<10−4) in module 5, 
which was associated with lipoprotein metabolism and stage. Further, two shape features 
(sphericity and compactness) predicted TRAF6 mediated NFkB activation (AUC = 0.66, 
p=0.003) in module 10, which was also associated with axon guidance and histology. 

Furthermore, we assessed these representative features in terms of their predic-
tive value for driver mutations in the discovery cohort; based on a subset of 60 patients 
whose tumors were profiled with Sanger sequencing, we estimate that the prevalence of 
mutated EGFR, KRAS, and TP53 are 15%, 35%, and 20%, respectively. In particular, we 
found strong performance for mutations in EGFR and KRAS by several features, but only 
one considerable performance for TP53 (Figure 3—figure supplement 1). Interestingly, 
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predictive value for EGFR and KRAS were selective in that features had relatively high per-
formance for one gene but not both. Predictive power for smoking history was low to 
moderate (Figure 3—figure supplement 2). 

 
Immunohistochemical investigation 
 
To further investigate putative connections between radiomics, immune response path-
ways, and OS we performed immunohistochemical staining of 22 tumors for CD3, a T-cell 
co-receptor. These tumors were predicted to show relatively high or low immune re-
sponse by a radiomics feature selected from the three modules (M2, M9, and M12) that 
were associated with OS. As represented in Figure 4, we found agreement between radi-
omics and pathology; cases that were pathologically scored to have high CD3 enrichment 
also expressed significantly higher radiomic values (one-sided Wilcoxon rank sum 
test, p=0.008). Furthermore, we tested the extent to which radiomic predictors of inflam-
mation can be reproduced immunohistochemically. We built on our previous results sug-
gesting that the radiomic shape feature sphericity predicts NFkB activation (module 10) 
and analyzed 24 stained tumors that were predicted to have relatively high or low NFkB 
activity for RelA, the p65 subunit of NFkB (Figure 4—figure supplement 1). Pathological 
assessment of enrichment for RelA revealed that those cases that indicated high RelA en-
richment on average also had higher radiomic feature scores (one-sided Wilcoxon rank 
sum test, p=0.06). 
 
Prognostic value of radiomic signatures 
 
To build on previously published results, we investigated prognostic value of an existing 
radiomic signature for survival of lung cancer. We fitted a Cox proportional-hazards model 
of this signature on Dataset1 and observed significant validation by the concordance-
index (CI) on Dataset2 (CI = 0.60, Noether p=0.04). Furthermore, we tested combinations 
of clinical, genetic, and radiomic data and observed that the combinations of data types 
tended to result in higher performances than given by the individual data alone (Figure 5). 
In particular, the performance of a clinical model increased from CI = 0.65 (Noether 
p=0.001) to CI = 0.73 (p=2×10−9) when adding the radiomic and an existing gene signature 
(38Hou et al., 2010); this increase was significant at p=0.001 by permutation test. This 
combined radiomic-genetic-clinical model also performed significantly better than the 
combined radiomic-clinical model (p=0.007) and the clinical-genetic model (p=0.01). Add-
ing radiomics to clinical data alone did not result in a significant increase (p=0.3). We re-
peated this analysis with a novel radiomic survival signature and other published gene 
signatures (Yuan et al., 2004; Chen et al., 2007; Hsu et al., 200939–41), and found that the 
clinical-genetic-radiomic models consistently yielded the highest performances in nearly 
all cases (Figure 5—figure supplement 1 and Figure 5—figure supplement 2). 
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Figure 4 
Test for agreement between radiomic and pathological immune response assessment. 
Two representative cases are shown where radiomic predictions of immune response were confirmed by im-
munohistochemical staining for nuclear CD3 highlighting lymphocytes in brown. Each case is displayed in 0.6X 
and 2.0X magnification of the tumor slides, and an axial slice of the corresponding diagnostic CT scan and the 
total tumor volume is given for comparison. Automated quantifications of lymphocytes are displayed in addition 
to the radiomics score incorporated to classify into high and low responders. 
 

DISCUSSION 

Medical imaging plays a crucial role in cancer diagnosis, treatment, and response monitor-
ing. Radiomics allows quantification of the radiographic phenotype of a tumor (Kuo and 
Jamshidi, 2014; Gillies et al., 2010; Rutman and Kuo, 2009), but the underly-
ing connections of radiomics to tumor biology and clinical factors have not been elucidat-
ed yet. In this study,  
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Figure 5  
Combining prognostic signatures for overall survival. 
We tested combinations of clinical, genomic, and radiomic signatures. To a clinical Cox proportional-hazards 
regression model with stage and histology, we first added a published gene signature and next a published radi-
omic signature. These models were fitted on Dataset1 and evaluated with the C-index (CI) on Dataset2. An aster-
isk indicates significance (p<0.05). Combining different data types resulted in increased prognostic performances. 
By adding radiomic and genomic information, the initial performance of the clinical model was increased 
from CI = 0.65 (Noether p=0.001) to CI = 0.73 (p=2×10−9). 
 
we identified novel and consistent associations between radiomic phenotype data, under-
lying molecular pathways, and clinical factors of patients with lung cancer in a North 
American cohort, and validated our findings in a European cohort and with immunohisto-
chemical staining. In addition, we presented radiomic predictors for pathway activations, 
and demonstrated the complementary prognostic value of combining radiomic, genetic, 
and clinical information. 

Preliminary studies have previously investigated associations between imaging 
features, clinical factors, and molecular data for a number of cancer types as outlined in 
recent reviews (Gillies et al., 2016; Kuo and Jamshidi, 2014; Gillies et al., 2010; Rutman 
and Kuo, 2009; Cook et al., 2013). Our analysis builds on these studies in that we per-
formed a rigorous classification of a comprehensive set of radiomic features in terms of 
underlying molecular pathways on a genome-wide scale and clinical factors in large and 
independent cohorts. Although the long-term vision is to augment clinical decision mak-
ing, the current goal of our study is to satisfy the need of the radiomic and oncological 
community to better understand the underlying biological rationale of radiomic predic-
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tions. Furthermore, we are the first to publicly share all study data and analysis code with 
the growing radiomic and biomedical community to enable further translational research. 

We identified and independently validated thirteen radiomic-pathway modules 
with coherent expression patterns, eleven of which were significantly associated with 
OS, stage, or histology. By basing these clinical associations exclusively on radiomic fea-
tures, we could demonstrate that the associated molecular pathways robustly matched 
radiomic- based hypotheses. For example, based on radiomic features modules M2, M9, 
and M12 were prognostic and also associated with stage. These modules were highly en-
riched for immune system, p53, and cell-cycle regulation pathways, biological processes 
that are widely recognized to play key roles in lung cancer. For example, it has been estab-
lished that cell cycle regulation is of utmost importance in lung cancer (Baldi et al., 2011). 
Furthermore, the status of p53 is reported to be a predictor of survival in lung cancer pa-
tients (Ahrendt et al., 2003) and a recent review has laid out how p53 can modulate innate 
immune system responses (Menendez et al., 2013). Radiomic features in these prognos-
tic modules M2, M9, and M12 quantified textural entropy and dispersion image intensity 
values suggesting associations between textural heterogeneity, cell cycling, and prognosis. 
Therefore, these results suggest that noninvasive radiomic surrogates may benefit diag-
nostic methods in assessing cell cycling and immune system states of tumors. 

We aimed at confirming our statistical results indicating connections be-
tween radiomics, immune response, and survival by immunohistochemical staining of 
lymphocytes in cases for which a relatively high or low immune response was predicted 
according to a radiomics score. We generally found high agreement between pathology 
and radiomics, especially in cases where immune response was predicted to be high. In 
cases of predicted low responders that showed high pathological immune response, the 
cause of disagreement may be a heavy distribution of CD3 clusters in the extreme periph-
ery of the tumor with very little staining in the bulk of the tumor. In cases of predicted 
high responders that showed little to no immune response, this could be due to the lack of 
normal tissue margin around the edge of the tumor section or a sampling effect. Similarly, 
we stained tissue for RelA, the p65 subunit of NFkB, to validate radiomic predictions of 
inflammation. Overall, we found high agreement between pathology and radiomics, alt-
hough at lower statistical significance. Future studies with whole mount sections stained 
with multi-plex phenotyping can help determine the relationship between a radiomic and 
a genetic immune or inflammation signature, and the gold standard. 

A variety of textural features were also associated with stage and histology 
(module M5). Similar associations have been reported by Ganeshan et al. (2010), who 
suggested that 2D texture features of lung cancer CT scans could predict if tu-
mor stage was II or above. Here, we found that texture features were enriched for axon 
guidance and lipoprotein metabolism. Furthermore, we observed strong associations be-
tween image intensity entropy features and pathways involved in gene expression, tran-
scription regulation, and mitochondrial processes (M13 and M7). Previous research has 
suggested that imaging can detect consequences of an increase in the hypoxia-inducible 
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factor as a result of absence of oxygen (Gillies et al., 2010). Hence, if extracting quantita-
tive information about mitochondrial pathways from medical images leads to assessment 
of hypoxia status of a tumor, this may ultimately aid in clinical decision-making as alterna-
tive therapies for hypoxic tumor areas are being developed (Denny, 2010; Bryant et al., 
2014). Indeed, previous work has indicated that CT pixel intensities correlate with hypoxia 
markers such as Glut-1 and pimonidazole (Ganeshan et al., 2013). Those two modules (M1 
and M3) that were not associated with any of the tested clinical factors were relatively 
small modules; these modules suggested radiomic associations to circadian clock and neu-
ral system. The impact of these pathways to the clinical factors we tested is not apparent 
from current lung cancer literature, which could explain why these modules did not show 
clinical associations. 

Our results further suggest that radiomic approaches could have the potential to 
predict molecular states of pathways. We found that the highest predictors of every mod-
ule was also a suitable representative of the overall biological and radiomic themes of that 
module. Amongst these examples of pathways that showed high predictability in terms of 
radiomics, we found various pathways essential for tumorigenesis such as cell cycle path-
ways (e.g., G0 and early G1), signaling pathways (e.g., Notch and NfKB), and tumor sup-
pressor pathways (e.g., COP1 autodegration and p53). Furthermore, we tested those radi-
omic pathway predictors for predictive value of driver mutations. Thereby, the highest 
performances were found for mutations in EGFR and KRAS, which is in line with current 
radiomic-genetic literature (Aerts et al., 2016; Gutman et al., 2015; Liu et al., 2016; Rizzo 
et al., 2016). Interestingly, however, the highest performance for the tumor suppressor 
and cell cycle regulator TP53 we found was given by a textural entropy feature that also 
predicted G0 and early G1 (module M12). In addition, features expressed selectivity for 
predicting mutations, which was suggested previously (Gutman et al., 2015). These results 
highlight the diagnostic potential, as ready information on pathway and mutation status 
may permit advanced patient stratification. Previous studies have indicated that gene ex-
pression can be predicted by imaging features (Gevaert et al., 2012; Segal et al., 
2007; Gevaert et al., 2014). To our knowledge, however, no study has examined and inde-
pendently validated radiomic models for specific pathways, including biological validation 
such as immunohistochemical staining. 

Finally, we verified a previously described prognostic radiomic signature and ob-
served that the best performance is achieved when combining radiomic, genetic, and clin-
ical data. These results strongly suggest that radiomic data contain complementary prog-
nostic information and are robust, as the published radiomic signature (Aerts et al., 2014) 
has not been tested on our data before. Notably, these prognostic improvements were 
relatively stable to substitution of radiomic or gene signatures. A related indication of im-
proved survival predictions by combining imaging features and molecular data has been 
recently given for glioblastoma, however without validation (Nicolasjilwan et al., 2015). It 
is worth noting that for the first time we also demonstrate that radiomic prognostication 
generalizes across cohorts from different continents. 
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Three research tracks have recently been proposed for clinical translation of such 
imaging biomarkers (O'Connor et al., 2017), including biological validation, technical vali-
dation, and evaluation of cost-effectiveness. Our study conforms with several of these 
roadmap recommendations by advancing results on a previously proposed radiomic signa-
ture (Aerts et al., 2014) with additional biological validation and investigations on how 
genetic data and clinical factors impact this signature. Fixing a radiomic signature for tech-
nical validation and cost-effectiveness verification should be considered in subsequent 
studies to overcome additional translational gaps. Although the long-term vision would be 
to augment clinical decision making, the current goal of our study is to contrib-
ute in satisfying the need of the radiomic and oncological community to understand the 
underlying biology of radiomic predictions. 

Our study is limited by its retrospective nature. Imaging protocols are not stand-
ardized and hence variability in CT acquisition and reconstruction parameters is inherent 
in clinical practice. However, despite this, no corrections by cohort or scanner type were 
made in this study illustrating the translational aspect of our results that generalized 
across institutions. Hence, we expect that the performance of radiomics will further im-
prove, as imaging data are becoming more standardized. In fact, multiple studies have 
already documented the robustness of radiomic feature extractions in terms of reproduci-
bility and repeatability in test/re-test settings (Fried et al., 2014; Balagurunathan et al., 
2014; Leijenaar et al., 2013; Parmar et al., 2015a; Aerts et al., 2014; Grove et al., 2015). 
Another limitation of this study is that the current cohorts mainly focused on early stage (I 
- III) tumors, hence generalization of radiomic-genomic associations to late stage tumors 
should be drawn with precaution only. However, most radiomic applications do focus on 
early stage tumors as the current radiomic approach requires segmentation of tumors 
which for late stage tumors remains to be of particular complexity. Furthermore, although 
our study provides multiple facets of validation, immunohistochemical validation was re-
stricted to considerably smaller sample sizes as compared to our statistical validations due 
to limited availability of frozen tissue. Prospective protocols can ensure availability of suf-
ficient tissue for additional validation. 

Biological material investigated in this study has been acquired by single-needle 
biopsies, thus the interpretation of our genomic data is limited due to heterogeneity of 
lung cancer tumors. However, as our results validated in independent data and because 
known drivers of tumorigenesis were among the main pathways found to be associated 
with radiomic features, this suggests that these associations have been established in an 
early evolutionary step in tumorigenesis and are therefore reasonable representatives of 
the overall tumor. Prospective studies with defined spatial matchings of biopsies and/or 
single cell analyses could provide deeper insight into whether the strengths of these asso-
ciations can be further increased. Prospective studies will also be required to assess clini-
cal utility of combining radiomic, genomic, and clinical data into prognostic models. 

In conclusion, this study presented novel and consistent associations between 
radiomics, molecular pathways, and clinical factors. We applied an independent discovery 
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and validation design on large patient cohorts from different continents with enough vari-
ability that allowed confidence in the generalization of our results. Furthermore, we per-
formed biological validation and demonstrated that radiomics predicts molecular pathway 
status and thus improves the prognostic performances of clinical and gene signatures. The 
clinical impact of our results is illustrated by the fact that it advances the molecular 
knowledge of automated radiomic characterization of tumors, information currently not 
used clinically. This may provide opportunities to improve decision-support at low addi-
tional cost as imaging is routinely used in clinical practice as standard of care. 
  

MATERIALS AND METHODS 

Discovery and validation data 
 
Data underlying this study is made publically available with this article. We analyzed two 
cohorts of patients with non-small cell lung cancer (NSCLC), Dataset1 and Dataset2, each 
consisting of pretreatment diagnostic computed tomography (CT) scans, gene expression 
profiles, and clinical data. While the larger cohort Dataset1 (North American) is novel and 
served as a discovery cohort, Dataset2 (European) has been previously published with CT 
scans and gene expression data (Aerts et al., 2014), and was used for independent valida-
tion of our findings. Patients in Dataset1 were treated in the Thoracic Oncology Program 
at the H. Lee Moffitt Cancer Center, Tampa, Florida, USA; we included patients with diag-
nosed primary tumors who underwent surgical resection and collected contrast-enhanced 
CT scans obtained within 60 days of the diagnosis between years 2006 and 2009. Patients 
in Dataset2 were treated at MAASTRO clinical, Maastricht, NL; we included patients with 
confirmed primary tumors who received surgery. Further details of Dataset2 are given 
by Aerts et al. (2014). The majority of CT scans were recorded to be contrast-enhancing 
(89%% and 71% of patients in Dataset1 and Dataset2, respectively). 

For analyses involving CT scans and gene expression data, 262 and 89 patients 
were available for Dataset1 and Dataset2, respectively. In addition, clinical data were 
available for 224 and 87 patients, respectively. Clinical outcomes investigated were overall 
survival (OS), pathologic TNM stage (combined T, N, and M stages, according to the latest 
version 7 of the IASLC guideline for lung cancer [Mirsadraee et al., 2012]), and patholog-
ic histology (grouped into adenocarcinoma, squamous carcinoma, and others). Clini-
cal stage and histology were used when pathologic information was not available. Tumors 
in these cohorts were mainly early stage; in Dataset1 among the 224 clinically annotated 
cases 26 were stage IIIB or IV and in Dataset2 among the 87 clinically annotated cases 3 
cases were stage IV. These late stages have been grouped into ‘other’ for analysis. Further 
clinical cohort characteristics are given in Table 1. 
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For tumors in both cohorts, expression of 60,607 probes was measured on a cus-
tom Rosetta/Merck Affymetrix 2.0 microarray chipset (HuRSTA_2a520709.CDF, GEO ac-
cession number GPL15048) by the Moffitt Cancer Center. Gene expression of Dataset2 is 
available also at Gene Expression Omnibus (GEO) through accession number GSE58661. 
Gene expression values were normalized with the robust multi-array average (RMA) algo-
rithm (Irizarry et al., 2003) implemented in the ‘affy’ Bioconductor package (Gautier et al., 
2004). Probes have been curated by choosing the most variant representative among 
probes mapping to the same gene identifier (Entrez Gene) resulting in a total 
of 21,766 unique genes. 

 
 

Radiomic features 
 
We extracted 636 features grouped into I) tumor intensity (voxel statistics), II) shape, III) 
texture, IV) wavelet, and V) Laplace of Gaussian features. Group I-IV features have been 
defined as specified by Aerts et al. (2014). In addition, we added new features to Group III 
(see GLSZM below). Group I features are first-order statistics (e.g. mean, skewness) of all 
voxel intensity values in the tumor volume mask. Group II features describe the shape and 
size of a tumor (e.g. compactness). Group III features quantify texture in tumor images 
describing clustering of voxels with similar appearance by means of a gray-level co-
occurrence matrix (GLCM), a run-length gray-level matrix (RLGL), or a gray-level size-zone 
matrix (GLSZM). These features quantify how frequent voxels of same gray-level are adja-
cent to each other (GLCM), how many voxels of the same gray-level appear in a consecu-
tive run (RLGL), or the sizes of flat zones, areas of same gray-level in all directions 
(GLSZM). Group IV features are Group I-III features (except GLSZM) assessed after a wave-
let decomposition of the image, which highlights sharp transitions in the intensity fre-
quency spectrum. Group V consists of Group I features that have been calculated after 
applying a Laplace of Gaussian transformation to the image, which highlights edge struc-
tures. Detailed description and analytical definitions of the features added to the Aerts et 
al. (2014) feature set (n = 440) are given in Supplementary file 1. Features were calculated 
in 3D. For normalization, slice thicknesses of all scans were interpolated to a voxel sizes 
of 1 × 1×1 mm3. 
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Pathway analysis 
 
To test if a radiomic feature was associated with a molecular pathway, Spearman’s rank 
correlation coefficient rho was calculated for the expression of every gene across all pa-
tients and weighted by -log10(p), where p is the p-value of rho. The resulting gene rank 
was input to a preranked gene set enrichment analysis (GSEA) algorithm (Subramanian et 
al., 2005) version 2.0.14 on the C2 collection version 4 of the Molecular Signature Data-
base (MSigDB) (Liberzon et al., 2011). This collection contains the expert-curated set of 
pathways from the Reactome database (Joshi-Tope et al., 2005). Those 511 out of 674 
pathways were considered that contained at least 15 and at most 500 genes. GSEA re-
ports normalized enrichment scores (NESs) for every pathway, which we further analyzed. 
 
 
Radiomic-pathway association modules 
 
To identify coherently expressed expressed features and pathways, a matrix holding an 
NESs for every pair of radiomic feature and Reactome pathway was biclustered with 
the Iterative Signature Algorithm (ISA) using the ‘isa2’ and ‘eisa’ packages in R and Biocon-
ductor (Bergmann et al., 2003; Csárdi et al., 2010). As a result, each bicluster contains a 
set of coherently expressed features and pathways and is referred to as module. Potential 
module redundancy was limited using the ‘isa.unique’ function in the ‘isa2’ package with a 
maximum correlation threshold of 0.3. To avoid parameter sensitivity with ISA, row and 
column clustering seed thresholds were set to a liberal sequence of 1.5 to 2.5 by 0.5 to 
include all potential signals. This procedure yielded 20 putative modules. To validate these 
modules, we developed and applied a correlation based statistic r:=mean(CX)+mean(CY), 
where CX and CY are the Spearman rank correlations of all pairs of features and pathways 
in a module, respectively. The true r was calculated for every module in Dataset1 and vali-
dated on Dataset2 with random permutation tests (N = 1000). After correcting for multi-
ple-hypothesis testing with the false-discovery-rate (FDR) (Benjamini and Hochberg, 
1995), the validation resulted in 13 significantly enriched modules (FDR < 0.05). In total, 
the modules captured the associations between 210 radiomic features and 206 pathways. 

Module size was defined as n/N + m/M, where n and m are the number of fea-
tures and pathways in a module, respectively, and N = 636 and M = 511 are the total 
numbers of features and pathways across all modules, respectively. Overlap of two mod-
ules was defined by the Jaccard index (Theodoridis and Koutroumbas, 2008), which is the 
size of union of features divided by the size of intersection of features of two module. 
Hereby, same feature names under different transformations were considered equivalent. 
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Pathway predictions 
 
To test radiomic pathway predictors, we used gene set variation analysis (GSVA) in Bio-
conductor (Hänzelmann et al., 2013) to calculate pathway enrichment scores per patient. 
Next, we fitted univariate logistic regression models of every feature to predict the NES 
sign of pathways (which corresponded to activation or deletion) in Dataset1. We assessed 
the concordance between the predicted probabilities of the pathway sign and the true 
sign with the area under the curve (AUC) of the receiver operator characteristic (ROC) 
(Bradley, 1997). The strongest predictor of each module according to the AUCs in Dataset1 
was evaluated on Dataset2 for validation; significance of AUCs was calculated according to 
Noether for binary outcomes (Pencina and D'Agostino, 2004). 
 
Associations to clinical factors 
 
Associations to OS were assessed by calculating the mean concordance-index (Harrell et 
al., 1982) of all features in a module univariately using the ‘survcomp’ package in Biocon-
ductor (Schröder et al., 2011), and by validating this statistic with repeated random per-
mutation tests (N = 1000). Similarly, associations to stage and histology were assessed by 
the mean of Kruskal-Wallis chi square statistics and permutation tests. As clinical infor-
mation was not part of the module identification process, a meta-analysis of the results in 
Dataset1 and Dataset2 was conducted to account for sample size differences and other 
dataset specific variations. For this, a Fisher Z-transformation (Whitlock, 2005) of the in-
dependent p-values in both datasets was employed for every module with weights equal 
to the respective sample sizes in Dataset1 and Dataset2. 

We tested additive prognostic effects of integrating radiomic, gene expression, 
and clinical data by combining in a Cox proportional-hazards model the predictions of (I) a 
clinical Cox model with stage and histology, (II) an NSCLC OS gene signature, and (III) an 
NSCLC OS radiomic signature. We tested five published gene signatures (Hou et al., 
2010; Yuan et al., 2004; Chen et al., 2007; Hsu et al., 2009) without inclusion of clinical and 
radiomic data and retained the strongest performing signature by Hou et al. (2010) to 
challenge potential performance increases. To test for generalizability of radiomics, we 
tested a published radiomic signature by Aerts et al. (2014) and a novel signature devel-
oped in the current study. We developed this novel radiomic signature using a super-
vised feature selection algorithm followed by a stepwise Cox regression approach on Da-
taset1: First, we employed the minimum-redundancy maximum-relevance (mRMR) algo-
rithm implemented in the ‘mRMRe’ R package (De Jay et al., 2013) on all radiomic features 
with respect to OS to select a non-redundant, highly informative ranked set of comple-
mentary features. Next, we trained Cox models incrementally, adding features starting by 
the highest ranked feature. We performed repeated random cross-validation (N = 1,000) 
to measure the performance of each model, and retained the model with the highest 
mean CI. Finally, these fitted models were tested on Dataset2 for validation. 
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All statistical analyses were carried out using the R software (R Development Core 
Team, 2013) version 3.1.0 on a Linux operating system. Details of version numbers of uti-
lized packages are available in Supplementary file 2. 
 
Immunohistochemical staining for CD3 
 
We selected 25 cases each that were predicted to have high and low immune response by 
using the value of the radiomic feature in the prognostic modules M2, M9, and M12 that 
showed the highest absolute correlation to the mean expression of genes in the CTLA4 
inhibitory pathway that is supported to be associated with immune activity (Postow et al., 
2015; Pardoll, 2012; Wolchok and Saenger, 2008). In total, 22 cases were available with 
enough tumor tissue and sufficient staining quality. Tumor cross section slides were 
stained using a Ventana Discovery XT automated system (Ventana Medical Systems, Tuc-
son, AZ) as per manufacturer's protocol with recommended reagents. Briefly, slides were 
deparaffinized with EZ Prep solution (Ventana) and a heat-induced antigen retrieval 
method was used under mild cell conditioning using CC1 antigen retrieval buffer (Ven-
tana). A rabbit primary antibody for CD3, (790–4341, Ventana) was used at supplied con-
centration and incubated for 16 min. Next a Ventana OmniMap Anti-Rabbit Secondary 
Antibody was applied to the samples for 16 min and the Ventana ChromoMap kit was 
used as the detection system. Slides were then counterstained with Hematoxylin and de-
hydrated. Finally, the slides were cover slipped as per normal laboratory protocol. 
 
Immunohistochemical staining for RelA 
 
We selected 25 cases each that were predicted to have high and low NFkB activity. The 
same procedure as for the CD3 staining was applied, with the exception that a standard 
cell conditioning was used with CC2 antigen retrieval buffer (Ventana). Furthermore, a 
rabbit polyclonal primary antibody for RelA (NFkB p65), (Spring Biosciences E2750) was 
used at 1:600 dilution* and incubated for 32 min. In total, 24 cases were available with 
enough tumor tissue and sufficient staining quality. 

 
Evaluation a immunostained slide 
 
The lymphocytes are highlighted by brown nuclear staining of CD3. The staining pattern 
was analyzed by a board-certified pathologist (MB) and scored into low and high enrich-
ment. The percentage and intensity (weak 1+, moderate 2+ and intense 3+) of staining 
were recorded as well as the number and size of clustering of CD3 positive cells. The 
pathologist also chose the appropriate area from each sample for image analysis. We ob-
served that the tissue section that has a complete cross section of the tumor with a com-
plete rim of adjacent benign lung parenchyma is most ideal for image analysis. This is be-
cause the lymphocytic infiltration is commonly present at the periphery of the tumor. In 
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addition to this assessment by a pathologist, a computational system was implemented 
for automatic evaluation (Supplementary file 3). 

ADDITIONAL FILES 

Supplementary file 1 
Radiomic feature definition and further description towards meaning of feature groups. 
https://doi.org/10.7554/eLife.23421.020 
Download elife-23421-supp1-v2.pdf 
 
Source code 1 
Analysis code. 
Source code used to analyse data and generate figures. 
https://doi.org/10.7554/eLife.23421.021 
Download elife-23421-code1-v2.zip 
 
Supplementary file 2 
Exact p-values of modules and list of used R packages and their versions used for analysis. 
https://doi.org/10.7554/eLife.23421.022 
Download elife-23421-supp2-v2.pdf 
 
Supplementary file 3 
Methods for automated pathological call assessment. 
https://doi.org/10.7554/eLife.23421.023 
Download elife-23421-supp3-v2.pdf  
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ABSTRACT   

Background 
Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified 
using magnetic resonance imaging (MRI), but the underlying biological drivers of these 
imaging phenotypes remain largely unknown. An Imaging-Genomics analysis was per-
formed to reveal the mechanistic associations between MRI derived quantitative volumet-
ric tumor phenotype features and molecular pathways. 
  
Materials and methods 
One hundred fourty one patients with presurgery MRI and survival data were included in 
our analysis. Volumetric features were defined, including the necrotic core (NE), contrast-
enhancement (CE), abnormal tumor volume assessed by post-contrast T1w (tumor bulk or 
TB), tumor-associated edema based on T2-FLAIR (ED), and total tumor volume (TV), as 
well as ratios of these tumor components. Based on gene expression where available 
(n = 91), pathway associations were assessed using a preranked gene set enrichment anal-
ysis. These results were put into context of molecular subtypes in GBM and prognostica-
tion. 
 
Results 
Volumetric features were significantly associated with diverse sets of biological processes 
(FDR < 0.05). While NE and TB were enriched for immune response pathways and apopto-
sis, CE was associated with signal transduction and protein folding processes. ED was 
mainly enriched for homeostasis and cell cycling pathways. ED was also the strongest pre-
dictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall 
survival (C-index = 0.6; Noether test, p = 4x10−4. 
 
Conclusions 
GBM volumetric features extracted from MRI are significantly enriched for information 
about the biological state of a tumor that impacts patient outcomes. Clinical decision-
support systems could exploit this information to develop personalized treatment strate-
gies on the basis of noninvasive imaging. 
 
Keywords 
Imaging-genomics – Radiomics – Glioblastoma – Volumetric – Pathways – Prediction – 
Noninvasive – Radiation Oncology – Neuro-imaging 
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BACKGROUND 

Glioblastoma (GBM) is a highly invasive and diffuse WHO grade IV tumor and is 
the most lethal central nervous system malignancy with an annual age-adjusted incidence 
rate of 3.19/100,000 per population [1]. Despite aggressive surgical therapy, radiation 
therapy, and temozolomide administration the 2-year survival rate remains around 27 % 
[2]. As a result, recent investigations have focused on capitalizing on the high molecular 
heterogeneity of gliomas to develop personalized treatment strategies [3]. 

One promising avenue of these investigations involves quantitative analyses of 
radiographic data, where imaging modalities are used to quantify tumor phenotype non-
invasively. In magnetic resonance imaging (MRI), GBM tumors exhibit strong phenotypic 
features such as Necrosis, Edema, Contrast Enhancement, and Tumor Bulk (Fig. 1). These 
properties can be captured without and with intravenous administration of gadolinium-
based contrast agents including T1-weighted or FLuid-Attenuated Inversion Recovery 
(FLAIR) (Fig. 2). In this way, visible tumor phenotype features can be systematically quanti-
fied. 

 
 

 
 
Fig. 1 
Examples of volumetric tumor phenotype features. Glioblastoma (GBM) tumors show strong phenotypic differ-
ences, which can be objectively quantified with volumetrics. This figure shows examples of GBM tumors exhibiting 
high (top) and low (bottom) volumetric feature values for Necrosis, Contrast Enhancement, Edema, and Tumor 
Bulk (columns) as they appear on T1 weighted (columns 1,2, and 4) or T2-FLAIR (column 3) magnetic resonance 
images for different patients. 
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Fig. 2 
Volumetric phenotype features within the same tumor. Detailed example of a glioblastoma tumor in a patient. 
(a,b) On T1-weighted post-Gadolinium contrast (T1C) images, a central area of Necrosis is typically surrounded by 
a Contrast Enhancing ring, both of which can be derived from dark and light regions, respectively. Tumor Bulk 
represents the addition of these tumor features. (c) The Total Tumor Volume is represented by hyperintensity 
extracted from T2-FLAIR images. Edema is the difference of Tumor Bulk from Total Tumor Volume. 
 
 

As the underlying drivers of these phenotypes are biological in nature, recent ef-
forts have been conducted indicating underlying genetic characteristics of imaging fea-
tures. For example, tumor “Ring Enhancement” was found to be significantly associated 
with unmethylated MGMT promoter status [4, 5], which is known to be a biomarker for 
response to temozolomide and survival. Similarly, “Contrast Enhancement” and “Mass 
Effect” imaging features were found to be strongly correlated with expression of groups of 
genes involved in hypoxia and proliferation, respectively [6]. However, a systematic classi-
fication of tumor phenotype features in terms of their underlying cell biological processes 
on a genome-wide scale in GBM remains absent, although clinical applicability of these 
image features will depend on knowledge about how these features are driven by tumor 
biological processes that determine disease progression. 

In this study, we present an Imaging-Genomics analysis to investigate the associa-
tions of a large set of biological processes and presurgical diagnostic MRI derived quantita-



Imaging-genomics reveals driving pathways 

                                                                                                                                   61 

tive volumetric tumor phenotype features, such as Necrosis or Edema, focusing on the 
publicly available GBM dataset from The Cancer Genome Atlas (TCGA). These analyses 
were tied to molecular subtypes in GBM and prognostics. Image based volumetric features 
provide noninvasive tumor phenotype information complementary to genomic technolo-
gies and clinical information, potentially allowing advances in patient stratification and 
clinical decision-making. 

METHODS 

Magnetic resonance imaging 

The DICOM formatted files of presurgical T1 and T2 sequence magnetic resonance images 
(MRIs) were accessed and downloaded in November 2014 from TCIA (https://wiki.cancer-
imagingarchive.net/ display/Public/TCGA-GBM), a large archive of medical images of cancer 
patients who have matched molecular data at The Cancer Genome Atlas (TCGA). Cases that 
had both T1 and T2-FLAIR images available, were of reasonable quality to perform tumor 
segmentation, and had presurgical negative status were included. As the presurgical status of 
an image is not explicitly included in the TCIA data, presurgical status was verified to the best 
of our ability by a trained neuroradiologist (CH, 17 years of experience) by examining the skull 
surrounding the tumor for signs of surgeries. The patients in our study were originally imaged 
at Thomas Jefferson University Hospital and Henry Ford Hospital. 

Images of sufficient quality were next analyzed for volumetric features. Briefly, 
2D masks which were annotated using FSLView, a module in the FMRIB Software Library 
5.0 (FSL [7]), were applied surrounding the tumor regions on the post gadolinium (GD) 
contrast T1-weighted images and T2-weighted images. For the T1 images, a single contour 
was segmented including both the dark (Necrotic or NE) and bright (Contrast Enhance-
ment or CE) areas, and the entire volume was referred to as Tumor Bulk (TB). The pixels 
contained in these masks were then clustered into dark (NE) and bright (CE) areas by K-
means clustering using the FSL FEAT (fMRI Expert Analysis Tool, Version 5.0). The area vol-
ume contained within the mask of the T2 FLAIR image set encompasses the Edema (ED) 
envelope, including regions of hyperintense signal and inclusive of any other abnormal 
signal in the region previously identified on the T1 (i.e., TB), and was referred to as Total 
Abnormal Tumor Volume (TV). Afterwards, all masks were visually checked by a trained 
radiologist (CH). We did not attempt to discriminate between peritumoral edema and 
non-enhancing tumor, as both appear hyperintense on FLAIR. In addition to the raw volu-
metric features, we calculated the following feature ratios as investigated in previous 
studies [8, 9, 10] mainly to investigate combined T1/FLAIR signals: NE/TV, CE/TV, ED/TV, 
TB/TV, NE/CE, and CE/TB. A representation of the tumor volumes analyzed are displayed 
in Fig. 2. 
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Gene expression 
 
Matching GBM gene expression (mRNA) data for the TCIA patient cohort was obtained 
from TCGA using the CBioPortal [11] with the ‘cgdsr’ R package version 1.1.33. The profile 
identifier ‘gbm_tcga_pub_mrna_median_Zscores’ was used together with the case identi-
fier ‘gbm_tcga_pub_mrna’ to download the expression values of 18,055 genes given as 
median Z-scores across the Agilent, Affymetrix U133, and Affymetrix Exon platforms. Ex-
pression data were downloaded on April 3, 2015, for 91 patients for which also imaging 
data was available. Based on expression of 1740 genes, Verhaak et al. [12] classified TCGA-
GBM patients into the four molecular GBM subtypes proneural, neural, classical, and mes-
enchymal, which were functionally annotated by presence of oncogenic events. To test 
predictive power for subtypes, we downloaded the classification results on TCGA patients 
by Verhaak et al. from https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/TCGA_ 
unified_CORE_ClaNC840.txt and calculated the multiclass area under curves (AUCs) of the 
receiver operator characteristic [13] of the volumetric features. Imaging and subtype data 
were available for 79 patients. 
 
Pathway analysis 
 
To quantify the association of a volumetric features with biological processes, preranked 
Gene Set Enrichment Analysis [14] (GSEA) version 2.2.0 was performed; gene ranks were 
calculated for every feature according to -log10(p) r, where r is the Spearman rank correla-
tion coefficient, and p its p-value. GSEA was performed on the C5-BP collection version 5.0 
from the Molecular Signature Database [15] (MSigDB), which contains the expert-curated 
Gene Ontology [16] (GO) gene sets for biological processes. Those 583 gene sets contain-
ing at least 15 and at most 500 genes were analyzed. We investigated gene sets that were 
significantly enriched under a false-discovery-rate (FDR) < 0.05 as specified by GSEA to 
account for multiple hypothesis-testing [17]. 
 
Survival analysis 
 
Overall survival data was available for 141 patients with imaging data, and was download-
ed from CBioPortal on April 3, 2015. Prognostic associations of volumetric features were 
assessed with the concordance index (CI) using the ‘survcomp’ package in Bioconductor 
[18]. All statistical analyses were carried out using R version 3.1.0 [19] on a Linux operating 
system. 
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RESULTS 

To investigate which biological processes drive volumetric tumor phenotype features in 
GBM, we performed a pathway analysis based on gene expression profiles using a pre-
ranked Gene Set Enrichment Analysis [14]. We compared these results to molecular sub-
types in GBM and evaluated the prognostic value.  

Volumetric tumor phenotype features in GBM 

Based on MRI, we quantified the following volumetric features in GBM: Necrosis (NE), 
Contrast Enhancement (CE), Edema (ED), Tumor Bulk (TB), and Total Tumor Volume (TV). 
In addition, we calculated the following ratios mainly to investigate combined T1/FLAIR 
signals: NE/TV, CE/TV, ED/TV, TB/TV, NE/CE, and CE/TB. The areas of the tumor that these 
features correspond to are highlighted in Fig. 2b and Fig. 2c. In general, we found that 
these features were not or only moderately correlated (mean Spearman rho 0.48 and -
0.41 for positive and negative correlation, respectively), however a number of features 
were highly positively correlated (e.g., NE and TB, rho = 0.96) and a number of features 
ratios were highly anti-correlated (e.g., NE/CE and CE/TB, rho = -0.98) as shown in Fig. 3.  

Biological processes underlying volumetric features 

In total, 64 biological processes were significantly associated in at least one of the volu-
metric features or their ratios (FDR < 0.05, Fig. 4). Table 1 summarizes the biological 
themes associated with each volumetric feature. These features were generally negatively 
(anti-correlated) enriched for biological processes unless stated otherwise. NE and TB 
were mainly enriched for pathways involved in immune response and apoptosis, whereas 
CE was enriched for signal transduction and protein folding processes. ED was enriched for 
cell cycling, proliferation, and replication mechanisms, but also positively enriched for 
homeostasis. TV was associated with synaptogenesis, biogenesis, and excretion. 
 
Volumetric feature ratios were associated with a larger number of biological processes 
than the original features. Signal transduction was associated with all of the ratios we 
computed; processes involved in immune system were found for all ratios except for 
CE/TV. CE/TV, TB/TV, and ED/TV were enriched for protein complex assembly. In addition, 
ED/TV showed positive enrichment for defense response, cytokine production, and Nf-kB. 
Nf-kB was also found in NE/TV and TB/TV, as well as in NE/CE and CE/TB. Notably, NE/CE 
and CE/TB were also inversely enriched for inflammation, immune system response path-
ways, and anti-apoptosis. 
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Fig. 3 
Correlation map. Pairwise Pearson correlation coefficients of volumetric features. Only few volumes were highly 
correlated (blue) or highly anti-correlated (anti-correlated). 
 

 
Fig. 4 
Pathway enrichment analysis. In total, 64 biological processes (rows) were significantly (FDR < 0.05) enriched for 
at least one volumetric feature (columns) as indicated by an asterisk. Heatmap shows normalized enrichment 
scores (NES) calculated with Gene Set Enrichment Analysis. Positive NES (blue) correspond to correlated pathways 
and negative NES (yellow) correspond to anti-correlated pathways. 
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Table 1 
Summary of pathways associated with volumetric tumor phenotype features of the original volumes (top rows) 
and their ratios (bottom rows). 
 

 
Biological processes 
(positive correlation) 

Biological processes 
(negative correlation) 

Volume   

  Necrosis  
Immune response,  
apoptosis 

  Contrast Enhancement  Signal transduction 

  Edema Homeostasis 
Cell cycle, proliferation, repli-
cation, DNA repair, DNA met-
abolic process 

  Tumor Bulk  
Apoptosis, signal transduction, 
immune system 

  Total Volume  
Synaptogenesis, biogenesis, 
extracellular structure organi-
zation 

Ratios   

  Necrosis/ 
  Total Volume 

 
Defense response, immune 
response, Nf-kB, signal trans-
duction 

  Contrast Enhancement/ 
  Tumor Volume 

 
Protein complex assembly, 
signal transduction, biogenesis 

  Edema/ 
  Tumor Volume 

Protein complex assembly, 
defense response, signal 
transduction, cytokine pro-
duction, immune response, 
Nf-kB 

 

  Tumor Bulk/ 
  Tumor Volume 

 
Signal transduction, protein 
complex assembly, cytokine, 
immune response, Nf-kB 

  Necrosis/ 
  Contrast Enhancement 

 
Response to other organism, 
Nf-kB, immune response, lo-
comotory behaviour 

  Contrast Enhancement/ 
  Tumor Bulk 

Response to other organism, 
Nf-kB, immune response, 
locomotory behaviour 
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Molecular subtypes in GBM 

Based on a study by Verhaak et al. [12], patients from the TCGA-GBM cohort were classi-
fied to belong to either one of the four following molecular subtypes: proneural, neural, 
classical, and mesenchymal. Compared to TV, ED had the largest median size across sub-
types (Fig. 5a); ED was larger in classical GBM and smaller in proneural (Fig. 5b). Other 
volumetric features were comparably similar in terms of median values across subtypes.  
 

 
 
Fig. 5 
Size distribution of volumetric tumor features across molecular subtypes of GBM. (a) Compared to the Total Vol-
ume, Edema had the largest median size across all molecular GBM subtypes. (b) Classical and neural tumors 
showed larger Edema areas than mesenchymal and proneural tumors. Size variation of volumetric feature areas 
other than Edema was generally low across subtypes. 
 
 

We tested predictive value for GBM subtypes of all volumetric features by calcu-
lating the area under the curve (AUC) of the receiver operator characteristic. We found 
that most features performed relatively low (Table 2). ED and TV were the strongest pre-
dictors of subtypes (AUCs = 0.61). Ratios of features generally were poor predictors of sub-
type. 
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                             Table 2 
                             Performances of volumetric features in predicting molecular subtypes of GBM. 
 

Volume Multiclass AUC 
Necrosis 0.57 
Contrast Enhancement 0.57 
Edema 0.61 
Tumor Bulk 0.57 
Total Volume 0.61 
Ratios  
Necrosis/Total Volume 0.56 
Contrast Enhancement/Tumor Volume 0.56 
Edema/Tumor Volume 0.56 
Tumor Bulk/Tumor Volume 0.56 
Necrosis/Contrast Enhancement 0.54 
Contrast Enhancement/Tumor Bulk 0.54 

 

Prognostic value of volumetrics 

To link our pathway-imaging results to clinical patient outcome, we tested prognostic val-
ue of volumetric features for overall survival (OS). Four features (NE, CE, TB, and TV) signif-
icantly predicted OS (Noether, p < 0.05), but prognostic performances as measured by the 
concordance index [20] were only moderate (Fig. 6). Importantly, NE, CE, and TB per-
formed significantly better than TV (one-sided t-test, p < 0.05). Furthermore, Kaplan-Meier 
and Log-Rank analyses revealed significant assessments of low and high risk survival 
groups by NE, CE, and TB (Additional file 1: Figure S1).  

DISCUSSION 

We The translation of quantitative imaging data into defined clinical settings requires 
knowledge of how volumetric tumor phenotype features are driven by biological process-
es that determine the outcome of a patient. This study presents an Imaging-Genomics 
analysis of presurgical diagnostic MRI derived volumetric features in GBM to evaluate if 
tumor phenotype features are associated with underlying tumor biology. We found differ-
ent features to be enriched for different sets of biological processes. Molecular subtypes 
of GBM were difficult to be predicted by volumetric features. However, four out of five 
features showed significant prognostic value. 
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Fig. 6 
Prognostic value of volumetric tumor features. Necrosis, Contrast Enhancement, Tumor Bulk, and Total Tumor 
Volume were significantly (asterisk) prognostic (p < 0.05). The Contrast Enhancement feature showed the highest 
prognostic performance as measured by the C-index. 
 
 

As correlations among our volumetric features were low to moderate in general, 
this suggests that quantifying each of those areas individually yields complementary in-
formation about the tumor phenotype beyond the Total Tumor Volume (TV). Interestingly, 
we found most of the biological processes to be anti-correlated to pathway expression. 
The most prevalent pathways were apoptosis, immune system, and signaling pathways, 
which were observed mainly for Necrosis (NE), Contrast Enhancement (CE), and Tumor 
Bulk (TB); features that were also significantly prognostic. As those pathways are known 
drivers of survival outcome [21, 22, 23], this hence explains why NE, CE, and TB were 
found to be prognostic as well. Importantly, all of these features performed significantly 
better than TV, which highlights that quantification of individual imaging features should 
be preferred over calculating only the total tumor volume. Our finding that NE is anti-
correlated with immune response and prognostic is in line with Gevaert et al. [24], who 
also correlated quantitative imaging features of GBM areas to molecular data and who 
found significant imaging associations to approximately 20 pathways. This analysis, how-
ever, differs from our analysis in that Gevaert et al. investigated a single slice of a tumor 
(in axial view), whereas we performed quantification using the 3D tumor volumes. 

Edema (ED) was the only feature that was correlated with homeostasis, cell cy-
cling, and proliferation pathways. Surprisingly, ED was not prognostic in our analysis, alt-
hough cell cycling and proliferation are known to be involved in carcinogenesis [25]. How-
ever, using the publicly available MRI scoring scheme VASARI (https://wiki.nci.nih.gov/ 
display/CIP/VASARI), Gutman et al. [26] found ordinal ED assessment to be not prognostic 
as well. Interestingly, in a related study by Diehn et al. [6], binary assessment of ED result-
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ed in significant survival predictions. Similarly, a recent study indicated that an ED volume 
cutoff of 85’000 mm3 is a significant prognostic factor using Kaplan-Meier analysis [8]; 
however, the rationale for this cutoff was not given. Prognostic performance of quantita-
tive ED features could increase in cohorts of extended sample sizes, as ED has been re-
ported to be a univariate predictor of survival in a large patient cohort previously [27]. 
Furthermore, our analysis suggests that CE and NE are prognostic. This is partially in line 
with Gutman et al. [26], according to whom CE is prognostic, but NE is not. The contradic-
tions between our results and the studies by Diehn et al. and Gutman et al. could be due 
to the nature of the ED and NE assessments, which in our analysis were continuous, but 
binary and ordinal in Diehn et al. and Gutman et al., respectively. Likewise, our methodol-
ogy could be compared to a study by Jamshidi et al. [28], but comparison remains chal-
lenging as their analysis focused on binary imaging traits on a relatively small cohort of 
patients and a subset of oncogenic pathways only. 

Although ED was the only feature that was not prognostic in our analysis, it was 
the highest predictor of molecular subtypes in GBM instead. This is likely because ED was 
the only feature that expressed a different volumetric size distribution across molecular 
subtypes. Similar indications have been given by Gevaert et al. [24], who found three out 
of four features that correlated with molecular subtypes to be quantitative Edema fea-
tures. In general, we found volumetric features to be only moderate predictors of sub-
types suggesting that subtypes do not generally alter the size composition of tumor areas 
in GBM. Furthermore, we could not confirm that the proneural subtype has lower propor-
tions of CE as suggested by Gutman et al. [26]. Poor predictability of Verhaak molecular 
subtypes by relative cerebral blood volume using T2-weighted MRI has been also de-
scribed by Jain et al. [29]. 

In our analysis, ratios of volumetric features were not significantly prognostic or 
predictive of GBM subtypes. Generally, many more biological processes were significantly 
associated with the feature ratios, usually showing a trend towards a mix of pathways asso-
ciated with the individual features that the ratios were composed of (e.g., NE/TV were en-
riched for signal transduction and biogenesis). While our study associated MRI volumetric 
features with biological processes, molecular subtypes, and survival outcome using ge-
nome-wide data and aimed at explaining the rationale for why MRI derived volumetric fea-
tures are associated with survival on a pathway level, other studies have focused on reveal-
ing specific genetic variations between MRI features and survival [30, 31, 32, 33, 34]. 

Our analysis was limited to a retrospective dataset. To establish volumetric bi-
omarkers in clinical applications, prospective evaluation of our results will be required. 
Biological significance could be further validated by analyses of complementary molecular 
data such as mutational or epigenetic data. Such analyses could provide further insight 
into why separate quantification of distinct volumetric tumor phenotype features yield 
different biological and prognostic information. We acknowledge that the prognostic and 
predictive performances of the volumetric features in the TCGA-GBM dataset were mod-
erate. Heterogeneity of GBM tumors [35] could be an explanation for this, which limits the 
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definition of a single molecular subtype especially on the basis of single-needle biopsy 
[36, 37]. As imaging approaches target the entire visible tumor, we however expect in fu-
ture studies that prognostic performances will drastically increase when Imaging-Genomic 
cohorts with even larger numbers of samples and standardized image processing become 
available for GBM. 

While our study focused on volumetric phenotype features, alternative defini-
tions of imaging phenotypes are available. This may, for example, include tumor location 
as this determines the extent of possible resection and hence is a prognostic factor in 
GBM [38]. In addition to such semantic phenotypes, agnostic phenotyping approaches 
such as radiomics could be added [39]. 

CONCLUSIONS 

In conclusion, quantitative imaging biomarkers hold great potential, as, unlike traditional 
biopsies, medical imaging is noninvasive and captures the entire tumor volume. As we 
have shown, a relationship exists between individual volumetric phenotype features de-
scribing local, clinically relevant subareas of GBM tumors and global expression of genes. 
Knowledge about how these specific tumor areas are related to underlying biological cell 
processes may allow for advanced patient stratification and treatment decision on the 
basis of standard medical imaging, but efforts in optimization of prognostic and predictive 
performances need to continue.  

ADDITIONAL FILES 

Additional file 1: Figure S1. Stratification power of volumetric tumor phenotype features. 
Kaplan-Meier analysis of the volumetric features that showed significant prognostic value 
(i.e., Necrosis, Contrast Enhancement, Tumor Bulk, and Total Tumor Volume). Except for 
Total Tumor Volume, these features also showed significant classification in low (blue) and 
high (red) risk groups based on the mean feature value. Available at: https://static-
content.springer.com/esm/art%3A10.1186%2Fs12885-016-2659-
5/MediaObjects/12885_2016_2659_MOESM1_ESM.pdf. 
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ABSTRACT 

Introduction 
MR imaging can noninvasively visualize tumor phenotype characteristics at the macro-
scopic level. Here, we investigated whether somatic mutations are associated with and 
can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). 
  
Materials and methods 
Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom pre-
operative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set 
of volumetric imaging features and their ratios were measured, including necrosis, con-
trast enhancing, and edema volumes. Imaging genomics analysis assessed the association 
of these features with mutation status of nine genes frequently altered in adult GBM. Fi-
nally, area under the curve (AUC) analysis was conducted to evaluate the predictive per-
formance of imaging features for mutational status.  
 
Results 
Our results demonstrate that MR imaging features are strongly associated with mutation 
status. For example, TP53-mutated tumors had significantly smaller contrast enhancing 
and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had 
significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volu-
metric features were also found to significantly predict mutational status. For example, 
AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could 
each be significantly predicted by at least one imaging feature.  
 
Conclusion 
MRI-derived volumetric features are significantly associated with and predictive of several 
cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed 
insight into unique growth characteristics of individual tumors at the macroscopic level 
resulting from molecular events as well as increase the use of noninvasive imaging in per-
sonalized medicine. 
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Radiogenomics – GBM – MRI – Imaging genomics – Volumetrics 
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INTRODUCTION  

Glioblastoma (GBM) is the most common and most aggressive form of brain cancer with a 
median survival of less than 15 months and a 5-year survival rate of less than 10 % [1]. 
While factors ranging from younger age at diagnosis, cerebellar location, better cognitive 
performance, and more extensive tumor resection have been associated with more favor-
able outcome, the current standard of care treatment involving surgery, radiation, and 
chemotherapy ultimately fails, in part due to the proliferative and diffusely infiltrative na-
ture of the tumor [2]. Recent molecular analyses have demonstrated significant diversity 
in histologically similar tumors that drive proliferation and competitive propagation [3]. In 
addition, integrated analyses using gene expression, copy number, methylation, and so-
matic mutation patterns have identified distinct GBM subtypes, some of which associated 
with distinct responses to treatment [4]. 

Methods such as magnetic resonance imaging (MRI) that can noninvasively char-
acterize the tumor at a macroscopic scale can be of potential value, as they can provide 
complementary information to the tumor’s molecular characterization [5]. Historically, 
only very basic parameters have been derived from imaging data, such as measurements 
of tumor size based on “representative” cross sections on a single radiology image 
[6, 7, 8]. While such measures are easy to perform and serve as the basis for assessing 
treatment response [9, 10], there is a rich set of additional visual characteristics of the 
tumor that can also be assessed. One effort to catalog these characteristics is the VASARI 
Research Project, which seeks to develop a controlled vocabulary describing the varied 
morphology of glioblastoma (http://cabig.cancer.gov/action/collaborations/vasari/). The 
VASARI feature set was developed by The Cancer Genome Atlas (TCGA) radiology working 
group and uses a standard lexicon with the goal of reproducibly assessing 26 imaging de-
scriptors based on T1-weighted and T2-weighted FLAIR MRI modalities. For example, vari-
ables such as major axis length, tumor location, proportion enhancing, thickness of en-
hancing margin, and proportion of edema are all measured by trained radiologists in this 
protocol. Data obtained from this protocol has led to a number of findings demonstrating 
the value of adding imaging data to models predicting survival [11, 12] and molecular pro-
file [13] in glioblastoma. 

Our current work expands upon these results by using a semi-automated digital 
quantification technique, which recent work has shown to be more objective and lead to 
more robust findings than qualitative staging methods used in the past [14]. Indeed, fea-
ture measurements based on manual estimations have been shown to be subject to sub-
stantial inter- and intra-observer variability [15]. Recently, quantitative volumetric meas-
urements of tumor subvolumes, or imaging features, such as contrast-enhancing tumor, 
necrosis, and tumor-associated edema, have been associated with response to treatment 
and overall prognosis [16, 17, 18]. Associations of tumor subvolume data and somatic mu-
tations would be of clinical importance, as it would improve our understanding and mac-
roscopic implications of these heavily researched molecular events [19, 20]. 
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In this study, we investigated whether somatic mutations in genes consistently 
implicated in glioblastoma are associated with and can be predicted by digitally derived 
volumetric features from tumor MR images, including contrast enhancing, necrosis, and 
T2 FLAIR hyperintensity volumes, as well as combination and ratios of these features. We 
chose to focus on somatic mutations due to the strong literature presence and clinical rel-
evance. We limited our analysis to an a priori selected gene set as described by Verhaak et 
al. [4], as well as showing mutations in at least five patients included in our cohort, result-
ing in the following: TP53, PTEN, NF1, EGFR, IDH1, PIK3R1, RB1, PIK3CA, and PDGFRA. 
Many of these genes are drug-targetable, raising the possibility of treating cancer based 
on noninvasively derived imaging biomarkers. In particular, several potential therapies to 
target mutant EGFR such as monoclonal antibodies, vaccines, or small molecule inhibitors 
are currently being actively investigated [21]. In addition, some PTEN nonsense mutations 
have shown to be targeted by drugs that inhibit PKC (byrostatin) and Raf (AZ628) [22], and 
IDH1 mutations have been shown to be targeted by small molecule inhibitors such as AGI-
120 [23]. Noninvasive methods that can predict mutation status would thus be of great 
clinical importance and could guide clinical treatment decision-making, especially in situa-
tions where molecular testing or surgical biopsy is not feasible or appropriate. 

  

MATERIAL AND METHODS 

Imaging and mutation data 

All Presurgical T1-weighted post-Gd contrast (T1C) and T2-weighted FLAIR sequence MR im-
ages were downloaded from The Cancer Imaging Archine (TCIA) (http://thecancerimaging-
archive.net) in September of 2014. TCIA is an NCI-sponsored imaging sharing resource that 
houses more than three million images from 31 different institutions [24, 25]. This resource 
is particularly valuable because it stores a wide variety of publically available longitudinal 
data with associated genomic data, which is not readily obtainable at a single institution 
level. As the patients had been previously de-identified by TCGA and were available for 
public download, no Institutional Review Board approval was required. Since presurgical 
status of an image was not explicitly included in the TCIA data, presurgical status was veri-
fied by a trained neurologist (CH, 17 years of experience). Somatic mutation status from 
whole exome sequencing and clinical data were downloaded from TCGA using cBioPortal 
(http://www.cbioportal.org/public-portal/) queried with the “cgdsr” package version 1.1.30 
in R [26]. The latest cBioPortal GBM dataset (version “provisional”) was downloaded on 
September 25, 2014. Within TCIA, there were 185 GBM patients with both T1C and T2-
weighted FLAIR images available before surgery. Of these, 76 patients had mutation data 
available within TCGA and were included in this analysis. 
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Volumetric image analysis 

For T1C images, 2D masks were drawn on each MRI slice over the visible tumor using 
FSLView, a module in the FMRIB Software Library 5.0 (FSL [27]). For these image sets, a 
single contour encapsulating both the dark (necrosis) and bright (contrast enhancing) are-
as was segmented, becoming the basis of what will be referred to as tumor bulk volume. 
Similarly, for the T2-weighted FLAIR image sets, a single contour was drawn on each slice 
over the visible tumor which encompassed both the region previously identified on the 
T1C (i.e., tumor bulk) as well as surrounding hyperintense signal including the edema en-
velope. To note, this markup does not attempt to differentiate between nonenhancing 
tumor and true edema, as they both appear hyperintense on the FLAIR image. 

Following segmentation, the original mask containing the tumor region on the 
T1C images underwent K-means clustering using the FSL FAST tool (FMRIB’s Automated 
Segmentation Tool) [28] to differentiate dark (necrosis) and bright (contrast enhancing) 
areas from one another. A subset of 5–10 machine-generated segmentations were re-
viewed by trained experts (CH, DG) to verify proper segmentation; we determined that 
the FAST algorithm module produced robust segmentations without extensive parameter 
optimization. This algorithm has been used routinely for more than 10 years to segment 
white and gray matter, and we found robust segmentation results when we applied the 
algorithm to segmenting “bright” versus “dark” pixels for contrast enhancement and ne-
crosis. 

Based on the annotations on the T1C images, contrast enhancing, necrosis, and 
tumor bulk volumes could be calculated (Fig. 1). In addition, incorporation of the T2-
weighted FLAIR series allowed quantification of the total tumor volume and T2-FLAIR hy-
perintensity volume (total tumor volume–tumor bulk volume). For the purposes of our 
analyses, several derivative ratios were also calculated: necrosis/contrast enhancing, con-
trast enhancing/tumor bulk, contrast enhancing/total tumor, necrosis/total tumor, T2-
FLAIR hyperintensity/total tumor, and tumor bulk/total tumor volumes. Individual imaging 
feature volumes were computed by computing the total number of voxels within the re-
spective region and multiplying by the voxel size; these calculations were performed using 
FSL’s fslstats module. 

Imaging-genomic analysis 

For each of the 11 volumes or ratios defined above, the mean values corresponding to 
patients with mutated genes were compared to those of the wild-type cohort. Significant 
differences between groups with and without mutations were tested with a two-sided 
Student’s t test. Significance was defined by p value <0.05. Normal assumption of volumes 
was confirmed by p value <0.05 under a Shapiro-Wilk test across all patients. This analysis 
was limited to genes from the a priori selected gene set discussed above. 
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Fig. 1 
Visualization of naming conventions for the tumor volumetric features used throughout this article for TCGA-02-
0033, a 54-year-old male glioblastoma patient. a Tumor-associated T2-FLAIR hyperintensity and total tumor vol-
ume was quantified from the T2-weighted FLAIR images. b Necrosis, contrast enhancing, and tumor bulk volume 
was quantified from T1-weighted post-Gd contrast (T1C) images. c This panel displays both images co-registered 
and overlayed on top of each other for visualization purposes. Tumor bulk is defined as the total abnormal tumor 
area on the T1C images: combination of contrast enhancing and necrosis volumes. Total tumor volume is defined 
as the combination of the tumor bulk and T2-FLAIR hyperintensity volumes. 
 
 

Predictive power of volumes to predict mutation status was assessed by the area 
under the curve (AUC) of the receiver operator characteristic (ROC) [29]. To make perfor-
mance evaluation comparable, we calculated the absolute AUC defined as 
0.5 + abs(x − 0.5), where x is an AUC value. All statistical analysis was carried out by the R 
statistical software version 3.0.2 on a Linux platform [30]. 

RESULTS 

To investigate whether somatic mutations were associated with MRI imaging features, the 
GBM patients analyzed in our analysis were limited to those with mutation data available 
from TCGA and image data from TCIA (N = 76). The genes analyzed in our study were lim-
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ited to an a priori selected gene set as described by Verhaak et al. [4], as well as showing 
mutations in at least five patients included in our cohort. This resulted in a total of nine 
genes included in our analysis: TP53, PTEN, NF1, EGFR, IDH1, PIK3R1, RB1, PIK3CA, and 
PDGFRA.   

Associations between MRI-derived GBM tumor volumes 

An initial visual inspection of segmented images demonstrated a wide variety of measured 
features across patients that could be capitalized upon in imaging genomic analyses 
(Fig. 2). 
 

 

 
 

Fig. 2 
Examples of images characterized by various imaging features. Representative scans of low (a) and high (b) ne-
crosis/total tumor volume ratios, low (c) and high (d) FLAIR/total tumor volume ratios, and low (e) and high (f) 
tumor bulk volumes are visualized. Masks outline areas used to determine various volumetric features used 
throughout the project (red for tumor bulk on T1-weighted post-Gd contrast (T1C) images, blue for T2-FLAIR hy-
perintensity on T2-weighted FLAIR images). 
 
The pairwise Pearson correlation coefficients of these 11 analyzed imaging features are 
shown in Fig. 3. These results demonstrated the relative independence of many of these 
volumetric features and ratios. While some higher correlations were noted (e.g., contrast 
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enhancement and necrosis, r = 0.91, or T2-FLAIR hyperintensity and total tumor vol-
ume, r = 0.87), several features also showed low correlations, indicating independence 
(e.g., necrosis and T2-FLAIR hyperintensity, r = 0.07). 
 
 

 
 
Fig. 3 
Correlation coefficient matrix between the eleven imaging feature measurements used in this study. Note the 
high correlation between several features (e.g., T2-FLAIR hyperintensity and total tumor volume), as well as the 
low correlation between other features (e.g., necrosis and T2-FLAIR hyperintensity). Correlations were assessed 
using Pearson correlation coefficient. 
 
 

In a final exploratory analysis, patients were clustered into two groups based on 
imaging volumes. Importantly, chi-squared tests did not indicate any significant differ-
ences of gender, disease-free status, Karnofsky performance score, and age between 
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these groups, suggesting that the measured imaging volumes measured are relatively in-
dependent of these clinical variables (Fig. 4).  
  
 

 
 
Fig. 4 
Heatmap of volume values (Z-scores) and clinical parameters. Patients are clustered according to their imaging 
features (rows). The two main clusters show no significant association (chi-squared test) to clinical parameters 
gender, disease-free status (DFS), Karnofsky performance score (KPS), and age. KPS of 40, 60, 80, and 100 are 
indicated by blue, red, yellow, and green, respectively. Age is indicated by one darker nuance every 10 years 
(range 21 to 85 years). Gray bars indicate clinical parameters that were not available for a patient. 

Association of MRI volumetric features with somatic mutations 

In comparing the volumetric averages for the 11 measures between mutant versus wild-type 
tumors to investigate the associations between mutation status and volumetric features, sev-
eral significant results were observed (Table 1). TP53-mutated tumors had four subvolumes 
that were significantly different from wild-type tumors (Fig. 5a). For example, contrast en-
hancing and necrosis volumes were significantly smaller for mutated tumors (8588.1 mm3 
average difference (p = 0.012) and 7159.2 mm3 average difference (p = 0.017), respectively). 
EGFR-mutated tumors showed a significantly higher necrosis/contrast enhancing ratio 
(p = 0.05) and a significantly lower contrast enhancing/tumor bulk ratio (p = 0.008) (Fig. 5b). 
Furthermore, RB1-mutated tumors showed significantly smaller T2-FLAIR hyperintensity 
(26,354.4 mm3 average difference, p = 0.015) and total tumor volume (34,467.2 mm3 average 
difference, p = 0.020) (Fig. 5c). For the other mutations, the volumetric features did not signif-
icantly differ between mutated and wild-type tumors (Table 1, Supplemental Digital Content).  
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Table 1 
Differences in imaging feature volumes between mutated and wild-type tumors for a subset of significant results. 
“Mut-WT” refers to difference in average between mutated and wild-type groups for the various volumes (in 
mm3) as well as differences in ratios. For each gene and imaging feature, a two-sided Student’s t test was per-
formed to measure significance of the difference and the corresponding p value is also provided. For complete set 
of significances in volumetric differences by mutation status, see Table 1 Supplemental Digital Content.  
*Statistical significance (p < 0.05) 
 

 Gene: TP53 EGFR RB1 
 Number of  

mutations: 26 24 8 
 
Contrast enhancement Mut–WT difference −8588.05 818.21 −3676.05 
 t Test p value 0.012* 0.827 0.485 
 
Necrosis Mut–WT difference −7159.16 3555.12 −4436.73 
 t Test p value 0.017* 0.303 0.289 
 
T2-FLAIR hyperintensity Mut–WT difference −11164.7 6655.63 −26354.4 
 t Test p value 0.326 0.538 0.015* 
 
Tumor bulk Mut–WT difference −15747.2 4373.33 −8112.78 
     
 t Test p value 0.012* 0.533 0.387 
 
Total tumor Mut–WT difference −26911.9 11028.92 −34467.2 
 t Test p value 0.04* 0.402 0.02* 
Necrosis/  
Contrast Enhancement Mut–WT difference −0.69 0.14 −0.14 
 t Test p value 0.492 0.05* 0.056 
Contrast enhancement/ 
tumor bulk Mut–WT difference 0.012 −0.046 0.038 
 t Test p value 0.515 0.008* 0.145 

 

Predicting somatic mutation based on MRI volumetric  

To assess the potential of the MRI volumetric features to predict somatic mutation status 
noninvasively, we evaluated the predictive power using the AUC of the receiver-operating 
characteristic. AUC values were calculated by quantifying the performance of distinguish-
ing between a mutated and wild-type tumor on the basis of each of the 11 imaging fea-
tures (Fig. 6, Table 2, Table 2 Supplemental Digital Content). 

In general, we found a tendency for volumetric features to predict mutation sta-
tus of one gene specifically. For example TP53 could be significantly predicted by contrast 
enhancing (AUC = 0.68, p = 0.001), necrosis (AUC = 0.67, p = 0.039), as well as total tumor 
volumes (AUC = 0.646, p = 0.010). Of note, these three volumes were all highly correlated 
with each other as demonstrated in Fig. 3. Additionally, NF1 mutation status could be pre-
dicted by contrast enhancing volume (AUC = 0.68, p = 0.023) and tumor bulk volume 
(AUC = 0.67, p = 0.032). EGFR mutations could be predicted by the necrosis/contrast en-
hancing (AUC = 0.68, p = 0.001) ratio and contrast enhancing/tumor bulk (AUC = 0.68, 
p = 0.001) ratio. RB1 mutations could be predicted by T2-FLAIR hyperintensity (AUC = 0.66, 
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p = 0.022) and total tumor volume (AUC = 0.68, p = 0.011). Finally, PDGFRA could be pre-
dicted by T2-FLAIR hyperintensity/total tumor volume (AUC = 0.72, p = 0.026) and tumor 
bulk/total tumor volume ratios (AUC = 0.72, p = 0.026). All significant results are summa-
rized in Table 2. 

 

 
Fig. 5 
Volumetric differences for mutated versus wild-type tumors for a TP53, b EGFR, and c RB1. For each plot, the left 
y-axis corresponds to the mean volume of the left features and the right y-axis corresponds to the volume ratio of 
the features on the right. The bars indicate the standard error of the mean. Note TP53-mutated tumors were 
found to have significantly smaller contrast enhancing, necrosis, and tumor bulk volumes compared to wild type. 
EGFR-mutated tumors have a significantly larger necrosis/contrast enhancing ratio, as well as a significantly 
smaller contrast enhancing/tumor bulk ratio. RB1-mutated tumors have significantly larger T2-FLAIR hyperinten-
sity and total tumor volumes, compared to wild-type tumors. 
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DISCUSSION 

Medical imaging has strong potential to stratify patients, as it is uniquely situated to non-
invasively provide a macroscopic evaluation of the entire tumor volume. We quantified 
GBM MRI phenotypes by defining volumetric features, such as contrast enhancing, necro-
sis, and T2-FLAIR hyperintensity volumes, and ratios thereof. In this work, we investigated 
whether quantitative assessments of tumor features are significantly associated with or 
predictive of somatic mutation status in GBM. 

We found strong associations of MRI characteristics with underlying somatic mu-
tation patterns, such as tumor bulk and total tumor volume with TP53 and RB1 mutations. 
Importantly, these features were able to significantly predict mutations, such as TP53, 
EGFR, RB1, NF1, and PDGFRA—mutations of clinical importance in GBM [4, 31]. Although 
the predictive capability of the volumetric features for mutational status was not perfect 
(i.e., AUC = 1), performance is much higher and significantly different compared to chance 
(i.e., AUC = 0.50, p value ≥ 0.05), demonstrating the strong association of the imaging fea-
ture with the underlying driving biology. 

Our results showed that contrast enhancing volume and necrosis volume are sig-
nificantly smaller for TP53 mutants, a finding likely driven by the fact that these tumors, in 
previous work using the categorically defined VASARI imaging features, have been shown 
to be characterized by smaller volumes in general [13]. We confirmed this qualitative as-
sessment using our digitally defined quantitative volumetric approach, and additionally 
showed that both the tumor bulk (on the T1C images) and total tumor volume (on the T2-
weighted FLAIR images), were significantly smaller for TP53 mutants. 

Our results also show that the necrosis/contrast enhancing ratio was significantly 
higher in EGFR mutants. These results indicate that although the total tumor volume is 
similar, EGFR mutants have larger necrosis volumes and smaller contrast enhancing vol-
umes, compared to wild-type tumors. Although the tumor volume was higher for EGFR 
mutants in our quantitative analysis, the differences were not significant, as previous work 
had demonstrated [13].   
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Table 2 
Gene mutation/volumetric imaging feature correlations for subset containing significant results. For each gene 
and imaging feature, area under the curve (AUC) values, corresponding pvalue, and 95 % confidence interval are 
provided. For complete set of correlations, see Table 2 Supplemental Digital Content.  
*Statistical significance (p < 0.05) 
 
 Gene: TP53 NF1 EGFR RB1 PDGFRA 

 Number of 
mutations: 26 9 24 8 6 

Contrast 
Enhancement 

AUC  
(p value) 

0.679 
(0.001*) 

0.681 
(0.023*) 

0.503 
(0.971) 

0.57 
(0.489) 

0.621 
(0.258) 

 95 % CI 0.569–
0.788 

0.525–
0.837 

0.361–
0.644 

0.372–
0.768 

0.411–
0.831 

Necrosis AUC  
(p value) 

0.666 
(0.004*) 

0.658 
(0.063) 

0.556 
(0.429) 

0.588 
(0.365) 

0.572 
(0.531) 

 95 % CI 0.552–
0.78 

0.491–
0.825 

0.417–
0.695 

0.397–
0.779 

0.347–
0.796 

T2-FLAIR  
hyperintesity 

AUC  
(p value) 

0.591 
(0.127) 

0.537 
(0.479) 

0.542 
(0.499) 

0.66 
(0.022*) 

0.56 
(0.687) 

 95 % CI 0.474–
0.708 

0.435–
0.639 

0.42–
0.665 

0.523–
0.797 

0.268–
0.852 

Tumor bulk AUC  
(p value) 

0.675 
(0.002*) 

0.671 
(0.032*) 

0.535 
(0.631) 

0.577 
(0.441) 

0.612 
(0.322) 

 95 % CI 0.566–
0.785 

0.514–
0.828 

0.393–
0.676 

0.381–
0.773 

0.39–
0.833 

Total tumor AUC  
(p value) 

0.646 
(0.010*) 

0.604 
(0.103) 

0.551 
(0.445) 

0.676 
(0.011*) 

0.515 
(0.919) 

 95 % CI 0.534–
0.758 

0.479–
0.729 

0.421–
0.681 

0.54–
0.813 

0.218–
0.813 

Necrosis/ 
Contrast 
ehancement 

AUC  
(p value) 

0.531 
(0.655) 

0.516 
(0.855) 

0.682 
(0.001*) 

0.642 
(0.066) 

0.612 
(0.375) 

 95 % CI 0.397–
0.664 

0.348–
0.683 

0.571–
0.793 

0.491–
0.793 

0.364–
0.859 

Contrast  
enhancment/ 
tumor bulk 

AUC  
(p value) 

0.531 
(0.655) 

0.516 
(0.855) 

0.682 
(0.001*) 

0.642 
(0.066) 

0.612 
(0.375) 

 95 % CI 0.397–
0.664 

0.348–
0.683 

0.571–
0.793 

0.491–
0.793 

0.364–
0.859 

T2-FLAIR  
hyperintesity/ 
total tumor 

AUC  
(p value) 

0.522 
(0.755) 

0.576 
(0.256) 

0.549 
(0.488) 

0.572 
(0.526) 

0.722 
(0.026*) 

 95 % CI 0.383–
0.661 

0.445–
0.707 

0.422–
0.676 

0.35–
0.793 

0.527–
0.918 

Tumor bulk/ 
total tumor 

AUC  
(p value) 

0.522 
(0.755) 

0.576 
(0.256) 

0.549 
(0.488) 

0.572 
(0.526) 

0.722 
(0.026*) 

 95 % CI 0.383–
0.661 

0.445–
0.707 

0.422–
0.676 

0.35–
0.793 

0.527–
0.918 
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Finally, RB1 mutants were noted to have smaller T2-FLAIR hyperintensity and to-
tal tumor volumes but similar contrast enhancing and necrosis volumes compared to wild-
type tumors, demonstrating the effect of RB1 on tumor-associated T2-FLAIR hyperintensi-
ty. One interpretation of these findings is that these mutations drive different growth pat-
terns within individual tumors that are reflected in drastic differences in the imaged tumor 
phenotype (for example, highly necrosis/low CE vs. high CE/low necrosis). Correlations 
between our imaging features demonstrated that in general, the 11 features originally 
derived from MRI volumes are relatively independent measures of brain tumors charac-
teristics that many have the potential to offer unique insight into tumor behavior (Fig. 3). 
This was also demonstrated by showing that different features predicted different muta-
tions.  

Several automatic and semi-automatic volumetric algorithms have been pro-
posed to segment GBM tumors in relevant subvolumes [32]. For this work, we attempted 
a novel hybrid approach where we used a trained rater to mask the gross abnormal signal 
on the T1C and T2-weighted FLAIR image. The gross tumor volume on T1C is then strati-
fied automatically into contrast enhancing and necrosis subvolumes (bright/dark pixels), 
using the FAST algorithm [33], improving the robustness of the segmentation process. We 
should note, however, that the segmentations were subsequently manually reviewed at 
various stages to ensure quality control. 

Previous studies have investigated whether different biological subtypes confer 
different macroscopic properties to the images themselves and significant correlations 
between genetic expression and macroscopic imaging properties have been established 
[34, 35, 36]. Imaging genomics seeks to close the gap between genomics and neuroradiol-
ogy to provide a comprehensive quantification of the tumor phenotype by applying a large 
number of automated image characterization algorithms [14, 20, 37]. In this paper, we 
applied a relatively low-dimensional feature extraction (focusing on three key volumes 
and derivatives for eleven features total). Future studies will expand these features and 
investigate the value of imaging genomics for the prediction of additional mutational pat-
terns. 

Going forward, the development of noninvasive imaging biomarkers will provide 
valuable insight to the clinicians to help in treatment selection and prognosis. As these 
biomarkers assess the entire tumor volume, they alleviate some of the concerns related to 
most tissue-based assessments that involve sampling only a small region of the tumor. 
Given the marked heterogeneity observed within tumor samples taken from even the 
same patient [38], a noninvasive technique that allows serial imaging (e.g., MRI) can pro-
vide valuable insight. Indeed, a limitation to our study is that in our patient set, TCGA tis-
sue sampling was not performed under image guidance and therefore exact location of 
biopsy is not known. Future studies will investigate the association of intratumor muta-
tional heterogeneity and MRI volumetric features. 

In addition, it is important to note that since the TCIA imaging data used in our 
study was collected through a consortium of several institutions around the country, the 
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specific MR parameters (field strength, slice thickness, voxel size, slice gap) may not al-
ways be perfectly standardized across patients. However, our results should be relatively 
unaffected by issues of slice thickness, image quality, and voxel size, since we decided to 
analyze a set of volumetric features rather than measurements that would be more direct-
ly influenced by these subtle differences. Since the majority of the tumors were relatively 
large, and orders of magnitude larger than the size of an individual voxel (even accounting 
for voxel variability), similar to other papers published using this dataset, we therefore 
believe our conclusions are not largely influence by such factors. We should also note that 
there is no clear association between contributing site, and at least within a site the scan-
ner(s) used were much more consistent than between contributing sites. 

In conclusion, our results show that GBM mutations drive observable phenotypes 
that are quantifiable with MRI imaging. We demonstrate that somatic mutations are asso-
ciated with macroscopic characteristics and that these clinically important mutations can 
be significantly predicted with high performance. These results may impact personalized 
medicine, as imaging is noninvasive and already applied routinely in clinical practice 
throughout a course of treatment. Finally, our results may shed insights into unique be-
havioral and macroscopically visible growth characteristics of individual tumors as a result 
of tumor mutational differences. 
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ABSTRACT  

Background 
Anti-angiogenic therapy with bevacizumab is the most widely used treatment option for 
recurrent glioblastoma, but therapeutic response varies substantially and effective bi-
omarkers for patient selection are not available. To this end, we determine whether novel 
quantitative radiomic strategies on the basis of MRI have the potential to noninvasively 
stratify survival and progression in this patient population. 
 
Methods 
In an initial cohort of 126 patients, we identified a distinct set of features representative of 
the radiographic phenotype on baseline (pretreatment) MRI. These selected features were 
evaluated on a second cohort of 165 patients from the multicenter BRAIN trial with pro-
spectively acquired clinical and imaging data. Features were evaluated in terms of prog-
nostic value for overall survival (OS), progression-free survival (PFS), and progression with-
in 3, 6, and 9 months using baseline imaging and first follow-up imaging at 6 weeks post-
treatment initiation. 
 
Results 
Multivariable analysis of features derived at baseline imaging resulted in significant strati-
fication of OS (hazard ratio [HR] = 2.5; log-rank P = 0.001) and PFS (HR = 4.5; log-rank P = 
2.1 × 10−5) in validation data. These stratifications were stronger compared with clinical or 
volumetric covariates (permutation test false discovery rate [FDR] <0.05). Univariable 
analysis of a prognostic textural heterogeneity feature (information correlation) derived 
from postcontrast T1-weighted imaging revealed significantly higher scores for patients 
who progressed within 3 months (Wilcoxon test P = 8.8 × 10−8). Generally, features de-
rived from postcontrast T1-weighted imaging yielded higher prognostic power compared 
with precontrast enhancing T2-weighted imaging. 
 
Conclusion 
Radiomics provides prognostic value for survival and progression in patients with recur-
rent glioblastoma receiving bevacizumab treatment. These results could lead to the devel-
opment of quantitative pretreatment biomarkers to predict benefit from bevacizumab 
using standard of care imaging. 
 
Keywords 
Bevacizumab – recurrent glioblastoma – radiomics – survival 
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IMPORTANCE OF THE STUDY 

Glioblastoma is the most common and aggressive primary malignant brain tumor and re-
currence is almost inevitable. At recurrence, patients are faced with poor prognosis due to 
limited treatment options. One widely used treatment for recurrent glioblastoma in the 
United States is anti-angiogenic therapy with bevacizumab. However, treatment response 
varies substantially and effective biomarkers for stratification are absent. To this end, we 
propose an emerging approach, radiomics, that translates standard radiographic images 
into quantitative data for in-depth analysis of radiographic tumor phenotypes. We applied 
radiomics to prospective clinical and imaging data from the multicenter BRAIN trial. Our 
analysis indicates that this approach yields significant prognostic value for OS and PFS at 
both baseline and follow-up imaging. These results prompt further prospective validation 
to develop a noninvasive pretreatment biomarker from standard of care medical images 
for the purpose of objectively predicting treatment response in patients with recurrent 
glioblastoma treated with bevacizumab. 

INTRODUCTION 

Glioblastoma remains the most aggressive primary malignant brain tumor, with a median 
survival time of 15 months and a 5-year survival of ~5% after initial diagnosis.1–3 Despite 
standard of care therapy, including maximal safe surgical resection, radiotherapy, and te-
mozolomide,4 nearly all patients relapse.5 

One commonly used treatment option at recurrence in the US is bevacizumab, an 
inhibitor of vascular endothelial growth factor developed to block angiogenesis.6 The 
noncomparative randomized phase II, multicenter, open-label BRAIN trial (AVF3708g) in-
vestigating bevacizumab plus irinotecan versus bevacizumab alone7,8 contributed to accel-
erated FDA approval of bevacizumab (Avastin, Genentech) for treatment of recurrent glio-
blastoma in 2009. Despite its current US approval for treatment of recurrent glioblastoma, 
phase II and III clinical trials for patients with recurrent glioblastoma,9,10 as well as 2 recent 
phase III randomized clinical trials for patients with newly diagnosed glioblasto-
ma,11,12 found no improvement in overall survival (OS) with the addition of bevacizumab 
to standard therapy. 

However, it is reasonable to hypothesize that there may be a patient population 
with a meaningful clinical benefit, given that the demonstrated activity of bevacizumab 
evidenced by impact on imaging-based endpoints13–15 and the development of novel bi-
omarkers will be critical to identifying such patients. Imaging biomarkers that could pre-
dict response to therapy, have significant prognostic value, or can identify patients unlike-
ly to respond to any therapy would be an extremely valuable tool in this regard. 
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Radiomics is an emerging field that translates medical images into quantitative 
data by applying a large set of feature extraction algorithms to characterize tumor pheno-
type.16–18 Two advantages of radiomics are its noninvasive approach and the ability to 
evaluate the entire visible tumor and any intratumoral heterogeneity of glioblastoma.18–

20 Previous studies have employed a radiomic approach to glioblastoma21–24 reporting 
prognostic and predictive value of quantitative imaging features; moreover, associations 
of radiomics with underlying molecular profiles have been suggested.25,26 

In this study, we present a radiomic analysis of patients with recurrent glioblas-
toma treated with bevacizumab. In an independent selection cohort, we identified a set of 
distinct quantitative imaging features from MRI defining radiographic tumor phenotype. 
We evaluated these features on prospectively acquired clinical and imaging data from the 
BRAIN trial, to determine whether there was an association with posttherapy survival and 
progression at baseline (pretreatment) and at follow-up at week 6 (posttreatment initia-
tion). Hereby, we aimed at assessing whether such a radiomic approach can be valuable 
for the development of noninvasive biomarkers for risk stratification in this patient popu-
lation.  

MATERIALS AND METHODS 

Study cohorts 

The current study was covered by 13–055 Partners institutional review board (Aerts).  

Selection cohort 

To independently determine the set of radiomic features that define the radiographic 
phenotype of a tumor and to avoid false discoveries due to a high-dimensional radiomic 
feature space, we leveraged a retrospectively collected cohort of 126 nonconsecutive pa-
tients at our institution for unsupervised feature selection blinded from clinical data. Pa-
tients had pathologically confirmed glioblastoma of at least one recurrence and received 
bevacizumab either alone or with irinotecan between December 2006 and August 2014 
after standard of care treatment, including surgical resection followed by radiotherapy as 
well as concurrent and adjuvant temozolomide. Further baseline characteristics are de-
tailed in Table 1.  

BRAIN trial 

Features selected on the selection cohort were retrospectively analyzed on prospectively 
acquired data from the phase II, multicenter, open-label, randomized, noncomparative 
BRAIN trial (AVF3708g).7 The trial randomized 167 patients to receive either bevacizumab 
alone (n = 85) or in combination with irinotecan (n = 82) at one of 10 treatment sites. Pa-
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tients were enrolled between July 2006 and September 2007, were at least 18 years of age 
with histologically confirmed contrast-enhancing glioblastoma in first or second relapse, 
and had failed first-line standard therapy including concurrent radiotherapy and te-
mozolomide. There were at least 8 weeks between completion of radiotherapy and study 
enrollment. Baseline Karnofsky performance status (KPS) at start of trial was ≥70. Treat-
ment length of the trial was 104 weeks or until progression, death, or discontinuation. 
Two patients in the BRAIN cohort were treated at our institute and were therefore includ-
ed in the selection cohort. Further baseline characteristics are detailed in Table 1. Data 
acquisition was compliant with the Health Insurance Portability and Accountability Act and 
had received approval of the respective local institutional review boards. Before trial par-
ticipation, patients provided written informed consent. 
 
 
 
Table 1 
Patient baseline characteristics. 
 
Characteristic  Value in Selection Cohort  Value in BRAIN Cohort  
Median age, y (range)  57 (24–88)  56 (23–79)  
   
Median KPS (range)  Not available  80 (70–100)  
OS, mo  8.3  9.3  
PFS, mo  3.2  4.4  
Sex    
 n female  48 (38%)  52 (32%)  
  n male  78 (62%)  113 (68%)  
 
 

To reduce the effect of slice thickness variation, all images were resampled to 
voxels of size 3 × 3 × 3 mm3 (initial dimensions: 1–5 mm in Z direction). For further data 
normalization, voxel values were discretized with a binwidth of 25 and voxels included in 
feature extraction were constrained to an intensity value range of 3 standard deviations 
from the mean. From the total BRAIN cohort, MRIs were available for 165 patients. Specif-
ically, postcontrast T1-weighted and FLAIR imaging was available at baseline for 160 and 
152 patients, respectively, and at follow-up for 117 and 133 patients. 

Radiomics 

For both study cohorts, we extracted 65 quantitative imaging features each from T1 and 
FLAIR scans at baseline (pretreatment) and follow-up after 6 weeks (posttreatment initia-
tion) using our radiomics pipeline (Fig. 1). These features can be grouped into 3 types: (i) 
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first-order statistics of the voxel intensity histogram, (ii) tumor shape, and (iii) tumor tex-
ture. Feature definitions are detailed in Supplementary File S1, Supplementary Table S1, 
and Supplementary Table S2. In addition to baseline and follow-up, we calculated the per-
centage difference (delta) of feature values by delta = 100 * (F–B) / B, where B and F are 
the values at baseline and follow-up, respectively. 
 
 

 
 
Fig. 1  
Study design. (A) Patients underwent MRI at baseline (pretreatment) and follow-up at 6 weeks after treatment 
initiation. Tumors were segmented in 3D on the basis of postcontrast T1-weighted and FLAIR imaging. (B) From 
each segmentation, the tumor imaging phenotype was defined with radiomics to quantify tumor intensity, shape, 
and texture features. (C) To avoid multiple-hypothesis testing, we identified a canonical set of representative 
features with unsupervised feature selection on the selection cohort. (D) These selected features were inde-
pendently evaluated on the BRAIN cohort to (E) develop prognostic biomarkers of survival and progression, 
trained and validated on the first and second BRAIN cohort half, respectively. 
 
 

To reduce dimensionality, we leveraged the selection cohort to focus our analysis 
on a set of representative features. For this, we implemented an unbiased unsupervised 
feature selection blinded from clinical information. We performed this selection on base-
line features derived from postcontrast T1-weighted and FLAIR imaging separately. First, 
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we applied a principal component (PC) analysis and retained those PCs that accounted for 
99% of the total variance in the data. Next, we selected the unique set of features that 
contributed to all PCs the most (≥0.9 rank correlation) using a factor analysis.29 Mean 
Spearman rank correlation of a particular feature with all other features was restricted to 
≤0.9. From this remaining feature set, the 10 most variant features were selected accord-
ing to the coefficient of variation. To compare radiomics to traditional radiological as-
sessments, we calculated maximal axial diameter and total tumor volume automatically 
from the tumor segmentations and added these 2 volumetric size features to our feature 
set. In summary, we analyzed 12 features derived each from postcontrast T1-weighted 
and FLAIR images. 

Statistical Analysis 

The features selected externally from the selection cohort were independently evaluated 
on the BRAIN cohort. All statistical analyses were carried out with R30 version 3.1.0 on a 
Linux environment. Details of library versions are given in Supplementary File S2. 
 
Endpoints 
We considered OS, progression-free survival (PFS), as well as progression at 3, 6, and 9 
months as endpoints. OS was defined as time from treatment start to death.7 PFS was de-
fined in the BRAIN trial as the time from treatment start to progression or death, which-
ever occurred first.7 Progression at 3, 6, and 9 months correspond to the 6-week scan in-
tervals of the BRAIN trial protocol. Median OS and PFS were 9.3 and 4.4 months, respec-
tively. To cover a comprehensive analysis, prognostic value of our feature set was as-
sessed each for postcontrast T1-weighted and FLAIR imaging at baseline and follow-up, 
and delta while correcting for multiple-hypothesis testing as described below. 
 
Univariable analysis 
We assessed the prognostic value of individual features for OS and PFS with the concord-
ance index (CCI),31,32 which takes time censoring into account. Prognostic value for binary 
progression at 3, 6, and 9 months was evaluated with the area under the curve (AUC) of 
the receiver operator characteristic.33 

Significances of CCIs and AUCs under the null hypothesis that predictor and out-
come variables are not associated (ie, value of 0.5) were tested 2-sided using Noether’s 
procedure.34P-values for all features derived from postcontrast T1-weighted and FLAIR 
images were corrected for multiple-hypothesis testing using the false discovery rate (FDR) 
procedure according to Benjamini and Hochberg.35Features with corrected significant per-
formance were also tested for direct distributional differences between patients who pro-
gressed within 3 months with the 2-sided Wilcoxon rank-sum test.36 

To investigate stratification power of individual features, patients were assigned 
to lower and higher risk groups depending on whether their feature value was higher than 
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the median value across all patients or not. Hazard ratios (HRs) and P-values were calcu-
lated using univariable Cox proportional hazards models and one-sided Wald tests of Cox 
variables, respectively. 
 
Training and validation data 
For an unbiased assignment of patients into a training and validation set, we used the me-
dian treatment date of the full BRAIN trial cohort. To mimic prospective validation as 
closely as possible, data from patients treated before the median treatment date were 
used for training and data from patients with later dates were used for validation. If no 
treatment date was available, patients were assigned to the training set (n = 4) for more 
power in fitting. This split resulted in n = 86 and n = 81 patients for training and validation, 
respectively. From the training (validation) data, nt = 82 (nv = 78), nt = 59 (nv = 58), and nt = 
57 (nv = 58) samples were available for postcontrast T1-weighted imaging at baseline, fol-
low-up, and delta, respectively; nt = 80 (nv = 72), nt = 71 (nv = 62), and nt = 69 (nv = 62) 
samples were available for FLAIR imaging at baseline, follow-up, and delta, respectively. 
 
Multivariable analysis 
The univariable analysis indicated strong prognostic value for features derived from post-
contrast T1-weighted baseline imaging. To increase this prognostic performance, we 
aimed at combining individual features in multivariable models. To not overfit our models 
and to subsequently compare with volumetric and clinical variables, we selected comple-
mentary radiomic features with supervised forward feature selection. First, we ranked all 
10 radiomic features with the minimal redundancy maximal relevance algorithm37 using 
the training baseline data. Next, those features were sequentially added into a growing 
Cox proportional hazards model for PFS or OS starting with the top ranked feature. After 
each iteration (ie, addition of a feature) the performance was assessed with the CCI and 
validated with repeated random cross-validation (n = 1000 resamples and 80%/20% split 
of training data). The final model feature set was obtained by stopping addition of fea-
tures when the cross-validated mean CCI did not further increase (forward selection). This 
procedure was performed solely on the training set and selected 2 features for PFS (Gray-
level co-occurrence matrix [GLCM] information correlation and GLCM correlation) and 1 
feature for OS (GLCM information correlation). 

Selected features were used to fit a random-forest classifier (n = 500 trees) on 
the training set to predict one-year OS, as well as progression at 3, 6, and 9 months. Pa-
rameter optimization was done with repeated 5-fold cross-validation (n = 10 repeats) 
choosing optimal decision tree splits with the one standard error method according to 
Breiman et al38using accuracy as evaluation metric. Performance of the fitted models was 
evaluated with HRs and log-rank tests on the validation set. 

For comparison with clinical and volumetric models, the above procedure de-
scribing random-forest model building was applied to create a model with age, sex, and 
KPS, and to create a model with maximal axial diameter and total tumor volume. Perfor-
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mance of radiomic models were compared with these clinical and volumetric models with 
repeated random permutation tests (N = 1000 resamples) of the CCI differences; P-values 
were corrected with the FDR. 

RESULTS 

Identification of an Independent Radiomic Feature Set 

To determine the canonical set of features able to comprehend the radiographic charac-
teristics of recurrent glioblastoma on MRI (Fig. 1A–B), we used unsupervised feature selec-
tion on a selection cohort (Fig. 1C). This defined a subset of 10 radiomic features derived 
each from baseline postcontrast T1-weighted and FLAIR images. These features quantify a 
wider range of intensity, shape, and texture characteristics of a tumor (Supplementary 
Tables S1 and S2) and were compared to two standard volumetric features (ie, maximal 
axial diameter and total tumor volume). 

This feature set was independently evaluated on the BRAIN trial cohort (Fig. 1D–
E). Clustering analysis of radiomic features indicated differences between phenotypic im-
aging profiles of patients (Fig. 2A). Identified clusters were independent of baseline KPS; 
mean Spearman rank correlation to KPS was ρ = 0.06 and ρ = 0.13 for postcontrast T1-
weighted and FLAIR imaging, respectively. Furthermore, features had only low pairwise 
correlation (mean absolute Spearman’s ρ = 0.31), even when derived from the same imag-
ing modality, suggesting that these features provide complementary information (Fig. 
2B and Supplementary Fig. S1). 

 
 

 
 
Fig. 2 
Independence of features. (A) Visualization of features derived from baseline postcontrast T1-weighted (top) and 
FLAIR imaging (bottom). Values are given as Z-scores and group patients based on hierarchical clustering. (B) 
Pairwise Spearman rank correlation between all features at baseline imaging. Correlation among features was 
low, indicating interfeature independence (mean absolute Spearman’s ρ = 0.31). 
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Verification of Prognostic Value of Individual Features 
 
We evaluated the prognostic value of our feature set for OS and PFS, as well as progres-
sion within 3, 6, and 9 months for baseline and follow-up imaging and for the delta be-
tween baseline and follow-up (Fig. 3). In general, more features derived from postcontrast 
T1-weighted than from FLAIR imaging showed significant prognostic value (CCI, Noether 
FDR < 0.05). At baseline imaging, only those features derived from postcontrast T1-
weighted imaging performed significantly. 

Moreover, distributions of prognostic features were significantly different in pa-
tients who progressed at different time points when derived from postcontrast T1-
weighted imaging (Supplementary Figure S2). For example, the textural heterogeneity fea-
ture information correlation had significantly greater scores for patients who progressed 
within 3 months (Wilcoxon rank-sum test P = 8.8 × 10−8). This feature was significantly 
predictive of all tested endpoints under postcontrast T1-weighted baseline imaging, but 
performed highest when predicting patients who progressed within 6 months from follow-
up imaging (AUC = 0.68, Noether FDR = 0.0019). Furthermore, at baseline imaging this 
feature significantly stratified patients into high- and low-risk groups of OS (HR = 1.7, Wald 
test P = 0.0017) and PFS (HR = 1.7, Wald test P = 0.0029). All other features showed lower 
discrimination at baseline and follow-up imaging. 

On the delta between baseline and follow-up imaging, the highest performing 
feature was energy of the imaging texture for progression within 6 months (AUC = 0.65, 
Noether FDR = 0.04) with moderate risk stratification power (HR = 0.54, 95% CI = [0.36, 
0.82], Wald test P = 0.0037). Further stratification results are detailed in Supplementary 
Figure S3 and Supplementary Table S3. 
 
Baseline Models of Survival and Progression 
 
To develop pretreatment biomarkers for survival and progression, we assigned patients 
into a training and validation set based on median treatment date. First, we trained a 
model to predict one-year OS from baseline postcontrast T1-weighted imaging. As shown 
in Fig. 4, this model significantly stratified OS of patients from the validation set (HR = 2.5, 
95% CI = [1.5, 4.4]; log-rank P = 0.001) after adjusting for age, sex, and KPS, and without 
adjusting (HR = 2.3, 95% CI = [1.4, 3.8]). 

We trained additional models to predict progression at 3, 6, and 9 months using 
baseline postcontrast T1-weighted imaging (Fig. 5). These models significantly stratified 
PFS of patients from the validation set (adjusted; 3 months progression: HR = 2.8, 95% CI =  
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Fig. 3 
Univariable performances. Prognostic value of features at treatment baseline, 6-week follow-up, and the delta 
difference of 10 radiomic features for T1 and FLAIR, respectively. Standard volumetric features are shown for 
comparison. Performances were evaluated with the CCI for OS and PFS, and with the AUC of the receiver operator 
characteristic for progression at 3, 6, and 9 months. Asterisks indicate significance (FDR < 0.05) after correcting 
for multiple-hypothesis testing according to Benjamini and Hochberg. Generally, performance of features derived 
from postcontrast T1-weighted imaging tended to be higher than features derived from FLAIR imaging. 
 
 

[1.6, 4.8], log-rank P = 5.9 × 10−4; 6 months progression: HR = 3.8, 95% CI = [2.1, 
6.7], log- rank P = 2.1 × 10−5; and 9 months progression: HR = 4.5, 95% CI = [2.2, 9.2], log-
rank P = 3.5 × 10−5). Sensitivity and specificity for the internal classification of one-year OS, 
as well as for the classification of 3, 6, and 9 months progression, are reported in Supple-
mentary Table S4. Furthermore, no impact of treatment arm was observed on the perfor-
mance of these models. 
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Fig. 4 
Survival analysis of a multivariable radiomics model for OS. A biomarker with radiomic features was optimized to 
predict one-year OS. This marker showed significant pretreatment stratification power in discriminating patients 
at higher and lower risk in validation data held independent of training (HR = 2.5; Wald test P = 8.2 × 10−4; log-
rank P = 0.0011) after adjusting for age, sex, and KPS at baseline. 
 
 

All 4 radiomic models performed significantly better (HR permutation test FDR < 
0.05) than models of clinical covariates only (ie, age, sex, and KPS) or volumetric features 
only (ie, maximal diameter and tumor volume). The radiomic models also performed bet-
ter than models combining clinical and volumetric covariates at slightly lower significance 
(FDR < 0.09). Stratification was not improved when combining volumetric and radiomic 
features or combining radiomic features derived from postcontrast T1-weighted and FLAIR 
imaging (Supplementary Figure S4A and Supplementary Figure S4B, respectively). 
 

DISCUSSION 

We present a retrospective radiomic analysis of prospectively acquired data from the 
BRAIN trial to develop noninvasive quantitative prognostic biomarkers for survival and 
progression on the basis of standard MRI for patients with recurrent glioblastoma treated 
with bevacizumab. Our results suggest that a radiomic approach provides prognostic in-
sight about response of these patients, which could lead to further investigation for pre-
dictive biomarkers to meet the current need of stratifying patients, as bevacizumab has 
recently been suggested not to improve OS.11,12,39 
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Fig. 5 
Survival analysis of multivariable radiomics models for PFS. Biomarkers were optimized to predict progression at 
3, 6, and 9 months. All models significantly stratified patients in validation data; hazard ratios ranged from 2.8 to 
4.5 (Wald test P ≤ 1.6 × 10−4; log-rank P ≤ 5.9 × 10−4) after adjusting for age, sex, and KPS at baseline. 
 

 
Our study provides baseline models for OS of patients, as well as baseline models 

for progression at 3, 6, and 9 months. On the basis of pretreatment imaging, these models 
were able to identify patients in the validation set who had more than 4 times the risk to 
progress within 6 and 9 months throughout the course of treatment. With increasing time 
point, these models consistently performed better, suggesting that particularly patients 
who experience progression late can be identified. Furthermore, these models performed 
substantially better than individual features alone. Importantly, radiomic features in these 
models were independent of volumetric features and age, sex, and KPS, which were the 
clinical variables available to us and which are known clinical prognostic factors for glio-
blastoma2; however, age and sex may be less prognostic for OS than KPS, as has only re-
cently been suggested.40 

Consequently, our results could lead to the development of a noninvasive bi-
omarker that would identify patients who are more likely to benefit from bevacizumab 
even before treatment initiation. However, to determine whether any proposed radiomic 
biomarker also is predictive of positive treatment outcome, a prospective control arm 
without anti-angiogenic therapy would be necessary. Alternatively, failure of our model to 
predict similar endpoints in a non-bevacizumab containing cohort would offer evidence to 
support a predictive hypothesis. Furthermore, prospective validation of our models in fol-
low-up studies will be required. 

Our multivariable analysis included information correlation, which quantifies tex-
tural-imaging heterogeneity. Not only did this feature yield significant prognostic baseline 
value across all tested endpoints, but it also showed higher scores for patients who pro-
gressed early, suggesting that textural-imaging heterogeneity is a prognostic factor. Uni-
variable analysis of our full feature set indicated further prognostic candidates; however, 
all features had significantly less performance compared with our fully trained models. 
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Both our univariable and multivariable analyses indicated that postcontrast T1-weighted 
imaging data provide more prognostic information than FLAIR imaging, irrespective of in-
vestigated time- and endpoints. It remains a difficulty to hypothesize why FLAIR imaging is 
less prognostic; however, previous studies have documented that tumor volume was not 
prognostic under FLAIR in recurrent glioblastoma and bevacizumab treatment.41–

43 Overall, a general tendency toward higher predictability of PFS was observed, which 
could be explained by a more clearly defined endpoint than OS, as patients who pro-
gressed were discontinued from study treatment and observed for OS. Differences be-
tween treatment arms in the BRAIN cohort were not expected and hence data have been 
pooled, as published previously.8,44,45 

Robustness of our results is increased, given that we leveraged 2 independent 
cohorts to select and evaluate, respectively, our feature set; this limits false discoveries in 
a high-dimensional approach such as radiomics. Importantly, we blinded the feature selec-
tion from clinical data to avoid information leakage and hence increase validity even fur-
ther. We chose to use our institutional cohort as the selection cohort, as the heterogene-
ous nature of this retrospective data implies less suitability for fitting models compared 
with the prospectively acquired BRAIN data. Conversely, our study benefits from evalua-
tion of radiomic features in prospectively acquired clinical trial data of high quality, which 
includes predefined criteria for patient enrollment, treatment, and follow-up. As this was 
a multicenter trial with 10 sites, MRI protocols specifying imaging acquisition parameters 
and equipment have varied across institutions, further highlighting the potential generali-
zability of our proposed models. Especially for texture-based features we do not expect 
substantial variability, as those features are generally relative measurements. In these 
ways, our study advances the results of a recent study indicating prognostic value of radi-
omics in a retrospectively acquired cohort of patients with recurrent glioblastoma receiv-
ing bevacizumab,46 which was also demonstrated by the high performance of our validat-
ed models. In addition, we provide further insights into the relationship of intratumoral 
heterogeneity in imaging and patient survival, as well as comparative analyses of com-
monly used MRI modalities and measurements of tumor burden. 

Other approaches to develop imaging biomarkers were explored in comparable 
cohorts.8,13,15,47–49 For example, apparent diffusion coefficient histogram analysis has been 
previously conducted on a subset of the BRAIN cohort totaling 97 patients.48 As radiomics 
can be applied to standard imaging, complementary value with those approaches could be 
tested when these data become available. In addition, integration of imaging with biologi-
cal assays could yield valuable insight into tumor progression50,51 and allow early identifi-
cation of resistances.52,53 This could also contribute to unraveling the mechanistic connec-
tions between radiomics, tumor biology, and clinical outcomes. 

In conclusion, we demonstrated the strong prognostic value of radiomics to pre-
dict survival and progression of patients with recurrent glioblastoma treated with bevaci-
zumab in prospectively acquired data from the BRAIN trial. Our results could lead to fur-
ther development of a noninvasive predictive biomarker based on standard of care pre-
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treatment imaging to identify a subpopulation of patients who would benefit from bevaci-
zumab. 

SUPPLEMENTARY DATA 

Supplementary material is available at Neuro-Oncology online. 
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ABSTRACT 

Medical imaging plays a fundamental role in oncology and drug development, by providing 
a non-invasive method to visualize tumor phenotype. Radiomics can quantify this pheno-
type comprehensively by applying image-characterization algorithms, and may provide 
important information beyond tumor size or burden. In this study, we investigated if radi-
omics can identify a gefitinib response-phenotype, studying high-resolution computed-
tomography (CT) imaging of forty-seven patients with early-stage non-small cell lung can-
cer before and after three weeks of therapy. On the baseline-scan, radiomic-feature Laws-
Energy was significantly predictive for EGFR-mutation status (AUC = 0.67, p = 0.03), while 
volume (AUC = 0.59, p = 0.27) and diameter (AUC = 0.56, p = 0.46) were not. Although no 
features were predictive on the post-treatment scan (p > 0.08), the change in features be-
tween the two scans was strongly predictive (significant feature AUC-range = 0.74–0.91). A 
technical validation revealed that the associated features were also highly stable for test-
retest (mean ± std: ICC = 0.96 ± 0.06). This pilot study shows that radiomic data before 
treatment is able to predict mutation status and associated gefitinib response non-
invasively, demonstrating the potential of radiomics-based phenotyping to improve the 
stratification and response assessment between tyrosine kinase inhibitors (TKIs) sensitive 
and resistant patient populations.  
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INTRODUCTION  

The response of tumors as measured on imaging is historically one of the oldest bi-
omarkers used in drug discovery and clinical practice. Response has been assessed by 
measuring tumor burden with a number of surrogates such as unidimensional measure-
ments according to the RECIST criteria1 bidimensional measurements as defined by the 
World Health Organization2. The purpose of these criteria as well as the modifications to 
the criteria are twofold; first, to enhance the ability of the biomarker to be prognostic or 
predictive and/or to improve the accuracy and reproducibility of the biomarker. Tumor 
burden and change in tumor burden during therapy, as measured at imaging, has been 
demonstrated to have value as a biomarker3. 

However, medical imaging can provide more information about the tumor phe-
notype, beyond volumetric measurements; a process referred to as image-based pheno-
typing. Medical imaging is intuitively very suitable as a biomarker source to predict treat-
ment response, as it is able to visualize and quantify time series of disease processes in a 
non-invasive way in individual patients. The characterization of quantitative imaging fea-
tures which reflect tumor biology, physiology and tumor phenotype is increasingly being 
explored. Radiomics is the study of these quantitative features and their correlation with 
tumor phenotypes4,5,6. For example, recent studies have used CT-based radiomic signa-
tures to successfully predict overall survival, disease free survival, and distant metastases 
in lung cancer4,7,8. Other examples have demonstrated that an imaging feature which 
could be quantified, for example, the percentage of ground-glass opacity (GGO) volume, is 
significantly higher in patients with the exon 21 missense mutation than in tumors with 
other EGFR mutation status9. This is thought be related to the fact that exon 21 missense 
mutation was significantly more frequent in lepidic predominant adenocarcinomas10. 
While these quantitative imaging features are under investigation in many cancers for 
their correlation with tumor phenotype and mutational status there is preliminary evi-
dence to suggest that there may be an association between these features and both clini-
cal outcomes and the underlying genomic signatures in lung cancer4,8,11. 

In this pilot study, we look for the first time at the value of quantitative radiomic 
imaging features, in addition to tumor burden which was previously studied, for predicting 
known sensitizing EGFR mutations associated with Gefitinib response, to understand the 
relationship between imaging features and mutational status at baseline and especially 
with change in therapy in patients with and without the sensitizing mutation. 

MATERIAL AND METHODS 

This is a re-analysis of an existing dataset; imaging and tissue data were obtained prospec-
tively as an exploratory analysis within a phase II trial of neoadjuvant Gefitinib in patients 
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with NSCLC12. Correlation results of early diameter and volume changes with EGFR muta-
tion status was published previously3. As described previously3, all experiments were per-
formed in accordance with relevant guidelines and regulations, and approved by the insti-
tutional review board (IRB) at Columbia University College and New York Presbyterian 
Hospital. Also, informed consent was obtained from all subjects included in this study. 

Clinical data 

At time of resection, tumor tissue was snap frozen in liquid nitrogen and stored in a −80 °C 
freezer. Representative areas of these specimens were pathologically reviewed to confirm 
the diagnosis and presence of tumor. Genomic DNA was analyzed for the most common 
EGFR-sensitizing mutations (exons 19 and 21) using previously described PCR-based 
methods13,14. EGFR wild-type (WT) tumors were also tested for KRAS mutations, which 
were found in a non-overlapping subset of lung adenocarcinomas that have been found to 
be resistant to EGFR tyrosine kinase inhibitor therapy15. If no EGFR or KRAS mutations 
were found, then the remaining EGFR exons were assessed by standard dideoxynucleotide 
sequencing. Selected specimens that were found to be EGFR/KRAS WT were submitted for 
more detailed mutational testing using mass spectrometry. 

Tumor imaging and measurement 

Baseline computed tomography of each patient was done within 2 weeks before gefitinib 
initiation. A follow-up computed tomography scan was done using the same imaging ac-
quisition technique about three weeks post therapy, before surgery. Non–contrast en-
hanced diagnostic chest computed tomographies were done with a LightSpeed 16 scanner 
(GE Medical Systems) during a breath hold. High-resolution images with 1.25-mm slice 
thickness and lung kernel were reconstructed3. Three patients were excluded because 
1.25-mm slice thickness reconstructions were not collected as required by protocol (two 
patients) and delineation of lesion contour did not reach radiologists’ consensus during 
the data review of this study (one patient), leaving 47 of 50 patients remained in our anal-
ysis. Tumor contours were semi-automatically delineated using a three-dimensional seg-
mentation algorithm3,16. 
 
Quantitative radiomics analysis 
 
In this work, we extracted 183 radiomic features from both baseline and follow up scan 
images that were resampled down to 0.25 mm resolution in all three directions. The defi-
nitions of these features are provided in Supplemental 1. The Delta dataset was defined as 
the pre-treatment radiomic feature values minus the post-treatment values. On the Delta 
dataset, the 15 most variant features were selected using the coefficient of variation. 
From this set, highly correlated features were removed who had a mean correlation of 
higher than 0.95. This procedure yielded 11 independent features; we added Volume and 
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maximum diameter for comparison, resulting in 13 features in total. A correlation matrix 
for these features was calculated using Spearman rank statistic. For every dataset, the 
area under the curve (AUC) of the receiver operator characteristic (ROC)17 was calculated 
to assess predictive power of EGFR-sensitizing mutation. Since only 13 features were test-
ed, correction for multiple testing was not considered. All statistical analysis was conduct-
ed using the R statistical software version 3.1.018 on a Linux operating system. 
 
Technical validation 
 
Technical validation of the features were conducted in a test-retest setting on the RIDER 
dataset, which contains of 31 patients each two lung CT scans taken approximately 
15 min. apart. The RIDER lung cancer dataset19 of the same-day repeat CT scans and the 
intraclass correlation coefficient (ICC) was used to assess the stability of features for test-
retest. The CT imaging protocol of the RIDER data set was identical to the one used in this 
study20. 

RESULTS 

To investigate if radiomic biomarkers are associated with mutational status and response 
to Gefitinib treatment, we analyzed clinical data of 47 early stage NSCLC patients whom 
were imaged before and after treatment. In Fig. 1 representative CT scans of an EGFR mu-
tant and an EGFR wild-type tumor are shown before and after Gefitinib treatment, 
demonstrating clear phenotypic differences. To quantify these differences, we performed 
a radiomic analysis (see Fig. 2). The analysis was restricted to features with high and inde-
pendence variance (Supplement I), resulting in eleven radiomic features and two volumet-
ric features (volume and max diameter), that were included in our analysis (see Table 1). 
Using this strategy, we were able to identify a limited number of independent features, 
and only these features were assessed for performance to predict mutational status and 
associated Gefitinib response. 
 
Baseline radiomics associations with mutational status 
 
We investigated the correlations between the image features evaluated in our analysis. 
In Fig. 3 the correlations between the features extracted from the before treatment CT 
scan are shown. Although the GLCM features showed high positive and negative correla-
tions, overall the correlations between those features were low (mean ± std: −0.16 ± 0.95), 
demonstrating independency of those features. Note the low correlation of total tumor 
volume with the other features (mean ± std: 0.01± 0.33). 
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Figure 1 
Example images of a patient with EGFR mutation and without (wild-type; WT) at baseline and follow-up scan. 
Radiomic feature values are given below each image for baseline and follow-up time points, as well as their delta 
differences. 
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Figure 2 
Patients included to the study were received Gefitinib treatment. CT scans at baseline and first follow-up were 
used to segment the tumor and to extract radiomic features. Baseline, follow-up, and delta radiomics (differences 
between baseline and follow-up) were used to assess EGFR sensitizing mutation status. 
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Table 1 
Definitions of evaluated quantitative image features. 
 
Feature Description 
Volume Tumor volume is calculated by multiplying the 

number of tumor voxels by the image resolu-
tions in x-, y- and z-directions. 

Gabor Energy feature class Gabor filters are linear filters designed for edge 
detection. This is an oriented Gaussian func-
tion modulated by a sinusoidal wave. The Ga-
bor Energy feature is defined as the sum of the 
square of density over all lesion pixels on the 
images pre-processed by Gabor filter. 

 

· Gabor_Energy-dir135-w3: the Gabor Energy 
feature calculated on the images pre-
processed using the Gabor filter built with an 
orientation of 135° and a wavelength of 3 pix-
els. 

 

· Gabor_Energy-dir45-w9: the Gabor Energy 
feature calculated on the images pre-
processed using the Gabor filter built with an 
orientation of 45° and a wavelength of 9 pixels. 

Sigmoid Function feature class To quantify lesion margins, Sigmoid curve is 
used to fit density change along a sampling line 
drawn orthogonal to the lesion surface. Each 
sampling line, going through one voxel on the 
lesion surface, has a certain length inside and 
outside the lesion. 

 

· Sigmoid-Offet-Mean-d5: The average of the 
densities between a lesion and lung paren-
chyma on all lines. The line length is 5 mm at 
both sides of the lesion. 

 

· Sigmoid-Slope-Mean-d5: The average of the 
density change speed between lesion and lung 
parenchyma on all lines. The line length is 
5 mm at both sides of the lesion. 

Shape Index feature class Local surface shape of a 3D object can be intui-
tively captured by 9 Shape Index features, 
Shape_SI1-9. The value of each Shape Index 
ranges from 0 to 1. The larger the value, the 
greater the portion of the shape on the sur-
face. 

 · Shape_SI6: Describes the saddle ridge shape. 
Boundary_Radius_Std This feature is defined as the standard devia-

tion of the lengths of the line segments from 
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the center of an object to any voxel on the 
surface of the object. A spherical shape has the 
smallest value of zero (0). 

GLCM feature class GLCM stands for grey-level co-occurrence ma-
trix. This feature class characterizes image tex-
tures by creating a new matrix, GLCM, which is 
based on the frequency of image pixel pairs 
having particular gray-level values in a particu-
lar spatial arrangement (i.e., distance and di-
rection). A number of statistical features can 
then be extracted from GLCM to characterize 
homogeneity, contrast, entropy and so on. In 
the following feature names, “mean” specifies 
average of feature values calculated at 13 di-
rections. “d1” and “d4” indicate pixel pairs 
separated by 1-pixel distance and 4-pixel dis-
tance. 

 
· GLCM_IMC1-mean-d1: The average of infor-
mational measure of correlation 1 calculated 
at pixel pairs separated by 1-pixel distance 

 
· GLCM_IMC1-mean-d4: The average of infor-
mational measure of correlation 1 calculated 
at pixel pairs separated by 4-pixel distance 

 

· GLCM_MCC-mean-d1: The average of Maxi-
mum Correlation Coefficient calculated at pixel 
pairs separated by 1-pixel distance. calculated 
at pixel pairs separated by 4-pixel distance. 

Laws Energy feature class Laws’ Energy emphasizes edge, spot, ripple 
and wave patterns through Laws filters gener-
ated by the following 5 basic raw vectors: Av-
erage L5 = (1, 4, 6, 4, 1), Edge E5 = (−1, −2, 0, 2, 
1), Spot S5 = (−1, 0, 2, 0, −1), Ripple R5 = (1, −4, 
6, −4, 1), and Wave. By mulƟplying and com-
bining the transpose of one basic vector 
and/or the vector itself, 14 standard Laws fil-
ters can be built, each generating one feature. 
A Laws Energy feature is computed by sum-
ming the square of image pixel value over all 
tumor pixels on images processed by one of 
the 14 Laws filters. 

 
 • Laws_Energy-10: Energy calculated on the 
images processed by Laws filter #10 . 

 
 • Laws_Energy-13: Energy calculated on the 
images processed by Laws filter #13  

 . 
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Figure 3 
Correlations of Radiomics features. Correlation coefficient matrix between the 13 imaging features evaluated in 
the analysis. Note the overall low correlation between radiomic features. Correlations were assessed using pear-
son correlation coefficient. 
 
 

To assess the associations of radiomic features and EGFR mutational status, we 
evaluated the predictive power using the AUC of the ROC. Figure 4 shows the AUC values 
that were measured for imaging features extracted from the scan before treatment, after 
treatment, and the difference between both scans (delta). Interestingly, Laws Energy 10 is 
the only radiomic feature that is significantly predictive for mutational status extracted 
from the pre-treatment scan (AUC = 0.67, p = 0.03). Note that pre-treatment tumor vol-
ume (AUC = 0.59, p = 0.27) and maximum diameter (AUC = 0.56, p = 0.46) are not predic-
tive of mutation status. No features are significantly predictive extracted from the image 
scan after treatment (highest AUC = 0.64, p = 0.08, Shape SI6). Also, the remaining volume 
after treatment is not predictive (AUC = 0.54, p = 0.63). 
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Response phenotyping by radiomics feature change to predict mutational status 
 
To assess the difference in radiomic feature values between the two scans (delta), showed 
strong predictability for mutation status (Fig. 4C). The strongest predictors are delta vol-
ume (AUC = 0.91, p = 10−25) and delta maximum diameter (AUC = 0.78, p = 10−5). However,  

 
 
Figure 4  
Value of radiomic features to predict mutational status extracted from (A) before treatment scan, (B) post-
treatment scan, and (C) delta (difference between the scan before and after treatment). Predictive value is as-
sessed using the area under the curve (AUC) of the receiver operator characteristic (ROC). Asterisk denotes fea-
tures that significantly predict mutation status better than random (p < 0.05). Note, before treatment only the 
radiomic feature Laws_Energy was significant for predicting mutation status, and conventional imaging markers 
showed no significant predictive power. After treatment no features are predictive, however delta feature values 
between the pre and post-scan show strongest predictive value. 
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one radiomic feature was also significantly predictive: delta Gabor Energy (dir135-w3), 
which is Gabor Energy calculated at the wavelength of 3 pixels and direction of 135 grade 
(AUC = 0.74, p = 3 × 10−4). Although, this feature is predictive, the correlations with tumor 
volume (r = −0.31) and maximum diameter (r = −0.43) are low (Fig. 3). These results 
demonstrate the predictability of radiomic features quantifying phenotypic characteristics 
other than volumetric features. 
 
 
Technical validation of radiomic features for stability 
 
As a technical validation, we assessed the stability of the four features that showed signifi-
cantly predictive capabilities on either the pre, after, or delta scans, i.e. (I) Laws Energy, (II) 
Gabor Energy, (III) tumor volume, and (IV) maximum diameter (Fig. 4). For this purpose we 
used the independent RIDER lung cancer dataset consists of same-day repeated CT scans 
for 31 patients. The intraclass correlation coefficient (ICC) was used to assess the stability 
of each feature for test-retest. We found that all four significantly associated features with 
mutation status were also highly stable for test-retest (mean ± std: ICC = 0.96 ± 0.06). Fea-
ture Laws_Energy_10, the only feature significantly associated with mutational status ex-
tracted from the pretreatment scan, had a high stability of ICC = 0.87. The stability of the 
features significantly associated with mutational status between the two time points, was 
also very high: Volume (ICC = 0.99), Gabo Energy (ICC = 0.97), and maximum diameter 
(ICC = 0.99). These results validate that features significantly associated with mutation 
status are also stable for test-retest. 

DISCUSSION 

Biomarkers that are able to predict treatment response are crucial for clinical introduction 
of targeted therapies. Erlotinib and Gefitinib are examples of targeted therapies that were 
successfully introduced in practice, largely due to accurate predictive biomarkers (i.e. 
EGFR mutation status). Others have failed to become clinically approved, such as Cetuxi-
mab in NSCLC, to a great extent because an accurate response biomarker is lack-
ing21,22,23,24. Medical imaging is intuitively very suitable for this purpose, as it is able to 
visualize and quantify time series of disease processes in a non-invasive way in individual 
patients. “Radiomics”, the extraction and analysis of large amounts of advanced imaging 
features, is able to quantify tumor phenotypic properties, thereby potentially providing 
valuable diagnostic, prognostic or predictive information. Radiomic features have been 
associated with clinical outcomes4,8,25,26,27,28,29, however the predictive capability of 
radiomics for response to targeted therapies remains largely unknown. 
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The goal of this study was to investigate if radiomic data could define a response 
phenotype for NSCLC patients treated with Gefitinib therapy. Our data show strong asso-
ciations between radiomic features and tumors with and without sensitizing mutations. 
The radiomics feature Laws Energy extracted from the baseline, pretreatment CT scan 
showed the strongest performance to predict mutation status (AUC = 0.67, p = 0.03). In 
contrast, we found that tumor volume and maximum diameter were both not significantly 
predictive (p > 0.27). These data show that radiomics analyses can reveal more phenotypic 
characteristics than standard imaging features, such as size and volume, and have tre-
mendous potential to be incorporated into precise response biomarkers. However, before 
clinical applicability, the predictive performance of these features have to be evaluated in 
large independent cohorts across institutions. 

As expected, response of imaging phenotype was extremely different for patients 
with and without sensitizing mutations. We compared the radiomic data extracted from 
the change in pre- and post-treatment scans. As expected, tumor volume and maximum 
diameter had the highest performance; however the radiomic feature Gabor Energy was 
also significantly predictive. The correlation of this feature with tumor volume and maxi-
mum diameter was low. This could indicate the independent predictability for mutational 
status; however, future studies are needed to show if these features have complementary 
value in multivariate models for response prediction or may be seen earlier in treatment 
response. Due to the limited sample size of this study, we were not able to identify and 
validate multivariate biomarkers. The analysis supports CT-based response assessment as 
one effective tool for distinguishing sensitive and resistant tumor, but there may be other 
metrics that are additive and would allow a more comprehensive measure of response. 
The specific radiomic features may depend upon the specific mechanism of action of the 
drug or class of therapy. 

Correlations between our selected radiomics features demonstrated that in gen-
eral, the features originally derived from CT segmentation of tumors are indeed inde-
pendent measures of phenotypic characteristics. Each feature has the potential to offer 
unique insight to the tumor behavior. This was demonstrated by the fact that different 
radiomic features predicted for tumors with and without EGFR mutations, and confirmed 
by the relative independence between most of the imaging features. However, future 
studies have to investigate how these patterns in the imaging data captured by these ra-
diomic features, are associated with the underlying driving biology. 

As a technical validation we assessed if the four features significantly associated 
with mutation status, identified by our analysis, could be stably extracted from CT scans. 
We evaluated this stability using another dataset with repeated test-retest CT scans for 31 
patients (RIDER). All four features could be validated and had high stability for test-retest 
(ICC > 0.87). 

Variability in CT acquisition and reconstruction parameters is inherent in clinical 
practice. In this study we used a prospective collected dataset with high resolution CT 
scans with the same imaging protocol for all included patients. However, the optimal 
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scanning parameters still have to be defined and more domain specific quantitative fea-
tures are anticipated to be developed. The Quantitative Imaging Network (QIN) of the Na-
tional Institute of Health, and others, play an important role in this process by performing 
phantom studies, radiomic feature definition standardizations, and segmentation chal-
lenges30. Furthermore, they establishes open and standardized protocols for image acqui-
sition, reconstruction, and analysis30,31,32. It is expected that these efforts will improve 
the predictive performance of radiomic response biomarkers even further. 

As this was a pilot investigation our analysis had several limitations. A main limi-
tation was the limited sample size as we included only 47 patients in our analysis. As the 
data was acquired in a research study, with high quality imaging data and imaging before 
and after gefinitib treatment, more data was not available. Also, we limited our analysis to 
eleven independent radiomic features. A full radiomic analysis4, evaluating hundreds of 
features, could potentially achieve higher performance radiomic biomarkers for gefitinib 
response, however requires large independent training and validation cohorts. Further-
more, before clinical application imaging protocols have to be standardized and hence 
variability in CT acquisition and reconstruction parameters in clinical practice has to be 
reduced. The Quantitative Imaging Biomarker Alliance from the Radiological Society of 
North America (RSNA) and the QIN play an important role in this process by establishing 
standards for image acquisition and reconstruction, by conducting phantom studies, and 
by performing segmentation challenges. In addition, multiples studies have already docu-
mented the robustness of radiomic feature extractions in terms of reproducibility and re-
peatability in test/re-test settings4,19,27. However, before clinical utility, future studies 
have to evaluate radiomic biomarkers in independent and prospective validation cohorts 
with large sample sizes, and show improved performance compared to volumetric imaging 
features. 

In conclusion, we found that radiomics features are able to define a Gefitinib re-
sponse phenotype non-invasively, that is able to distinguish between tumors with and 
without EGFR sensitizing mutations at baseline and a quantitative change in these radio-
mic features at follow up. The use of radiomics based response assessment tools could 
improve the stratification between sensitive and resistant patient populations and the 
detection of response to treatment. This may provide an opportunity to improve decision-
support at low aditional cost, as imaging is routinely and repeatedly used in clinical prac-
tice.  

SUPPLEMENTARY INFORMATION 

Available online at: https://images.nature.com/original/nature-
assets/srep/2016/160920/srep33860/extref/srep33860-s1.pdf 
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ABSTRACT  

Radiomics extracts and mines large number of medical imaging features quantifying tumor 
phenotypic characteristics. Highly accurate and reliable machine-learning approaches can 
drive the success of radiomic applications in clinical care. In this radiomic study, fourteen 
feature selection methods and twelve classification methods were examined in terms of 
their performance and stability for predicting overall survival. A total of 440 radiomic fea-
tures were extracted from pre-treatment computed tomography (CT) images of 464 lung 
cancer patients. To ensure the unbiased evaluation of different machine-learning meth-
ods, publicly available implementations along with reported parameter configurations 
were used. Furthermore, we used two independent radiomic cohorts for training (n = 310 
patients) and validation (n = 154 patients). We identified that Wilcoxon test based feature 
selection method WLCX (stability = 0.84 ± 0.05, AUC = 0.65 ± 0.02) and a classification 
method random forest RF (RSD = 3.52%, AUC = 0.66 ± 0.03) had highest prognostic per-
formance with high stability against data perturbation. Our variability analysis indicated 
that the choice of classification method is the most dominant source of performance vari-
ation (34.21% of total variance). Identification of optimal machine-learning methods for 
radiomic applications is a crucial step towards stable and clinically relevant radiomic bi-
omarkers, providing a non-invasive way of quantifying and monitoring tumor-phenotypic 
characteristics in clinical practice.  
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INTRODUCTION  

‘Precision oncology’ refers to the customization of cancer care, where practices and/or 
therapies are being tailored to individual patients. Such customization process can maxim-
ize the success of preventive and therapeutic interventions with minimum side effects. 
Most of the precision oncology related research has centered on the molecular characteri-
zation of tumors using genomics based approaches, which require tissue extraction by 
tumor biopsies. Although several genomics based approaches have successfully been ap-
plied in clinical oncology1, there are inherent limitations to biopsy based assays. Tumors 
are spatially and temporally heterogeneous, and repeated tumor biopsies, which increase 
the risk for a patient, are often required to capture the molecular heterogeneity of tu-
mors. These ethical and clinical challenges related to biopsy-based assays, can be ad-
dressed by medical imaging, which is a routine practice for cancer diagnosis and staging in 
clinical oncology. Unlike biopsies, medical imaging is non-invasive and can provide infor-
mation regarding the entire tumor phenotype, including the intra-tumor heterogeneity. 
Furthermore, recent advances in high-resolution image acquisition machines and compu-
tational hardware allow the detailed and efficient quantification of tumor phenotypic 
characteristics. Therefore, medical imaging provides unprecedented opportunities for pre-
cision oncology. 

“Radiomics”, an emerging and promising field, hypothesizes that medical imaging 
provides crucial information regarding tumor physiology, which could be exploited to en-
hance cancer diagnostics2. It provides a comprehensive quantification of tumor pheno-
types by extracting and mining large number of quantitative imaging features3. Several 
studies have investigated various radiomic features in terms of their prognostic or predic-
tive abilities and reliability across different clinical settings4,5,6,7,8,9,10. Different studies 
have shown the discriminating capabilities of radiomic features for the stratification of 
tumor histology6, tumor grades or stages11, and clinical outcomes8,12,13. Moreover, 
some studies have reported the association between radiomic features and the underlying 
gene expression patterns8,14,15. 

“Machine-learning” can be broadly defined as computational methods/models 
using experience (data) to improve performance or make accurate predictions16. These 
programmable computational methods are capable of “learning” from data and hence can 
automate and improve the prediction process. Predictive and prognostic models with high 
accuracy, reliability, and efficiency are vital factors driving the success of radiomics. There-
fore, it is essential to compare different machine-learning models for radiomics based clin-
ical biomarkers. Like any high-throughput data-mining field, radiomics also underlies the 
curse of dimensionality17, which should be addressed by appropriate feature selection 
strategies. Moreover, feature selection also helps in reducing overfitting of models (in-
creasing the generalizability). Thus, in order to reduce the dimensionality of radiomic fea-
ture space and enhance the performance of radiomics based predictive models, different 
feature selection methods18 should be thoroughly investigated. However, as radiomics is 
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an emerging research field, most of the published studies have only assessed the predic-
tive capabilities of radiomic features without putting much emphasis on the comparison of 
different feature selection and predictive modeling methods. Only few recent studies have 
investigated the effect of different feature selection and machine learning classification 
methods on radiomics based clinical predictions19,20, but with limited sample sizes. Fur-
thermore, these studies lacked independent validation of the results, which may restrict 
the generalizability of their conclusions. 

In this study, we investigated a large panel of machine-learning approaches for 
radiomics based survival prediction. We evaluated 14 feature selection methods and 12 
classification methods in terms of their predictive performance and stability against data 
perturbation. These methods were chosen because of their popularity in literature. Fur-
thermore, publicly available implementations along with reported parameter configura-
tions were used in the analysis, which ensured an unbiased evaluation of these methods. 
Two independent lung cancer cohorts were used for training and validation, with in total 
image and clinical outcome data of 464 patients. Feature selection and predictive model-
ing are considered as the important building blocks for high throughput data driven radi-
omics. Therefore, our investigation could help in the identification of optimal machine-
learning approaches for radiomics based predictive studies, which could enhance the ap-
plications of non-invasive and cost-effective radiomics in clinical oncology. 

METHODS 

Radiomic Features 
 
A total of 440 radiomic features were used in the analysis. These radiomic features quanti-
fied tumor phenotypic characteristics on CT images and are divided into four feature 
groups: I) tumor intensity, II) shape, III) texture and IV) wavelet features. Tumor intensity 
based features estimated the first order statistics of the intensity histogram, whereas 
shape features described the 3D geometric properties of the tumor. Textural features, 
derived from the gray level co-occurrence (GLCM)21 and run length matrices (GLRLM)22, 
quantified the intra-tumor heterogeneity. These textural features were computed by av-
eraging their values over all thirteen directions. Wavelet features are the transformed 
domain representations of the intensity and textural features. These features were com-
puted on different wavelet decompositions of the original image using a coiflet wavelet 
transformation. Matlab R2012b (The Mathworks, Natick, MA) was used for the image 
analysis. Radiomic features were automatically extracted by our in-house developed radi-
omics image analysis software, which uses an adapted version of CERR (Computational 
Environment for Radiotherapy Research)23 and Matlab for the preprocessing of medical 
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images. Mathematical definitions of all radiomic features, as well as the extraction meth-
ods, were previously described8. 
 
Datasets 
 
In this study, we employed two NSCLC cohorts from the two different institutes of Nether-
lands: (1) Lung1:422 NSCLC patients treated at MAASTRO Clinic in Maastricht. (2) 
Lung2:225 NSCLC patients treated at Radboud University Medical Center in Nijmegen. CT-
scans, manual delineations and clinical data were available for all included patients. More 
details on the included datasets are described in Supplementary-A. We dichotomized the 
censored continuous survival data using a cutoff time of 2 years. The patients who lived 
beyond the cutoff time were labeled as 1, whereas the deceased ones were labeled as 0. 
The objective of the study was to stratify patients into these two labeled survival classes. 
Two-years is considered as a relevant survival time for NSCLC patients and several other 
studies have designed their prediction models using a survival cutoff of 2 years24,25,26. 
We excluded the patients, which were followed for less than 2 years. It resulted in 310 
patients in training cohort (Lung1) and 154 patients in validation cohort (Lung2). All the 
features were normalized using Z-score normalization. 
 
Feature Selection Methods 
 
Fourteen feature selection methods based on filter approaches were used in the analysis 
(Fisher score (FSCR), Relief (RELF), T-score (TSCR), Chi-square (CHSQ), Wilcoxon (WLCX), 
Gini index (GINI), Mutual information maximization (MIM), Mutual information feature 
selection (MIFS), Minimum redundancy maximum relevance (MRMR), Conditional infomax 
feature extraction (CIFE), Joint mutual information (JMI), Conditional mutual information 
maximization (CMIM), Interaction capping (ICAP), Double input symmetric relevance 
(DISR)). In order to improve the readability of this manuscript, we have defined all the ac-
ronyms related to feature selection methods in Table 1. We chose these methods mainly 
because of their popularity in literature, simplicity and computational efficiency. Further-
more, publicly available implementations were readily available for these methods27,28, 
which increases their reusability. Filter methods are feature-ranking methods, which rank 
the features using a scoring criterion. All filter based feature selection methods can be 
divided into two categories: univariate methods and multivariate methods. In case of uni-
variate methods, the scoring criterion only depends on the feature relevancy ignoring the 
feature redundancy, whereas multivariate methods investigate the multivariate interac-
tion within the features and the scoring criterion is a weighted sum of feature relevancy 
and redundancy. Feature relevancy is a measure of feature’s association with the tar-
get/outcome variable, whereas feature redundancy is the amount of redundancy present 
in a particular feature with respect to the set of already selected features. Further descrip-
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tion regarding the theoretical formulation of feature selection problem and each of the 
used feature selection methods can be obtained from Supplementary-B online. 
 
 
Table 1 
Table defining the acronyms related to the used feature selection and classification methods. 
 
Classification meth-

od acronym Classification method name Feature Selection 
method acronym 

Feature selection method 
name 

Nnet Neural network RELF Relief 

DT Decision Tree FSCR Fisher score 

BST Boosting GINI Gini index 

BY Bayesian CHSQ Chi-square score 

BAG Bagging JMI Joint mutual information 

RF Random Forset CIFE Conditional infomax fea-
ture extraction 

MARS Multi adaptive regression 
splines DISR Double input symmetric 

relevance 

SVM Support vector machines MIM Mutual information max-
imization 

DA Discriminant analysis CMIM Conditional mutual infor-
mation maximization 

NN Neirest neighbour ICAP Interaction capping 

GLM Generalized linear models TSCR T-test score 

PLSR Partial least squares and pri-
nicipal componenet regression MRMR Minimum redundancy 

maximum relevance 

— — MIFS Mutual information fea-
ture selection 

— — WLCX Wilcoxon 
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Classifiers 
 
In machine-learning, the classification is considered as a supervised learning task of infer-
ring a function from labeled training data16. The training data consists of a set of exam-
ples, where each example is represented as a pair of an input vector (features) and a de-
sired output value (target or category label). The classification algorithm (classifier) ana-
lyzes the training data and infers a hypothesis (function), which can be used for predicting 
the labels of unseen observations. Many classifiers belonging to different areas of com-
puter science and statistics have been proposed in machine-learning literature29. In our 
study, we used 12 machine-learning classifiers arising from 12 classifier families (Bagging 
(BAG), Bayesian (BY), Boosting (BST), Decision trees (DT), Discriminant analysis (DA), Gen-
eralized linear models (GLM), Multiple adaptive regression splines (MARS), Nearest neigh-
bors (NN), Neural networks (Nnet), Partial least square and principle component regres-
sion (PLSR), Random forests (RF), and Support vector machines (SVM)). The acronyms re-
lated to classifiers are defined in Table 1. All classifiers were implemented using R package 
caret30, which provides a nice interface to access many machine-learning algorithms in R. 
Furthermore, it also provides a user-friendly framework for training different machine-
learning models. Classifiers were trained using the repeated (3 repeat iterations) 10 fold 
cross validation of training cohort (Lung1) and their predictive performance was evaluated 
in the validation cohort (Lung2) using area under ROC curve (AUC). We used parameter 
configurations that were previously defined by Fernandez-Delgado et al.31 in a compre-
hensive comparative study of 179 classifiers and 121 different datasets. We have listed 
the classification methods along with their parameters and corresponding R packages 
in Supplementary-C online. 

ANALYSIS 

Predictive Performance of Feature Selection and Classification Methods 
 
In order to investigate and compare different feature selection and classification methods, 
we created a three-dimensional parameter grid for the analysis. For each of the 14 feature 
selection methods, we incrementally selected features ranging from 5 up to 50, with an 
increment of 5 features (n = 5, 10, 15, 20, … , 50). These subsets of selected features were 
then evaluated by using each of the 12 machine-learning classifiers and area under ROC 
curves (AUC). 
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Stability of Feature Selection and Classification Methods 
 
In order to assess the stability of feature selection methods, we used a stability measure 
proposed by Yu et al.32 under the hard data perturbation settings33. We quantified the 
stability of a method as the similarity between the results obtained by the same feature 
selection method, when applied on the two non-overlapping partitions (of size N/2) of the 
training cohort (Lung1). To compute similarity between the two resultant feature sets, a 
weighted complete bipartite graph was constructed, where the two node sets corre-
sponded to the two sets of selected features. The edge weights were assigned as the ab-
solute Spearman correlation coefficient between the features at the nodes. We then ap-
plied the Hungarian algorithm34 to identify the maximum weighted matching between 
the two node sets, and then similarity (stability) was quantified as the final matching cost. 
For each feature selection method, we computed the stability 100 times using a bootstrap 
approach and reported the median ± std values in the results. 

The empirical stability of a classifier was quantified using the relative standard 
deviation (RSD %) and a bootstrap approach. We first selected 30 representative features 
using the Wilcoxon based feature selection method WLCX and used them to compute the 
classifier stability. For each classification method, we trained the model on the subsam-
pled training cohort (size N/2) and validated the performance on the validation cohort 
using AUC. Subsampling of the training cohort was done 100 times using a bootstrap ap-
proach. RSD is the absolute value of the coefficient of variation and is often expressed in 
percentage.  

 
Here, it was defined as 

 
where  and  were the standard deviation and mean of the 100 AUC values 
respectively. It should be noted that higher stability in the case of classifiers corresponds 
to lower RSD values. 
 
Stability and Predictive Performance 
 
In order to identify the highly reliable and accurate methods, we used the median values 
of AUC and stability as thresholds. We created two rank lists based on AUC & stability and 
cited the methods as highly accurate and reliable, which ranked in the top half of both the 
ranked lists. Feature selection methods having stability ≥0.735 (median stability of all fea-
ture selection methods) and AUC ≥ 0.615 (median AUC of all feature selection methods) 
are considered as highly reliable and accurate methods. Similarly, classification methods 
having RSD ≤ 5.97 (median RSD of all classifiers) and AUC ≥ 0.61 (median AUC of all classi-
fiers) are considered as highly reliable and accurate ones. 
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Experimental Factors Affecting the Radiomics Based Survival Prediction 
 
There are three main experimental factors, which can potentially affect the prediction of 
radiomics based survival prediction: feature selection method, classification method and 
the number of selected features. Multifactor ANOVA was used to quantify the variability 
in AUC scores contributed by these factors and their interactions. In order to compare the 
variability contributed by each factor, the estimated variance components were divided by 
the total variance. 

All the analysis was done using R software (R Core Team, Vienna, Austria) version 
3.1.2 and Matlab R2012b (The Mathworks, Natick, MA) with Windows 7. 

RESULTS 

To investigate the machine-learning approaches for prognostic radiomic biomarkers, a 
total of 440 radiomic features were extracted from the segmented tumor regions of the 
pre-treatment CT images of two independent NSCLC cohorts. Feature selection and classi-
fication training was done using the training cohort Lung1 (n = 310 patients), whereas the 
validation cohort Lung2 (n = 154 patients) was used to assess the predictive performance 
[see Fig. 1].  
 

 
Figure 1 
 A total of 440 radiomic features were extracted from the segmented tumor regions of the pre-treatment CT im-
ages of 464 NSCLC patients. Feature selection and classification training was done using the training cohort Lung1 
(n = 310), whereas Lung2 (n = 154) cohort was used as a validation cohort. 
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Predictive Performance of the Feature Selection and Classification Methods 
 
Predictive performance of different feature selection and classification methods was as-
sessed using the area under receiver operator characteristic curve (AUC). Figure 2 depicts 
the performance of feature selection (in rows) and classification methods (in columns) 
using 30 selected features, which are the 30 top ranked features, resulted in feature selec-
tion. For each classification method, there are 14 AUC values corresponding to the 14 dif-
ferent feature selection methods. We used a median of all 14 AUC values as a representa-
tive AUC of a classifier. Similarly, for each feature selection method, a median of 12 AUCs 
(corresponding to 12 classification methods) is used as a representative AUC. These repre-
sentative AUC values for the classification and feature selection methods are given 
in Table 2. For classification methods, random forest (RF) displayed highest predictive per-
formance (AUC: 0.66 ± 0.03) (median ± std), whereas decision tree (DT) (AUC: 0.54 ± 0.04) 
showed the lowest predictive performance. As far as feature selection methods are con-
cerned, the Wilcoxon test based method WLCX showed highest predictive performance 
(AUC: 0.65 ± 0.02), whereas method CHSQ (AUC: 0.60 ± 0.03) and CIFE (AUC: 0.60 ± 0.04) 
had the lowest median AUCs. We repeated the above experiment by varying the number 
of selected features (range 5–50). Results corresponding to 10, 20, 40 and 50 representa-
tive (top ranked) features are reported in Supplementary Figures S1, S2, S3 and S4 online. 
Furthermore, median AUC values over each of the experimental factors (feature selection 
methods, classification methods and number of selected features) are depicted by the 
heatmaps in Supplementary Figures S5, S6 and S7 online. Here as well, random forest (RF) 
(classifier) and Wilcoxon test based method WLCX (feature selection) showed highest me-
dian AUCs in majority of cases. 
 
Stability of the Feature Selection and Classification Methods 
 
We assessed the feature selection methods in terms of their stability against data 
resampling using the hard data perturbation settings33. We observed that MIM was the 
most stable method (stability = 0.94 ± 0.02) (median ± std) followed by RELIEF (stabil-
ity = 0.91 ± 0.05) and WLCX (stability = 0.84 ± 0.05), whereas GINI (stability = 0.68 ± 0.10), 
JMI (stability = 0.68 ± 0.05), CHSQ (stability = 0.69 ± 0.09), DISR (stability = 0.69 ± 0.05) and 
CIFE (stability = 0.69 ± 0.05) showed relatively low stability [Table 2]. 
Empirical stability of classification methods was quantified using the relative standard de-
viation (RSD) and a bootstrap approach. We observed that BY was the most stable classifi-
cation method (RSD = 0.86%) followed by GLM (RSD = 2.19%), PLSR (RSD = 2.24%) and RF 
(RSD = 3.52%). BST had the highest relative standard deviation in AUC scores 
(RSD = 8.23%) and hence the lowest stability among the classification methods. RSD (%) 
values corresponding to all 12 classifiers are reported in Table 2. 
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Figure 2 
Heatmap depicting the predictive performance (AUC) of feature selection (in rows) and classification (in columns) 
methods. It can be observed that RF, BAG and BY classification methods and feature selection methods WLCX, 
MRMR and MIFS shows relatively high predictive performance in many cases. 
 
 
Stability and Predictive Performance 
 
Scatterplots in Fig. 3 assesses the stability and prediction performance. It can be observed 
that feature selection methods WLCX (stability = 0.84 ± 0.05, AUC = 0.65 ± 0.02), MIFS 
(stability = 0.8 ± 0.03, AUC = 0.63 ± 0.03), MRMR (stability = 0.74 ± 0.03, AUC = 0.63 ± 0.03) 
and FSCR (stability = 0.78 ± 0.08, AUC = 0.62 ± 0.04) should be preferred as their stability 
and predictive performance was higher than the corresponding median values across all 
feature selection methods (stability = 0.735, AUC = 0.615). Similarly for classification 
methods, RF (RSD = 3.52%, AUC = 0.66 ± 0.03), BY (RSD = 0.86%, AUC = 0.64 ± 0.05), BAG 
(RSD = 5.56%, AUC = 0.64 ± 0.03), GLM (RSD = 2.19%, AUC = 0.63 ± 0.02), and PLSR 
(RSD = 2.24%, AUC = 0.63 ± 0.02), the stability and predictive performance was higher than 
the corresponding median values (RSD = 5.93%, AUC = 0.61). 
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Table 2 
Table describing the median values of AUC and stability for different Classification and Feature Selection meth-
ods. 
 

Classification 
method AUC RSD % 

Feature Selec-
tion method AUC Stability 

Nnet 0.57 ± 0.04 6.41 RELF 0.61 ± 0.04 0.91 ± 0.05 

DT 0.54 ± 0.04 7.89 FSCR 0.62 ± 0.04 0.78 ± 0.08 

BST 0.58 ± 0.04 8.23 GINI 0.62 ± 0.04 0.68 ± 0.10 

BY 0.64 ± 0.05 0.86 CHSQ 0.60 ± 0.04 0.69 ± 0.09 

BAG 0.64 ± 0.03 5.56 JMI 0.61 ± 0.04 0.68 ± 0.05 

RF 0.66 ± 0.03 3.52 CIFE 0.60 ± 0.03 0.69 ± 0.05 

MARS 0.61 ± 0.03 6.98 DISR 0.62 ± 0.05 0.69 ± 0.05 

SVM 0.61 ± 0.03 6.39 MIM 0.61 ± 0.04 0.94 ± 0.02 

DA 0.61 ± 0.02 6.37 CMIM 0.62 ± 0.04 0.73 ± 0.04 

NN 0.61 ± 0.02 4.08 ICAP 0.61 ± 0.03 0.72 ± 0.04 

GLM 0.63 ± 0.02 2.19 TSCR 0.61 ± 0.02 0.78 ± 0.12 

PLSR 0.63 ± 0.02 2.24 MRMR 0.63 ± 0.06 0.74 ± 0.03 

— — — MIFS 0.63 ± 0.06 0.8 ± 0.03 

— — — WLCX 0.65 ± 0.02 0.84 ± 0.05 

 
 

 
Figure 3 
Scatterplots between the stability and predictive performance (AUC) of feature selection (FS) (Left) and classifica-
tion methods (CF) (right). Feature selection methods having stability ≥0.735 (median stability of FS) and 
AUC ≥ 0.615 (median AUC of FS) are considered as highly reliable and predictive methods. Similarly, classification 
methods having RSD ≤ 5.97 (median RSD of CF) and AUC ≥ 0.61 (median AUC of CF) are considered as highly relia-
ble and accurate ones. Highly reliable and predictive methods are displayed in a gray square region. 
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Experimental Factors Affecting the Radiomics Based Survival Prediction 
 
To quantify the effects of the three experimental factors (feature selection methods, clas-
sification methods and the number of selected features), we performed multifactor analy-
sis of variance (ANOVA) on AUC scores. We observed that all three experimental parame-
ters and their interactions are the significant factors affecting the prediction performance 
[Fig. 4]. Classification method was the most dominant source of variability as it explained 
34.21% of the total variance in AUC scores. Feature selection accounted for the 6.25%, 
whereas interaction of classifier & feature selection explained 23.03% of the total varia-
tion. Size of the selected (representative) feature subset only shared 1.65% of the total 
variance [Fig. 4]. 
 
 

 
 
Figure 4 
Variation of AUC explained by the experimental factors and their interactions. It can be observed that classifica-
tion method was the most dominant source of variability. Size of the selected (representative) feature subset 
shared the least of the total variance. 

DISCUSSION 

Medical imaging is a routinely used and easily accessible source of information in clinical 
oncology. It serves as a non-invasive and cost-effective cancer diagnostic tool. Radiomics 
employs the medical imaging data for the customization of cancer care and hence adds a 
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new and promising dimension to precision oncology2,3,8. Moreover, it can also capture 
the intra-tumor heterogeneity, which is often considered as an important biomarker in 
oncology12,35,36,37. A number of studies have built radiomics based predictive models 
for various clinical factors (tumor grades, survival outcomes, treatment response, etc.)12. 
For the successful realization of radiomics based predictive analyses, it is required to eval-
uate and compare different feature selection and predictive modeling methods, which 
was the primary objective of this study. 

Various feature selection methods have been employed for high-throughput data 
mining problems38. In general, feature selection methods are categorized into three main 
categories: (1) filter methods (2) wrapper methods and (3) embedded methods. In this 
study, we investigated 14 different filter based approaches for radiomics based survival 
prediction. We only used filter-based approaches because they are computationally more 
efficient and less prone to overfitting than the wrapper and embedded methods18,27. 
Furthermore, unlike wrapper and embedded methods, filter methods are classifier inde-
pendent. Thus, they allow separation of the modeling and feature selection component of 
the predictive analysis, which increases the generalizability of each component and hence 
the overall analysis. 

We also investigated 12 machine-learning classification methods belonging to 12 
different classifier families. Many classifiers have been proposed in the machine-learning 
literature. Theoretically speaking, these classifiers belong to different fields (classifier 
families) of computer science and statistics. Therefore, it could really be difficult to under-
stand the underlying assumptions of each and every classifier and tune the parameters in 
an unbiased manner. The parameter tuning could be biased by user’s more (or lack of) 
expertise with some classifiers over the others. Usually, the studies, which propose a new 
classifier, only compare it to the reference classifiers of same family excluding the other 
classifier families. Even if classifiers belonging to different families are considered for 
comparison, these reference classifiers are usually implemented using simple tools and 
with limited parameter configurations while carefully tuning the proposed classifier. These 
could consequently bias the results in favor of the proposed classifiers31. In our study, we 
are not proposing any new classifier and we have used the same implementation tool (R 
package caret) for all the classifiers. Furthermore, to ensure unbiased usage of classifiers, 
we used parameter configurations that were previously defined by Fernandez-Delgado et 
al.31, in an exhaustive study of comparing 179 classifiers over 121 different datasets. 
These parameter configurations were selected from the literature and have been previ-
ously validated on a large number (121) of datasets belonging to different fields. Further-
more, in our study, the parameters were tuned using the repeated cross validation of 
training data only. Hence, our experimental design allowed us to evaluate different classi-
fication methods in an unbiased manner. 

Our results show that the Wilcoxon test based feature selection method WLCX 
yields the highest predictive performance with the majority of classifiers. Interestingly, 
WLCX is a simple univariate method based on ranks, which does not take into account the 
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redundancy of selected features during feature ranking. The majority of feature selection 
methods gave highest predictive performance when used with the random forest (RF) 
classifier. One could argue that with different parameter configurations, the performance 
of classification methods may improve further. An exhaustive parameter tuning could be 
investigated for evaluating the improvement of prediction performance. However, the 
required computational resources and high time complexity can hinder the exhaustive 
search. We expect that future radiomic studies focusing on different clinical outcomes and 
similar analysis framework could provide better understanding in this regard. A limited 
number of methods, which are consistently high performing across different radiomic 
studies, could be further assessed with an exhaustive parameter tuning. Nevertheless, It 
should be noted that random forests (RF) have displayed high predictive performance in 
several other biomedical and other domain applications as well31. These results indicate 
that choosing the WLCX feature selection method and/or RF classification method in-
creases predictive performance in radiomics. 

Results related to our stability analysis provide another dimension for choosing 
the feature selection and classification methods. Depending upon the applications, one 
may give importance to the predictive performance or stability and accordingly opt for the 
required method. Results related to multifactor ANOVA indicated that the classification 
method is the most dominant source of variation in the prediction performance (AUC) and 
hence should be chosen carefully. Size of the selected feature subset contributed the least 
in the total variation of AUC. 

Only few studies have investigated and compared different feature selection and 
machine-learning modeling methods for radiomics based clinical predictions19,20. Recent-
ly, Hawkins et al.19 have compared four different feature selection and classification 
methods for CT based survival prediction of NSCLC patients. This study, however, was lim-
ited by the small cohort size as the final results were obtained on only 40 patients. Fur-
thermore, it also lacked an independent validation of the results. On the contrary, two 
independent radiomic cohorts of sizes 310 and 154 patients were used in our analysis and 
an independent validation of the results was reported. 

Our radiomic analysis is focused on the prediction of two-year patient survival in 
NSCLC patients. It provides an unbiased evaluation of different machine-learning methods 
of feature selection and classification. It could be considered as a reference for the future 
radiomics based predictive studies. Our results indicated that choosing Wilcoxon test 
based feature selection method WLCX and/or random forest (RF) classification method 
gives highest performance for radiomics based survival prediction. Furthermore, these 
methods also turned out reasonably stable against data perturbation and hence they 
could be preferred for radiomics based predictive studies. These results should be further 
tested in other radiomics based predictive studies, with different imaging modalities and 
in different cancer types. 

It has been previously shown that for NSCLC patients, statistical models based on 
patient’s tumor and treatment characteristics provide significantly better predictions than 
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the human expert24. Moreover, several other studies have highlighted the limitation of 
doctors’ prognostic capability for terminally ill cancer patients39,40,41. The predictions of 
human experts can suffer from inter-observer variability. On the contrary, statistical mod-
els could make the prediction system more deterministic if the parameter configurations 
and the training framework are fixed. 

The potential clinical utility of radiomics based prognostic models has been stat-
ed in previous study8. With expanding radiomics cohorts and feature dimensions, we ex-
pect higher prediction performance in future radiomic studies. Furthermore, the integra-
tive studies like radiomics-genomics in combination with standard clinical covariates could 
also improvise the prediction performance and further validate the utility of these meth-
ods in clinical practice. Overall, our analysis is a step forward towards the enhancements 
of radiomics based clinical predictions. 

SUPPLEMENTARY MATERIAL 

Available online at: https://images.nature.com/original/nature-
assets/srep/2015/150817/srep13087/extref/srep13087-s1.pdf 
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ABSTRACT  

Background and Purpose 
Radiomics can quantify tumor phenotype characteristics non-invasively by applying ad-
vanced imaging feature algorithms. In this study we assessed if pre-treatment radiomics 
data are able to predict pathological response after neoadjuvant chemoradiation in pa-
tients with locally advanced non-small cell lung cancer (NSCLC). 
 
Materials and methods  
127 NSCLC patients were included in this study. Fifteen radiomic features selected based 
on stability and variance were evaluated for its power to predict pathological response. 
Predictive power was evaluated using area under the curve (AUC). Conventional imaging 
features (tumor volume and diameter) were used for comparison. 
 
Results 
Seven features were predictive for pathologic gross residual disease (AUC > 0.6, p-value < 
0.05), and one for pathologic complete response (AUC = 0.63, p-value = 0.01). No conven-
tional imaging features were predictive (range AUC = 0.51–0.59, p-value > 0.05). Tumors 
that did not respond well to neoadjuvant chemoradiation were more likely to present 
rounder shape (spherical disproportionality, AUC = 0.63, p-value = 0.009) and heterogene-
ous texture (LoG 5 mm 3D - GLCM entropy, AUC = 0.61, p-value = 0.03). 
 
Conclusions 
We identified predictive radiomic features for pathological response, although no conven-
tional features were significantly predictive. This study demonstrates that radiomics can 
provide valuable clinical information, and performed better than conventional imaging 
features. 
 
Keywords 
Radiomics – pathological response – NSCLC – biomarkers – quantitative imaging 
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INTRODUCTION  

Radiomics is an emerging field of quantitative imaging that aims to describe tumors non-
invasively using a large set of advanced imaging features [1–3]. These features can robust-
ly create a unique phenotypic atlas for each tumor [4–6]. Associating clinical information 
to this atlas has enabled the identification of new, reproducible, image-based biomarkers 
which has been prognostic for clinical outcomes including overall survival [7–9] and dis-
tant metastasis [10]. Association was found with lung cancer patients of histology and 
stage [11] as well. 

Lung cancer is the leading cause of cancer deaths worldwide [12]. Stage IIIA non-
small cell lung cancer (NSCLC) can be treated using trimodality therapy that includes neo-
adjuvant chemoradiation followed by surgery according to NCCN guidelines [13]. Howev-
er, trimodality therapy is controversial, given the observed lack of survival benefit in add-
ing surgery compared to definitive chemoradiation alone, [14,15] which underscores the 
importance of identifying patients who respond completely to chemoradiation and do not 
require additional invasive local therapy. 

Pathological response is a direct measure of tumor response to neoadjuvant 
chemoradiation assessed at time of surgery. It has the potential to be used as a surrogate 
endpoint [16] for survival/local control and has been shown to be prognostic for survival in 
early [17] and advanced [18] stages for NSCLC patients. Predicting pathological response 
at an early time point would allow modification of the treatment regimen (e.g. adding sur-
gery versus intensifying chemoradiation) based on how the tumor is likely to respond and 
this adaptive approach could improve patient outcomes. 

Currently, tumor response is clinically assessed using RECIST [19], which classifies 
changes in the sum of tumor and lymph nodes diameters on CT images before and after 
therapy. However, the radiographic response to chemoradiation for NSCLC tumors may be 
slow [20], which may limit the utility of RECIST in predicting pathological response at the 
end of the neoadjuvant chemoradiation shortly before surgery, and hence allow very little 
margin for clinicians to adapt the treatment regimen consequently. 

In this study we investigated the power of pre-treatment CT-based radiomic fea-
tures to predict pathological response after neoadjuvant chemoradiation. We compared 
these results to conventional volumetric features such as tumor volume and diameter. 

 
MATERIALS AND METHODS  

Patient selection 

Patients with stage II–III NSCLC treated at Dana-Farber Cancer Institute between 2001 and 
2013 who were treated with neoadjuvant radiotherapy and chemotherapy (chemoradia-
tion) prior to surgical resection were included in this study. Patients with distant metasta-
sis at presentation or delay in surgery greater than 120 days after the completion of 
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chemoradiation were excluded. For all patients, CT imaging at the initiation of chemoradi-
ation and prior to surgical resection was available. No exclusion based on histology was 
applied. A subset of patients received adjuvant therapy and was also included in this anal-
ysis. Finally, a total of 127 patients were included for this study. 
 
Follow-up and endpoints 
 
The main endpoint for this study was pathological response assessed at time of surgery. 
The amount of residual tumor was classified based on surgical pathology reports as patho-
logic complete response (pCR), microscopic residual disease (MRD) or gross residual dis-
ease (GRD). Percent residual tumor in the pathological sample was not available for this 
study. Three other clinical endpoints were included for this study including overall survival 
(OS), distant metastasis (DM) and in-field local recurrence (LR). The time associated with 
the endpoint was defined from treatment start date to date of first event. The last date of 
follow-up was used for patients with no events. 

Follow-up chest CT scans with contrast (unless the patient had a contraindication 
to contrast, e.g. renal dysfunction or allergy) were performed every three to six months 
after treatment for patients at our institution based on US national guidelines [13] to as-
sess tumor progression. 

 
CT Acquisition and Segmentation 
 
Planning CTs were acquired according to scanning protocol at our institution using GE 
“lightspeed” CT scanner (GE Medical System, Milwaukee, WI, USA). Tumor segmentation 
was performed on radiation therapy planning CTs using Eclipse (Varian Medical System, 
Palo Alto, CA, USA). The primary tumor site was retrospectively contoured guided by exist-
ing treatment planning contours. Using both soft tissues and lung windows, air, vessels, 
normal tissue or surrounding organs were subsequently excluded from the contours 
(Figure 1.A). All contours were done manually (T.P.C., V.A., Y.H.), and then all individually 
verified by an expert radiation oncologist by (R.H.M.). 
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Figure 1 
Radiomic analysis workflow description: A) Lung primary tumor site was manually contoured from treatment 
planning images (shown in green on CT image on the left and the 3D mask on the right). B) All images were sub-
sequently resampled and from those contours the radiomic features describing tumor phenotype were extracted 
using three feature groups: Shape, Statistic and Textural features, with and without Wavelet and Laplacian of 
Gaussian filtering. C) Finally, association between radiomic features and the clinical outcomes were investigated 
for image-based biomarkers discovery. 
 

Features Extraction and Selection 

Radiomic features describing tumor phenotype were extracted (m=1603) from the prima-
ry tumor site with an in-house Matlab 2013 (The Mathworks Inc., Natick, Massachusetts, 
United States) toolbox and the software 3D Slicer 4.4.0 [21] (Figure 1.B). Average voxel 
spacing was (0.9mm × 0.9mm × 3mm) respectively for (x,y,z) and was resampled 
3×3×3mm3 prior to feature extraction to have standardized voxel spacing across the co-
hort. A bin width of 25 Hounsfield units (HU) was used for textural features. All features 
are described in the supplement of a previous study [10]. 

Fifteen Radiomic features were selected based on stability and variance for this 
study (features selection is described in Supplement I). Additionally, we defined three 
conventional, pre-treatment, clinically utilized, volumetric features for comparison to ad-
vanced phenotypic features prior chemoradiation. These features consisted of tumor vol-
ume, 2D axial maximal diameter and 3D maximal diameter. 2D axial maximal diameter 
corresponds to the greatest diameter in the axial plane. 3D maximal diameter refers to the 
greatest diameter in any direction. All volume and diameter measurements were obtained 
from the primary tumor and did not include the sum diameters or volumes of involved 
lymph nodes. 
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Statistical Analysis 
 
All statistical analyses were done on R software [22] version 3.1.3. Predictive performance 
of these remaining features were assessed using the “survcomp” package [23,24] version 
1.16 from Bioconductor [25]. We computed receiver operating characteristic (ROC) area 
under the curve (AUC) for binary outcomes. Predictive power was reported as proportion-
al or disproportionate to the risk of experiencing the response as the feature value is in-
creasing. 

Difference for clinical categories was assessed using chi-square or two-sided Wil-
coxon-test respectively for categorical or continuous variables. Noether test was used to 
consider AUC significance from 0.5 (random). Survival and disease-free probability curve 
were computed using Kaplan-Meier analysis. A three year estimate was reported for the 
analysis. Log-rank test was used to assess difference in probability curves between patho-
logical response groups. A p-value below 0.05 was considered as significant. Features with 
an AUC above 0.60 and a p-value below 0.05 were considered predictive. 

Multivariate models were made using logistic regression for pathological re-
sponse using the same subgroup for the univariate analysis to compare their performance. 
Three models were created with 1) Conventional (volume and axial/3D diameters), 2) Ra-
diomics (predictive features for GRD) and 3) Combined (Conventional + radiomics) fea-
tures. 

We compare model performance with the validation AUC using the cross valida-
tion (CV). The cohort was split, using 80% for training and 20% for validation for each CV 
(for each 100 iterations). Patients were randomized using a conservative random split us-
ing the “caret” package [26]. Difference between the CV models performance was done 
using a permutation test. The outcome labels were randomly resampled (k=1000 times) 
and a new CV was computed for each random label combination. One-sided Wilcoxon test 
was computed for each random label models, the Wk statistic extracted and compared 
to W0 (true label) to assess if a model performance was significantly greater than another. 

 

RESULTS 

127 patients with NSCLC were included in this study. The median age was 60.5 years 
(range 32.7 to −77.6 years), with a majority of women (53.5%) and white (92.1%). Tumor 
histology was predominantly adenocarcinoma (56.6%) and AJCC [27] stage IIIA (75.6%). 
The median follow-up was 41.8 months (range 2.7–117.2). The distribution of pathological 
response was 27 (21.3%), 33 (26.0%) and 67 (52.7%) respectively for complete response, 
microscopic and gross residual disease. 
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Table 1 
Patient and treatment characteristics. Median (range) is reported for continuous and counts (percentage) for 
categorical variables. Statistical difference between complete pathological responders vs. non-complete respond-
ers was computed using Chi-Square or Wilcoxon-test respectively for categorical and continuous variables. 
Label: pCR = pathologic complete response, MRD=microscopic residual disease, GRD = gross residual disease. 
1Large Cell neuroendocrine carcinoma, Mixed NSCLC and SCLC, Adenoid cystic carcinoma, Sarcomatoid. 
2RT Only, Sequential. 
 

Variable Group Median 
(Range) / 

pCR 
(n=27) 

MRD & 
GRD 

p- 

Count (%) (n=100) value 

Age [years]   60.5 (32.7 – 
77.6) 

61.5 (32.7 
– 

60.4 (33.1– 0.93 

75.2) 77.6) 
Performance 

Status 
0 60 (47.2%) 10 (37.0%) 50 (50%) 0.33 

  1 59 (46.5%) 14 (51.9%) 45 (45%)   
  2–3 8 (6.3%) 3 (11.1%) 5 (5%)   

Gender Female 68 (53.5%) 11 (40.7%) 57 (57%) 0.19 

  Male 59 (46.5%) 16 (59.3%) 43 (43%)   
Ethnicity White 117 (92.1%) 25 (92.6%) 92 (92%) 0.61 

  Black 5 (3.9%) 1 (3.7%) 4 (4%)   
  Hispanic 3 (2.4%) 0 (0%) 3 (3%)   
  Asian 2 (1.6%) 1 (3.7%) 1 (1%)   

Histology Adenocarcinoma 72 (56.6%) 5 (18.5%) 67 (67%) <0.001 

  Squamous cell 32 (25.3%) 14 (51.9%) 18 (18%)   
Carcinoma 

  NSCLC 18 (14.2%) 6 (22.2%) 12 (12%)   
  Others1  

5 (3.9%) 2 (7.4%) 3 (3%)   
Overall stages IIA 2 (1.5%) 1 (3.7%) 1 (1%) 0.02 

  IIB 8 (6.3%) 5 (18.5%) 3 (3%)   
  IIIA 96 (75.6%) 18 (66.7%) 78 (78%)   
  IIIB 21 (16.6%) 3 (11.1%) 18 (18%)   

Treatment Concurrent 111 (87.4%) 24 (88.8%) 87 (87%) 0.49 

sequence 
  Induction 14 (11.0%) 2 (7.4%) 12 (12%)   
  Others2  

2 (1.6%) 1 (3.8%) 1 (1%)   
Radiation 

Dose 
  54 (45–70) 54(46–70) 54(45–70) 0.32 

[Gy] 
Pathological pCR 27 (21.3%) 27 (100%) 0 (0%) - 

response 
  MRD 33 (26.0%) 0 (0%) 33 (33%)   
  GRD 67 (52.7%) 0 (0%) 67 (67%)   
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All treatment information can be found in the Table 1. Comparison between 
pathological complete response (pCR) versus microscopic (MRD) and gross (GRD) residual 
disease, showed no significant differences between treatment (pvalue=0.49, Chi-square 
test) and radiation dose (p-value=0.32). Significant differences were found between over-
all stages (p-value= 0.02) and histology (p-value < 0.001), likely driven by the fact that the 
distribution is skewed for histology and overall stage. 

Relationship between clinical outcomes and pathological response subgroups 
was investigated (Table 2). The median (range) for overall survival, distant metastasis and 
local recurrence was respectively 41.8 (2.7–117.2), 10.8 (2.5–73.5) and 14 (4.7–66.5) 
months. No significant difference was observed for survival between pathological re-
sponse (p-value =0.86, Log-rank test). However, pCR patients had significantly higher 
probabilities at three years for distant metastasis-free (79%, p-value = 0.036) and local 
recurrence-free (94%, p-value = 0.013). Kaplan-Meier curves can be found in Figure S3 and 
concordance index for radiomics features in Figure S4 in Supplement II. 
 
 
Table 2 
Three years estimate from Kaplan-Meier survival curve for each pathological response subgroup. Difference be-
tween groups was assessed with Log-Rank test. 
Label: pCR = pathologic complete response, MRD=microscopic residual disease, GRD = gross residual disease. 

 
 

Three years estimate 
probability 

pCR 
(n=27) 

MRD 
(n=33) 

GRD 

(n=67) 
p-value 

Overall Survival 72% 53% 52% 0.86 

Distant Metastasis 
Free 79% 59% 50% 0.036 

Local Recurrence 
Free 94% 75% 62% 0.013 

 
 
 
Fifteen features were selected based on stability and variance (see Supplement I) and 
were evaluated for performance to predict clinical outcomes. Those features included one 
shape, seven statistics and seven textural features. Textural features incorporated four 
gray-level co-occurrence matrix (GLCM) sensitive to voxel patterns and three gray-level 
size zone matrix (GLSZM) sensitive to flat zone (area of connecting voxel with same value). 
All these features are described in Table 3. 
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Table 3 
Description of radiomic features with associated feature group and filter. 
 

Selected Radiomic Radiomic Filter Description feature group associated 
Sphere Shape None 

Ratio between tumor area and a sphere 
with 

Disproportionality the same volume as the tumor 

Root Mean Square Statistics Wavelet 
HLL 

Root mean square of the voxels intensity 
value 

Range Statistics 

Wavelet 
LLH 

The range of voxels intensity values   
Wavelet 

LHH 

Energy Statistics Wavelet 
HLL Describe the energy of the image 

Mean Statistics Wavelet 
HLL The mean voxel intensity value 

Kurtosis Statistics 
LoG 3D - Describe the shape of a probability 

5mm distribution of the voxel intensity histo-
gram 

Skewness Statistics 
LoG 3D - Describe the shape of a probability 

4mm distribution of the voxel intensity histo-
gram 

Correlation GLCM Wavelet 
LHH Correlation of the GLCM matrix 

Entropy GLCM 

LoG 3D - Complexity of the GLCM matrix (sensi-
tive to 

5mm the number of unique voxel patterns in 
the 

  tumor) 

Homogeneity 2 GLCM LoG 2D - Homogeneity of voxels patterns (similar 
4mm patterns across the whole tumor) 

Cluster Prominence GLCM LoG 3D - Sensitive to flat zone (area of connecting 
3mm voxel with same value) 

Low Intensity Large 
Area GLSZM Wavelet 

LHH 

Sensitive to flat zone with low intensity 
voxel 

Emphasis (e.g. necrotic area) 

Large Area Emphasis GLSZM LoG 3D - Sensitive to flat zone 5mm 

High Intensity Large GLSZM LoG 3D - Sensitive to flat zone with high intensity 
voxel 

Area Emphasis 5mm (e.g. calcifications, blood vessels) 
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Pathological response was our primary clinical endpoint. We first determined if 
radiomic features could identify tumors likely to respond poorly (GRD) vs. tumors likely to 
respond well (pCR and MRD) to the chemoradiation (Figure 2.A). The fifteen selected ad-
vanced imaging features had an AUC of 0.53 to 0.66 for GRD (described in Table S2 in Sup-
plement II). Seven features were significantly predictive (range AUC 0.61–0.66, p-value 
<0.05) for GRD. From those seven predictive features, two were risk proportionate as the 
feature value increases (GLCM entropy and stats root mean square) and five dispropor-
tionate (mean and skewness in voxel intensity histogram, spherical disproportionality and 
two GLSZM large area emphasis) to experience GRD. No conventional volumetric imaging 
features were significant from random or above at the threshold of AUC > 0.6 (range 0.57 
to 0.59, p-value >0.05) and all were disproportionate to the risk of GRD. 

 
 

 

 
 
Figure 2 
AUC of Radiomic features and conventional volumetric imaging features for A) poor responders (gross residual 
disease) vs. good responders (pathologic complete response and microscopic residual disease) and B) pathological 
complete responders vs. non-complete responders (microscopic and gross residual disease). Predicting power was 
reported as proportional or disproportionate to the risk of experiencing the response as the feature value is in-
creasing. Features reported with a “*” are significant from random (Noether test, p-value <0.05). Legend colors 
indicates feature group. 
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We then investigated the predictive power for identifying pathologic complete response 
(pCR) vs. non-complete response (MRD and GRD). The AUC range of radiomic features 
(Figure 2.B) was 0.52–0.63 and 0.51–0.55 for conventional features (described in Table S3 
in Supplement II). The best performing radiomic feature, Wavelet HLL mean, was also the 
only significantly predictive feature (AUC = 0.63, p-value = 0.01, Noether test) and was risk 
proportional. No conventional imaging features were predictive for pCR (range 0.51 to 
0.55, all p-value>0.05). 

Multivariate models were created for each set of features (Figure 3), including 
conventional (3 features), radiomics (7 predictive features for GRD) and the resulting 
combined set (10 features). The median AUC values of the cross validation were 0.57, 0.65 
and 0.65 for GRD and 0.60, 0.61 and 0.68 for pCR respectively for conventional, radiomics 
and combined models. The combined and radiomics model for GRD performed significant-
ly better on the cross validation compare to clinical features alone. For pCR, no significant 
difference was found between radiomics and conventional model performance. However, 
the combined model significantly outperformed both radiomics and conventional features 
for predication of pCR. 

 
 

 

 
 
 
Figure 3 
Comparison of multivariate models for A) Gross residual disease and B) complete pathological response. AUC 
from the validation is reported from the Cross-Validation (100 iterations, 80% training and 20% validation) for 
each model. Comparison between models were done using a permutation test. A “*” is reported if the model 
performance is significantly greater than the other, else “ns” for non-significant. 
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DISCUSSION 

Radiomics [1] is an emerging field of quantitative imaging that aims to extract phenotypic 
tumor information from clinical imaging data. In this study we demonstrate the predictive 
power of radiomic phenotypic features for pathological response in patients with NSCLC. 
Pathological response is a standard endpoint, assessed at time of surgery for a direct 
measure of neoadjuvant chemotherapy effect. Pathologic response was significantly asso-
ciated with clinical outcomes in our study (distant metastasis and local recurrence) show-
ing the importance of predicting pathological outcome. Using data mining techniques, we 
selected fifteen radiomics features based on stability and variance. From those features, 
we identify seven features predictive of pathological gross residual disease (GRD) and one 
feature predictive of pathological complete responders (pCR). In contrast, no pre-
treatment conventional clinically utilized features (volume or diameter) were predictive 
for pathological response. Lastly, the radiomics model also performed significantly better 
on a cross validation than the conventional model for GRD. A combined model using con-
ventional and radiomics outperformed for pCR. 

The seven significant predictive features for GRD enabled us to represent pheno-
typic characteristics of a lung tumor that is less likely to respond to neoadjuvant chemora-
diation. Spherical disproportionality (a measure of the similarity between the tumor and a 
sphere with an equivalent volume) of the primary tumor site was associated with patho-
logical response (AUC above 0.6 for both GRD and pCR). Remarkably, more complex tu-
mors are likely to be associated with pCR while more spherical tumors are more likely to 
be associated with GRD. In comparison, conventional radiographic features such as vol-
ume and diameter were not predictive for pathological response (neither pCR nor GRD), 
and may not capture sufficient shape information as advanced shape radiomic features. It 
is noteworthy that larger tumor dimension (both volume and diameter) appeared to be 
associated with pCR. Tumor with large flat zones (area of connecting voxels of similar in-
tensity) were associated with pCR whereas tumor with rich complex patterns (heterogene-
ities) were associated with GRD. Finally based on the common significant predictor for 
both pCR and GRD (Wavelet HLL – mean) indicated that tumor with overall lower voxel 
intensity (darker) were associated with GRD after Wavelet HLL filtering. Multivariate per-
formances demonstrated that radiomics information added complementary information 
for pCR (significantly greater performance for the combined model) and outperformed 
conventional features alone for GRD. 

To our knowledge this is the first study investigating pathological response to ne-
oadjuvant chemoradiation using advanced quantitative imaging features from CT images. 
A previous study from Ravanelli et al. [28] investigated response of first line of chemo-
therapy (with no concurrent radiation therapy or surgery) for patients with advanced 
NSCLC using two textural features (uniformity and grey-level) from contrast enhanced CT 
images. They found an AUC of 0.74 for their multivariate model (Leave one out cross vali-
dation). Conventional features (tumor volume and diameters) have been identified as a 
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prognostic factor in prior studies [29–31]. However patients in those reports did not re-
ceive surgical resection as part of their therapy as did patients in our study. Conventional 
features may thus be more relevant as a prognostic factor in the absence of surgical inter-
vention. Additionally, we did not find any significant association between radiomics and 
clinical outcomes, supporting the idea that surgical resection of the tumor undermines 
image-based features prediction for clinical outcomes. We believe that the underlying tu-
mor phenotype may be more relevant for identifying pathologic response than either vol-
ume or diameter, although these may remain valuable for assessing response to therapy. 
Other studies [32,33] investigated the association of conventional features (tumor vol-
ume) but demonstrated lack of correlation between measured tumor volume change and 
pathologic response in NSCLC, supporting the fact that none of our conventional features 
were significant. 

Limitations of this study include the cohort size (n=127). Due to a large number of 
available radiomic features and concern for multiple testing, dimension reduction was 
used with restrictive criteria to perform drastic selection, therefore excluding potential 
predictive features for any clinical outcomes. However despite this very restrictive data-
driven approach selection (about 1% remaining after), we were able to find predictive fea-
tures. Additionally, the incidence of pCR (n = 27) was much lower than GRD (n = 67), po-
tentially explaining the differences in the predictive power for pathological complete re-
sponse. Since the study period was conducted over 12 years, we recognize that there is 
heterogeneity in the treatments delivered to the patient cohort. However, we did not find 
any association between radiation dose, cycles of chemotherapy or other treatment char-
acteristics and pathologic response. Thus, we believe the results presented remain valid 
despite treatment heterogeneity. A major limitation of radiomics is the lack of standardi-
zation in image acquisition that without access to raw images is difficult to control and 
hence standardize patient cohorts. Yet, despite the noise introduced by variation in acqui-
sition protocols, radiomic models have shown consistent and reproducible association 
with outcomes in multiple independent datasets [7,8,9–11]. Furthermore, we have previ-
ously demonstrated the reproducibility [7] of the radiomics features using the RIDER [34] 
test / retest dataset and we resampled of imaging using a common pixel spacing 
(3×3×3mm3) to limit variability across patients. Finally, we acknowledge the limitations of 
the clinical applicability of this study. This study was initiated to find potential patterns in 
tumor phenotype that could predict pathological response prior to the start of therapy. 
Although several features were significantly predictive for pathological endpoints, we 
were unable to identify subgroups associated with overall survival, local recurrence or dis-
tant metastatis using radiomic features. Despite the need for further validation sets, this 
study provides a basis for additional research (e.g using PET-CT features) that could im-
prove performance. We believe such radiomics based analyses can be used as a comple-
mentary method of patient stratification for NSCLC prior to the initiation of therapy as is 
currently being investigated in other disease sites such as breast [35,36], colorectal cancer 
[37], and glioblastoma [38]. 
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In conclusion, we identified CT-based radiomic features predictive for pathologi-
cal response in patient with locally advanced NSCLC who previously received trimodality 
therapy. This study demonstrates that radiomics can provide additional phenotypic infor-
mation that may reflect underlying tumor sensitivity to chemoradiation. Predicting patho-
logical response prior to initiation of neoadjuvant chemoradiation has significant potential 
clinical applications such as developing adaptive therapy based on pre-treatment tumor 
phenotype. These radiomic features which can be captured from clinically-available imag-
ing modalities performed better than conventionally reported metrics. 

HIGHLIGHTS 

• Early prediction of response to neoadjuvant chemoradiation is crucial for improv-
ing overall treatment and patient outcomes. 

• This study demonstrated an association between Radiomic features and patho-
logical response for lung cancer patients. 

• A Radiomics-Conventional combined model shown better performance for patho-
logical response. 

SUPPLEMENTARY MATERIAL 

Available online at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930885/bin/NIHMS778030-
supplement.pdf 
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ABSTRACT   

Background and Purpose 
Radiomics provides opportunities to quantify the tumor phenotype non-invasively by ap-
plying a large number of quantitative imaging features. This study evaluates computed-
tomography (CT) radiomic features for their capability to predict distant metastasis (DM) 
for lung adenocarcinoma patients. 
 
Materials and Methods 
We included two datasets: 98 patients for discovery and 84 for validation. The phenotype 
of the primary tumor was quantified on pre-treatment CT-scans using 635 radiomic fea-
tures. Univariate and multivariate analysis was performed to evaluate radiomics perfor-
mance using the concordance index (CI). 
 
Results 
Thirty-five radiomic features were found to be prognostic (CI > 0.60, FDR < 5%) for DM and 
twelve for survival. It is noteworthy that tumor volume was only moderately prognostic 
for DM (CI=0.55, p-value=2.77 × 10−5) in the discovery cohort. A radiomic-signature had 
strong power for predicting DM in the independent validation dataset (CI=0.61, p-
value=1.79 ×10−17). Adding this radiomic-signature to a clinical model resulted in a signifi-
cant improvement of predicting DM in the validation dataset (p-value=1.56 × 10−11). 
 
Conclusions 
Although only basic metrics are routinely quantified, this study shows that radiomic fea-
tures capturing detailed information of the tumor phenotype can be used as a prognostic 
biomarker for clinically-relevant factors such as DM. Moreover, the radiomic-signature 
provided additional information to clinical data. 
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INTRODUCTION   

Lung cancer is the most deadly cancer worldwide for both men and women[1]. Nonsmall 
cell lung cancer (NSCLC) is the most common type of lung cancer (85–90% of all lung can-
cers) and adenocarcinoma is the most common subtype (about 40% of all lung cancers) of 
NSCLC. Patients with locally advanced (stage II-III) lung adenocarcinomas are typically 
treated with combined modality therapy including chemotherapy with local therapy in-
cluding radiation therapy and/or surgery, but overall survival remains low due to a high 
risk of local recurrence and distant metastasis (DM) after treatment. Despite the use of 
concurrent chemotherapy with local therapy, the incidence of DM after combined modali-
ty therapy is as high as 30–40% in prospective trials [2–4]. However, large randomized tri-
als studying consolidation chemotherapy after concurrent chemotherapy and radiation 
therapy have not shown improvement in overall survival with additional chemothera-
py[5, 6] likely because there was no selection of patients at the highest risk of DM. There-
fore, developing better biomarkers to predict patients at highest risk for DM may help 
identify sub-groups who benefit from intensification of systemic therapy and is crucial for 
improving outcomes. 

Due to recent technological advances in medical imaging it is possible to capture 
tumor phenotypic characteristics non-invasively. The most widely used imaging modality is 
Computed-Tomography (CT), which can quantify tissue density. In lung cancer, CT imaging 
is routinely used for patient management, including diagnosis, radiation treatment plan-
ning and surveillance. 

Tumor phenotypic differences (e.g. shapes irregularity, infiltration, heterogeneity 
or necrosis) can be quantified in CT images using radiomic features. Radiomics [7–9] aims 
to provide a comprehensive quantification of the tumor phenotype by analyzing robustly 
[10–12] a large set of quantitative data characterization algorithms . Biomarkers based on 
quantitative features have demonstrated strong prognostic performance across a range of 
cancer types and investigators have reported that these features are associated with clini-
cal outcomes and underlying genomic patterns [13–26]. Radiomics has significant clinical 
potential, as it can be applied to routinely acquired medical imaging data at low costs. 

In this manuscript we present a radiomic analysis to identify biomarkers of DM in 
patients treated with chemoradiation (chemoRT) for locally advanced lung adenocarcino-
ma. In a discovery dataset, we extracted 635 radiomics features to identify the optimal 
features for predicting metastasis. Only a limited number of features with high perfor-
mance for predicting DM were tested in the independent validation dataset. We evaluat-
ed the ability of radiomic features to predict DM or overall survival, and how these fea-
tures compare with basic metrics (e.g. volume, diameter) as prognostic factors [27–30].  
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MATERIALS AND METHODS 

Patient characteristics 
 
This study is an Institutional Review Board-approved analysis of CT for treatment simula-
tion from North-American NSCLC patients receiving chemoRT at our institution from 2001 
to 2013. We limited the patient population to pathologically-confirmed lung adenocarci-
noma with locally advanced disease (overall stage II-III)[30]. Patients with surgery or 
chemotherapy before the scheduled radiation therapy planning CT date were excluded 
from the study. Patients treated before July 2009 were included in the discovery Dataset1 
(n=98), and after July 2009 in an independent validation Dataset2 (n=84). In total 182 pa-
tients were included in our analysis. 
 
Clinical endpoints 
 
Patients were followed up every three to six months after treatment, and surveillance 
chest CT scans with contrast (unless patient’s contraindication, e.g. allergy or renal dys-
function) were performed to assess treatment response or tumor progression based on 
US national guidelines (NCCN). The primary endpoint of this study was distant metastasis 
(DM), which was defined as progression of disease to other organs as assessed in surveil-
lance scans, and time to DM was defined as time from start of radiation to date of DM or 
censoring (date of last scan). Overall survival was analyzed as a secondary endpoint, and 
was defined as the time between the start of radiation treatment and last day of follow up 
or date of death. 
 
Clinical variables 
 
The conventional clinical prognostic factors (CPFs) used for this study included tumor 
grade (1-Well differentiated, 2-Moderately differentiated, 3-Poorly differentiated and 4-
Not available), Eastern Cooperative Oncology Group (ECOG) performance status (PS)[31], 
TNM stage per the American Joint Committee on Cancer (AJCC) staging system 
(7th edition)[30]; CT-based measurements commonly utilized in the clinic (e.g. tumor vol-
ume and maximal tumor diameter measured on single axial slice), and treatment charac-
teristics. Sub-group analyses of clinical variables were performed (e.g. overall stage II vs 
IIIA vs IIIB) and can be found in Table S1 (Supplement II.1). 
 
CT acquisition and segmentation 
 
Planning CT was performed according to standard clinical scanning protocols at our insti-
tution with a GE “LightSpeed” CT scanner (GE Medical System, Milwaukee, WI, USA). The 
most common pixel spacing was (0.93mm, 0.93mm, 2.5mm) for CT. The primary lung tu-
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mor was delineated manually on Eclipse (Varian Medical System, Palo Alto, CA, USA). It 
was first contoured in the abdomen window to identify the boundaries with the chest wall 
or other soft tissues, then in the lung window to capture the maximum extent in the lung 
parenchyma. All contours were reviewed by an experienced radiation oncologist (R.H.M). 
 
Radiomic features extraction 
 
Radiomic features have the capacity to capture tumor phenotype differences by examin-
ing a large set of quantitative features (Figure 1). The feature extraction was performed in 
MATLAB 2013b (Mathworks, Natick, MA, USA) using an in-house developed toolbox run-
ning on the Computational Environment for Radiotherapy Research (CERR)[32]. DICOMs 
files (CT images + tumor contours) were imported into CERR to extract the radiomic fea-
tures. The radiomic features set included is described in detail in the Supplement I. 
 
 

 
 
Figure 1 
A) Differences between lung primary tumors with a same histology are apparent on CT images (3D model on the 
right and CT contours on the left). CT images of primary tumors contain critical information that can be used to 
predict outcomes or assess the RT treatment response. B) To quantify this information, a large set of features 
(m=635) is used to capture the tumor phenotype. It includes 1| intensity, 2| shape and 3| texture based features. 
Also, A| Laplacian of Gaussian (LoG) and B| Wavelet filtered features were investigated. C) The final step is to link 
radiomic information to clinical data. 
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Feature selection 
 
Feature selection for the radiomic signature was performed with the minimum redundan-
cy maximum relevance (mRMR) algorithm implemented in the mRMRe[33] package ver-
sion 2.0.4 in R. The mRMR algorithm is an entropy based feature selection method, which 
starts by calculating the mutual information (MI) between a set of features and an out-
come variable. MRMR ranks the input features by maximizing the MI with respect to out-
come and minimizing the average MI of higher ranked features. Here, survival objects as 
implemented in R with “Survcomp” package[34] were used as outcome to select comple-
mentary features with respect to DM or survival. 

Among available clinical covariates, those with p < 0.1 on univariate analysis of 
DM using a Log-Rank test were included into a multivariate clinical prognostic model. 
 
Data analysis 
 
Univariate and multivariate analyses were performed for this study. All analysis were per-
formed on Dataset1, leaving Dataset2 as an independent validation cohort for evaluating 
the radiomic signature. 

Statistical analysis was conducted using the survcomp[34] package version 1.12 
and rmeta[35] package version 2.16 in Bioconductor[36]. Prognostic performances were 
evaluated by the concordance index[37] (CI), which is the probability that among two ran-
domly drawn samples, the sample with the higher risk value has also the higher chance of 
experiencing an event (e.g. death or development of DM). CIs were either directly com-
puted for continuous variables or on the predictions of a univariate Cox model with clinical 
categorical variables. Kaplan-Meier and Log-Rank statistics were used to analyze the uni-
variate discrimination of survival and DM groups by imaging features and clinical covari-
ates. To build the multivariate radiomic signature for DM, Cox regression models were 
trained on Dataset1 for selected prognostic variables and the predictions by these models 
were validated on Dataset2. Features were incrementally added to the model according to 
the relevance rank calculated by mRMR[33]. Intermediate models were tested by repeat-
ed random sub-sampling cross validation with 1,000 iterations on Dataset1. Once the 
mean CI of the growing model dropped, the corresponding feature set was retained se-
lected as the final model. Only this selected model was and validated on Dataset2. Signifi-
cance of CIs was assessed by bootstrapping subsamples of size 100 with 100 repetitions 
for A) true survival data and B) random permutations of survival data, and comparing the 
empirical distributions of A) and B) by an one-sided Wilcoxon signed rank test. The same 
procedure was used to assess if a CI was higher than another CI. To correct for multiple 
comparisons, we additionally adjusted P-values by the false-discovery-rate (FDR) proce-
dure according to Benjamini and Hochberg[38]. All statistical analysis was performed using 
the R software[39] version 3.0.2. 



Radiomics predicts distant metastasis 

                                                                                                                                   173 

RESULTS  

The majority of all patients were female (62.6%) and the median age at start of treatment 
was 64 years (range: 35–93 years). The median follow-up time was 23.7 months (range: 
1.8–119.2 months) and the median survival time was 24.7 months (range: 1.8–119.2 
months). The median time to distant metastasis (DM) was 13.4 months (range: 0.3–117.5 
months). Patient characteristics, clinical outcomes are shown in Table 1. 
 
Table 1 
Patient characteristics and outcomes are reported for each datasets. For categorical variables, actual numbers 
are reported for each category (format A/B/C). Statistical comparison between dataset 1 and 2 was computed 
using Chi Square (categorical variables) or Wilcoxon rank sum test (continuous variables). 
 
 
Time to DM was similar between Dataset1 and Dataset2 (p-value < 0.36), as for the num-
bers of DM (p-value < 0.45). However, survival (p-value < 0.005) and follow-up times (p-
value < 0.007) were significantly different in Dataset1. 

We investigated the association of radiomics data with DM and overall survival. 
In Figure 2 the association of the imaging features with DM and survival in the discovery 
Dataset1 is shown. Of the complete radiomic features set (m=635), a total of 520 (81.88%) 
and 582 (91.65%) features were significant from random (FDR < 5%) for DM and survival, 
respectively. A total of 445 radiomic features were significant for both DM and survival. A 
high linear relationship was observed (R2 =0.92, p-value < 2.7 × 10−243), for the features 
significant for both DM and survival. It is noteworthy that LoG features had the highest 
performance compared to the other features groups. 

Among all features, thirty-five radiomics features were strongly prognostic (CI > 
0.60 and FDR < 5%) for DM (Table S2 in the Supplement II.3). Twelve features were found 
prognostic for survival. Specific details on statistic values of these features can be found 
in Table S3 in Supplement II.3. Between these two top performing feature sets there were 
four common prognostic features for both DM and survival. All of them were LoG based 
features (3 entropy and 1 standard deviation). 
We compared the top 15 features that had the highest CIs (Top15), with tumor volume 
and diameter (equivalent to basic metrics). The Top15 radiomic features had notably 
higher CIs compared to tumor volume and diameter (Figure 3.A). 
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Figure 2 
Univariate performances of prognostic features for Distant Metastasis (DM) and survival. Each point refers to the 
CI of a feature evaluating the power of feature to predict metastasis, respectively, survival. Colors refer to the 
type of feature. Features whose CI estimation was not significant (FDR < 5%) for both DM and survival are shown 
in gray. Overall, 445 of these pairs of CIs are considered to be significant estimates. Linear regression for all signif-
icant pairs of CIs yielded an R-squared value of 0.92 (F-test, p-value < 2.7e-243). 
 
 
 

 
Figure 3 
A) Forest plot of the 15 best performing radiomic features for Distant Metastasis on univariate analy-
sis (Dataset1, n=98). Radiomics equivalent of basic metrics (diameter and volume) was added for comparison. B) 
Forest plot of the clinical factors. The absolute C-indices and their 95% confidence interval are shown. 
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We also investigated the association of CPFs with DM in our data set. Three clini-
cal parameters appeared to be significant univariate prognostic factors: Overall Stage 
(CI=0.63, p-value < 6.78 × 10−14), Gender (CI=0.63, p-value < 2.35 × 10−11) and tumor grade 
(CI=0.61, p-value < 2.35 × 10−11). Clinical parameters, ranked by their CI are displayed 
in Figure 3.B. Overall stage and gender yielded a higher CI than the radiomic features, alt-
hough their 95% confidence interval is wider compared to the radiomic features. 

An mRMR based feature selection on all features on Dataset1 (n=98) was per-
formed to reduce redundancy and select a potential set of complementary and prognostic 
features. From this new ranking, the 15 highest mRMR-ranked features were kept after 
feature selection to build the radiomic signature. A multivariate Cox regression model to 
predict DM was developed. Features were iteratively added in order of high to low mRMR 
rank on Dataset1, and Dataset2 was used for independent validation. The combination 
that yielded the maximum CI on the discovery Dataset1 before dropping was defined as 
the optimal radiomic signature for predicting DM. This signature consists of three fea-
tures: 1) Wavelet HHL – Skewness, 2) Gray-Level Co-occurrence Matrix – Cluster shade, 
and 3) LoG 5mm 2D – Skewness. Cluster shade is a textural feature sensitive to tumor het-
erogeneities. Skewness is a first-order feature that measures the asymmetry of the histo-
gram from the mean, which here is associated with two different filters LoG and Wavelet. 

As a final step, we compared the radiomic signature to a clinical Cox regression 
model containing covariates that significantly discriminated between patients with and 
without DM in Dataset1 in univariate analysis. The final model contained overall stage and 
tumor grade. This clinical model showed moderate prognostic power when applied to Da-
taset2 with coefficients trained on Dataset1 (CI=0.57, p-value < 1.03 × 10−7). Combining 
the clinical and radiomic signature (trained on Dataset1) showed a significantly (p-value < 
1.56 × 10−11) higher association with DM when applied to Dataset2 (CI=0.60, p-value < 3.57 
× 10−16), compared to the clinical model. A median split of the patient prediction scores 
from applying the combined model on Dataset2 yielded a significant difference (p-value = 
0.049) for metastasis-free probability estimates (Figure 4). 
 
 



Chapter 9 
  

176 

 
 

Figure 4 
Kaplan Meier curves according to the combined model predicting score to predict metastasis-free probability in 
an independent dataset. A significant survival difference appears between patients with a high or low risk of Dis-
tant Metastasis (Dataset2, n=84, Log-Rank test, p-value < 0.049). 
 

DISCUSSION 

Medical imaging gives valuable information for diagnostic, treatment planning or surveil-
lance of cancer patients. Routinely, basic metrics are extracted from these images to uti-
lize as a prognostic factor [27–30], or to assess treatment response. However, there is 
much more tumor phenotypic information captured in these images. Radiomics are able 
to quantify tumor phenotypical differences from medical images by using a large set of 
imaging features that can be linked to clinical factors of the tumors. In this study we ex-
tracted 635 radiomic features from a total of 182 lung cancer patients treated with 
chemoRT to assess the ability of radiomic features as a prognostic biomarker for distant 
metastasis (DM), and we validated a radiomic-based signature on an independent valida-
tion dataset. Since DM remains a major cause of mortality in 30–40% of patients with lo-
cally advanced lung adenocarcinoma, early identification of patients at highest risk of de-
veloping DM would allow clinicians to adapt treatment such as incorporating consolida-
tion chemotherapy to improve outcomes. Moreover, the theoretical benefit of consolida-
tion chemotherapy has not been shown in large randomized studies to date. It is likely 
because there was no selection of patients at the highest risk of distant metastases (i.e. 
patients who were at low risk of distant metastases were included in these trials and 
would not need additional treatment). Future trial design to demonstrate benefits of con-



Radiomics predicts distant metastasis 

                                                                                                                                   177 

solidation chemotherapy will likely require stratification to identify those at the highest 
risk of distant metastases and may benefit most from additional treatment. 

We observed strong individual correlations between clinical outcomes and quan-
titative imaging features. A large number of features were significant from random to pre-
dict DM (91%) and survival (82%) in univariate analysis after correction for multiple test-
ing. Moreover, a high linear correlation was found among those 445 features that were 
significant factors of both DM and survival (R2 =0.92, p-value < 2.7 × 10−243). This high line-
ar correlation is expected as there is a high correlation between DM and survival (DM 
greatly impact patient survival, see Table S4 in Supplement II.4). Only a small number of 
features, 35 for DM and for 12 survival, were prognostic, as defined by a CI > 0.6 and FDR 
< 5%. 

Although we tested a large number of features, to minimize any risk of over-
fitting or bias, we performed a robust validation approach: all analysis steps, mRMR fea-
ture selection, and model fitting were performed on Dataset1 (n=98) and the results vali-
dated on an independent validation Dataset2 (n=84). With this approach we found a mul-
tivariate radiomic DM signature consisting of three features that yielded a high prognostic 
performance for DM in Dataset1 (CI=0.61). Combining the radiomics signature to clinical 
model predictors showed significant improvement (p-value < 1.56 × 10−11), compared to 
the clinical predictors alone. 

A recent study from Fried et al.[22] investigated DM prediction for NSCLC pa-
tients. They found a significant model DM (P-value=0.005) using both texture features and 
CPFs. The model used consisted of eight parameters (two CPFs and six textures). In anoth-
er study, Ganeshan et al.[15] applied textural analysis to find univariate prognostic factors 
for survival. They focused on two imaging features (uniformity, associated with two LoG 
filter). In our analysis, these features were significant from random but lowly ranked by 
their CI value (184th and 146th CI-ranked features in Dataset1). However, major differences 
in studies design and implementation made it difficult to compare them objectively. 
Fields et al.[22] used leave-one out cross validation to validate their model instead of an 
independent validation dataset. Ganeshan et al.[15] only used one CT image slice (pre-
senting the largest cross section) to calculate their features when we used the whole pri-
mary tumor. Finally, both these studies have a smaller patient cohort, n=54[15] and 
n=91[22], and had mixed histology patients. Our analysis calculated the features from the 
complete 3D tumor volume, contained only a single histology of NSCLC (adenocarcinoma), 
and is based on larger cohorts (n=182) with an independent validation dataset for the ra-
diomic signature. 

A complementary point of the study was to compare basic metrics [27–29] to ra-
diomic features as prognostic factors for DM. The first observation made was that Shape-
Maximum diameter (in every direction x/y/z) is a better univariate prognostic factors than 
the maximal tumor diameter on an axial slice reported by a radiologist. The advantage of 
the radiomic shape features is that they can be automatically acquired, reproducible[10–
12], and take into account the whole tumor volume, whereas clinically assessed tumor 
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diameters are manually drawn on a CT slice and are therefore limited to one dimension of 
the tumor. Furthermore, shape or size-based features were not in the top ranked features 
in our study. Total tumor volume, has been associated with survival in stage I-III NSCLC 
patients treated with radiation therapy in a study from Etiz et al.[28], and a prior study 
from our institution by Alexander et al.[29] also demonstrated an association between 
primary tumor volume and overal survival, but not risk of distant metastasis. In our study, 
volume was ranked only the 405th (CI=0.55) and 224th(CI=0.56) best univariate prognostic 
factor for DM and survival respectively in Dataset1. Thus, while basic metrics such as size 
and volume have historically been used as used in the clinical setting because such data 
are easily acquired, radiomic shape and size measurements can provide stronger prognos-
tic factors. 

A short-coming of our study is the variability in CT acquisition and reconstruction 
parameters. Our dataset includes patients from 2001 to 2013. During this time period, the 
standard of care for CT acquisition has evolved, differences appeared between our cohorts 
for some factors (Table 1). However, despite this variability in the imaging data (evolution 
of hardware, progress in informatics), radiomics was able to detect a strong signal to pre-
dict DM despite a temporal split. Additionally, clinical outcomes are provided by one cen-
ter, which makes it hard to evaluate the generalizability of outcomes to other institutions. 
However, in comparison with a recent study[20] investigating clinical outcomes from an-
other center, patient characteristics or outcomes were comparable. Future work would 
therefore involve studying the DM signature in other histologies and in independent vali-
dation sets from other institutions, assessing its generalizability to all NSCLC. 

In conclusion, this study demonstrated strong association between radiomic fea-
tures and DM for patients with locally advanced adenocarcinoma; and presented an inde-
pendently validated radiomics signature for DM. This signature would allow early identifi-
cation of patients with locally advanced lung adenocarcinoma at risk of developing DM, 
allowing clinicians to individualize treatment (such as intensification of chemotherapy) to 
reduce the risk of DM and improve survival. 
 

HIGHLIGHTS 

• Early prediction of patients that will develop distant metastasis (DM) is crucial for 
improving overall treatment and patient outcomes. 

• This study demonstrated an association between radiomic features and DM for 
lung cancer patients. 

• A combined signature with clinical and radiomic features was able to predict DM 
in an independent validation dataset. 
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GENERAL DISCUSSION  

Precision medicine is becoming the new paradigm in medical treatment, particularly in 
oncology. This paradigm aims at tailoring therapies on the basis of the individual markup 
of a patient to increase the probability of positive treatment outcome and reduce toxicity 
[1,2]. The fundamental backbone of precision medicine is the clinical availabilities of accu-
rate biomarkers to map a patient to an optimized treatment plan [3]. While molecular bi-
omarkers stratify patients based on their genomic profiles or expression signatures of a 
set of genes [4,5], to date these markers can usually only be measured when tumor tissue 
is obtained with invasive procedures, such as biopsies. In contrast, standard medical imag-
ing can provide the foundation for non-invasive biomarkers [6]. 

Radiomics is a non-invasive imaging biomarker approach to automatically charac-
terize the radiographic phenotype of a tumor on the basis of quantitative imaging features 
[7–9]. To achieve radiomic based tumor diagnostic and treatment response assessment, 
medical images (e.g., CT, MRT, or PET) are converted into quantitative data. Subsequently, 
these data are objectively mined for signaling patterns that indicate a tumor subtype. As 
this process is usually conducted on the entire volumetric segmentation of a tumor, radi-
omics allows a more comprehensive view as compared to tissue sampling. Although mul-
tiple studies have documented predictive and prognostic value of radiomics [10–13], clini-
cal translation will require understanding of the underlying biological foundation of radi-
omics. 

To this end, this thesis unraveled the mechanistic connections of radiomics and 
molecular biology of tumors and related those results to clinical disease progression of 
patients. In particular, we focused on phenotype-genotype interactions and on how these 
determine clinical factors of a tumor. Thereby, we achieved to develop a holistic view of 
cancerogenesis, which can be leveraged to inform clinical decisions. Furthermore, this 
thesis embedded radiomics in a wider perspective as to how radiomics can effectively be 
integrated into a clinical workflow to augment cancer diagnostics and treatment monitor-
ing. Finally, data and code were made publicly available where possible to ensure repro-
ducibility of the presented results and to support the growing radiomics community.  

The results of this thesis were structured in three ways. First, the most extensive 
part of this thesis was uncovering the underlying molecular biology that drives quantita-
tive radiomic phenotypes. Second, we show how radiomics can be used to develop non-
invasive imaging biomarkers for targeted drugs. Finally, we presented novel results on the 
impact of key machine learning methods on prognostic value of radiomics 

 
Understanding the Biological Principles of Radiomics 
 
Imaging-genomics combines the fields of medical imaging and genomics to gain better 
understanding of the relationships of imaging and underlying genome driven events. A key 
question in imaging-genomics is whether imaging phenotypes can be explained in terms of 
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these underlying molecular processes. Understanding the imaging-genomic relationship 
translates into understanding of phenotype-genotype interactions in tumors and would 
allow using imaging as a surrogate for genomic interrogation in situations where biospec-
imen derived diagnostics are not feasible, such as in monitoring drug-targetable DNA mu-
tations over time [6]. 

Different types of imaging-genomic studies can be conducted, depending on 
which imaging and genomic modalities are included. For example, radiomic or volumetric 
imaging approaches can be utilized, and different types of biological material can be inves-
tigated such as the expression or mutation of genes by RNA or DNA sequencing, respec-
tively. The core of this dissertation is the integrative analysis of the biological underpin-
nings of advanced radiomic features and is presented in Chapter 2 [14]. In addition, we 
investigated how the underlying segmented tumor volumes behave as a function of mo-
lecular events [15,16]. Therefore, we analyzed how biological processes and somatic DNA 
mutations drive volumetric features and presented these results in Chapter 3 and 4, re-
spectively.  
 
The biological basis of radiomics 
 
One common criticism of radiomics is that the underlying tumor biology is poorly under-
stood, although biological reasoning of radiomic predictions is crucial for successful trans-
lation and approval into real world clinical applications. Therefore, in Chapter 2 we de-
signed and carried out an integrated analysis published in the journal eLife [14]. With this 
analysis, we aimed at uncovering the mechanistic connections between radiomics, molec-
ular biology, and clinical factors. We achieved this goal by including 1) a large number of 
advanced radiomic features that cover a wide range of metrics, 2) validation in novel and 
independent cohorts with large sample sizes to increase statistical power, 3) robust CT 
imaging of lung tumors, and 4) multivariable analysis to understand complementary ef-
fects of radiomic, genomic, and clinical data. To substantially increase the value of this 
study, we are also the first to validate key results of our analysis by immunohistochemical 
staining and to share data underlying the study, as well as the analysis source code, to the 
general scientific community.  

In our analysis, we implemented a novel bi-clustering strategy to associate radi-
omic features with molecular pathways on the basis of global gene expression. Using this 
approach, we identified 13 modules each of which contained features and pathways that 
yielded coherent expression patterns. We extended these radiomic-pathway results to 
clinical factors by associating the radiomic features of all modules to tumor stage, histolo-
gy, and overall survival. Strikingly, these radiomic-clinical associations robustly matched 
the radiomic-pathway results, closing the gaps between the combined connections of ra-
diomics, biology, and clinical factors. For example, in one module textural entropy and 
dispersion features were prognostic and also associated with immune response pathways 
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and cell proliferation; this confirms the radiomic-pathway-clinical links as the prognostic 
implications of these pathways have been widely described [17–21]. 

Some of our findings have been previously indicated by preliminary studies of co-
horts with limited scope. For example, a variety of our textural features were associated 
with stage and histology. Indeed, Ganeshan et al. [22] previously suggested textural CT 
features could predict whether a tumor was stage II or above; however, the features used 
in this study were derived from a single 2D image slice whereas our features were derived 
from the entire 3D tumor volume. Similarly, our results indicated that intensity features 
were associated with mitochondrial processing of oxygen, a key process in tumor hypoxia 
[23]. Indeed, Ganeshan et al. [24] also previously suggested that CT pixels correlate with 
hypoxia markers, such as Glut-1 or pimonidazole. 

In addition to unraveling the relationship between radiomics, tumor biology, and 
clinical factors, we also developed radiomic activity predictors for specific pathways. For 
example, a tumor intensity based feature significantly predicted the autodegration of E3 
Ubiquitin ligase COP1 (a direct regulator of p53) was also a prognostic factor. Similarly, 
tumor sphericity significantly predicted NFkB activation and was also a significant predic-
tor of tumor stage and histology. These results further confirm the combined associations 
of radiomics, biology, and clinical factors. The clinical utility of such imaging based path-
way predictors is still visionary, but could have its most effectiveness in areas where local 
response to targeted drugs administered over time has to be monitored longitudinally. 

Finally, we addressed another key question of radiomics, which is whether radi-
omics provides an added prognostic benefit to genomic and clinical information. For this, 
we retrained and validated a previously published prognostic radiomic signature [10]. By 
integrating this radiomic with a previously published prognostic gene signature [25], we 
could demonstrate that the prognostic performance of the combined model exceeds the 
performance of the individual data types alone. Moreover, we integrated the radiomic 
and gene signature with clinical prognostic factors and convincingly observed the highest 
prognostic performance was achieved only by combining all three types of data. To further 
increase confidence in the validity of these results, we swapped the radiomic and gene 
signatures with other radiomic and gene signatures and consistently observed the same 
trend that the highest prognostic performance is yielded only by models that combine all 
three types of data. 

It is important to note that our study benefits from multiple facets of validation. 
First, we included a thorough statistical design in which our putative results were generat-
ed on a discovery cohort and subsequently validated on an entirely independent valida-
tion cohort. Both cohorts were of large sample size and, importantly, these cohorts con-
tained patients from two different continents (i.e., North America and Europe), which ad-
ditionally suggests general applicability of our results. Second, we validated radiomic pre-
dictors of key cancer pathways involved in immune response and inflammation with im-
munohistochemical experiments. While reasonable statistical validation is becoming more 
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widely adapted, validating computational results biologically is still rather unique in radi-
omics and should be considered more frequently [6]. 

Although our study provides a considerable high standard of validation and re-
producibility following several international guidelines [6,26], a few limitations can be 
noted as well. Primarily, the study cohorts were retrospectively collected. This implies that 
standardized protocols for imaging acquisition and registration were not available, alt-
hough prognostic and predictive performances could benefit from standardized images 
[27]. Hence, further prospective studies will be required to assess clinical utility of our re-
sults and illustrate feasibility in clinical workflows. Furthermore, our cohorts focused on 
lower stage tumors and care has to be taken when generalizing to later stage tumors or 
even metastasized areas. Also, biological material analyzed in our study was obtained via 
single-needle biopsies; as lung cancer is a heterogenous disease [28,29] interpretation of 
all derived associations is challenging. To mitigate this issue, conducting multiple steps of 
statistical and biological validation were of particular importance for this study.  

In conclusion, the radiogenomic study presented in Chapter 2 significantly ad-
vances our preliminary understanding of how molecular biology drives radiomic pheno-
types and how these associations relate to clinical outcomes of patients; in particular, we 
show that radiomics contains complementary prognostic value compared to genomic and 
clinical data. Our study provides a rigorous classification of a broad set of radiomic fea-
tures in terms of biological pathways and is the first study to validate these results by im-
munohistochemical staining and to release underlying data and analysis code to foster 
further translational radiomic research. Understanding the biological rationale of radi-
omics will be critical to justifying the development of prognostic and predictive imaging 
biomarkers, especially for targeted therapies. 
 
Imaging-genomics for MRI derived volumetric features in glioblastoma 
 
In the previous Chapter 2, we studied the combined relationships between advanced radi-
omic CT features in NSCLC, molecular pathways, and clinical parameters [14]. We aimed at 
extending this work to understand the biological rationale of volumetric image analysis in 
MRI. Therefore, in Chapter 3 and 4 we uncovered the connections between MRI derived 
volumetric GBM features, biological processes, molecular subtypes, and clinical character-
istics of patients [15,16]. The volumetric tumor phenotype features for these studies 
quantified necrosis, contrast enhancing, and edema volumes in tumors, and were seg-
mented from MR images with presurgical T1-weighted post-gadolinium contrast (T1w) 
and T2-weighted FLuid-Attenuated Inversion Recovery (FLAIR) sequences.  

In Chapter 3 we investigated how these volumetric features are driven by biologi-
cal processes based on global expression of genes, and how these associations can be in-
terpreted in terms of molecular subtypes of GBM and overall survival of patients [15]. 
Generally, we wound that different volumetric features were related to distinct sets of 
biological processes. Interestingly, these were mostly inversely correlated. In particular, 
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necrosis, contrast-enhancement, and tumor bulk were highly enriched for well established 
cancer processes, including apoptosis, immunological responses, and signaling pathways. 
These processes are also known to impact patient survival [30–33], which may explain 
why volumetric features associated with these processes were also found to be prognostic 
in our analysis. Notably, these features were also significantly stronger prognostic factors 
than just the entire tumor volume. Considering that all volumetric features generally had 
only low to moderate correlation with each other, this highly suggests that there is indeed 
an added value to quantifying distinct volumetric features compared to quantifying just 
the tumor volume, as frequently proposed for prognostication [7]. 

In terms of volumetric associations with molecular subtypes of GBM, only edema 
was observed to be a volumetric predictor. Likely, this is because edema was the only fea-
ture that had a different size distribution across molecular subtypes. Recently, Gevaert et 
al. [34] presented similar indications by demonstrating that three edema features corre-
lated with molecular subtypes. Interestingly, edema was the only volumetric feature that 
was not a significant prognostic factor. This finding is in line with previously published re-
sults that did not find significant prognostic value in edema as well, using an alternative, 
manual MRI scoring scheme referred to as VASARI feature set 
((https://wiki.nci.nih.gov/display/CIP/VASARI). Our study advances those preliminary stud-
ies by analyzing tumors in 3D rather than in 2D, and by implementing automated quantifi-
cation of those tumors. 
 
We extended the volumetric-pathway results presented in Chapter 3 to volumetric-
mutation associations in Chapter 4. In particular, in Chapter 4 [16] we Investigated how 
these volumetric GBM features are connected to somatic DNA mutations of genes that 
have consistently been implicated for GBM [35], including TP53, PTEN, NF1, EGFR, IDH1, 
RB1, and PIK3CA. Astonishingly, we found that volumetric features had very selective pre-
dictive power for specific mutations. For example, the contrast enhancing feature was 
predictive for TP53 and NF1 (AUC > 0.67, p < 0.04), but not for any other of the tested 
genes. Hereby, the mutated contrast enhancing volume was significantly smaller than the 
wild-type volume (p = 0.012). Similarly, the edema region was predictive only for RB1 (AUC 
= 0.66, p = 0.022) but no other tested gene, and was also significantly smaller in the mu-
tated tumors (p = 0.015). This selectivity points to different growth patterns induced by 
different mutations that lead to different imaging phenotypes. An analysis of clinical co-
variates also revealed that the volumetric features were independent of gender, disease-
free status, Karnofsky performance status, and age. 

The smaller volumes for tumors carrying a TP53 mutation was previously sug-
gested by a manual, labour intense imaging-genomic approach using manually derived 
MRI features referred to as VASARI features [36]. Furthermore, our study suggested that 
EGFR mutants have larger necrosis volumes, but this difference was statistically not signif-
icant, which is in line with a previously published study. Compared to the study in Chapter 
2, the scope of the current analyses in Chapter 3 and 4 were more limited. First, only vol-
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umetric measurements were considered rather than advanced first-order statistics, tumor 
shape, and textural properties of the image; furthermore, the number of of only eleven 
volumetric measurements was relatively low. Second, validation in independent datasets 
was not feasible and the analyzed cohorts were of comparably limited sample size, to 
some extent restricting generalizability. Third, it is reasonable to assume that features 
based on MRI are less robust to perturbation than imaging features based on CT, as 
Hounsfield units used in CT imaging are an absolute and well-defined measurement [37] . 
Fourth, due to cohort limitations, multivariable analysis could not be conducted.  

In conclusion, the studies presented in Chapter 3 and 4 revealed a relationship 
between MRI derived volumetric features of GBM phenotypes and biological processes 
induced by global gene expression, molecular GBM subtypes, overall survival of patients, 
and somatic DNA mutations of well established oncodriver genes. We performed our 
analysis on publicly acquired imaging and genomic data from two well established consor-
tia, The Cancer Imaging Archive (TCIA, https://www.tcia.org/) and The Cancer Genome 
Atlas (TCGA, https://cancergenome.nih.gov/). The main advantage of these multi-center 
datasets is its public availability and hence that full reproducibility can be ensured by in-
dependent groups. A limitation of this public dataset is the relatively small sample size of 
less than 100 patients with imaging for whom data on DNA mutations and gene expres-
sion were available, as well as the relatively low number of eleven investigated features. 
Furthermore, these features only quantified the volume of the segmented tumor areas, 
hence no properties such as tumor shape, texture, or intensity have been investigated. In 
addition, validation in external datasets could not be conducted due to unavailability of 
comparable datasets; this also made multivariate analyses unfeasible. To overcome these 
limitations, we designed and carried out an integrated analysis of advanced radiomic fea-
tures in large, novel, and independent datasets containing several layers of data of the 
same tumors. 
 
Radiomics for Targeted Therapies 
 
Targeted therapies are developed for very specific patient populations that share particu-
lar properties of tumors that can be exploited [38]. Often, these properties are defined as 
biological events, such as the existence of a genetic mutation that renders the tumor rela-
tively more sensitive to a chemical, biological, or ionizing compound compared with tu-
mors that do not contain this mutation. As a result, clinical translation of targeted thera-
pies inherently rely on the availability of accurate and robust biomarkers that indicate the 
existence of the biological property that should be targeted [39]. 
 As the previous chapters demonstrated, radiomics has the potential to uncover 
underlying tumor biology [14–16]. Therefore, it is reasonable to believe that radiomics can 
be a viable tool in developing predictive and prognostic biomarkers to effectively identify 
patients who would benefit from a specific targeted treatment. As such imaging bi-
omarkers do not require an invasive procedure as traditional biological biomarkers, these 
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biomarkers can be utilized over time to consistently monitor treatment response. To this 
end, in Chapters 5 and 6 [40,41]we aimed at defining radiomic response phenotypes in 
both brain and lung cancer treated with bevacizumab (AvastinTM) and gefitinib (IressaTM), 
respectively. 
 
Imaging biomarkers to stratify recurrent glioblastoma treated with bevacizumab 
 
One of the few remaining treatment options for patients with glioblastoma who experi-
ence recurrence is administration of bevacizumab, an anti-VEGF inhibitor designed to an-
tagonize angiogenesis [42,43]. Bevacizumab has been granted accelerated approval by the 
FDA for treatment of recurrent glioblastoma, following a seminal phase II clinical trial, the 
BRAIN trial (AVF3708g) [44]. However, recent studies, including large clinical phase III tri-
als, suggested that bevacizumab does not improve OS of this patient population [45–47], 
but it is reasonable to hypothesize that this is due to absence of effective biomarkers that 
are capable of identifying those patients that do experience improved OS.  

To this end, we developed prognostic radiomic imaging biomarkers to stratify 
survival of patients with recurrent glioblastoma at different timepoints [40], particularly 
before and after treatment initiation. We achieved this mainly by retrospectively analyzing 
prospectively collected data from the BRAIN trial. In particular, we investigated utility of a 
radiomic approach for this patient population, focusing on multiple clinical endpoints in-
cluding overall survival (OS) and progression-free survival (PFS). Hereby, to limit false-
discoveries we decoupled the selection of radiomic features and their analysis using two 
independent selection and evaluation cohorts, respectively. The results of this study have 
been published in the journal Neuro-Oncology [40] and are presented in Chapter 5. 
 Our study resulted in baseline (i.e., pretreatment) models that predicted disease 
progression within three, six, and nine months posttreatment initiation. Interestingly, the 
performances of these predictions increased with time, suggesting that particularly pa-
tients who experience progression later than others can be identified effectively. Hereby, 
multivariable models consistently outperformed individual radiomic features and were 
able to stratify patients in validation data that had 4 times higher progression risk (i.e., 
hazard-ratio HR > 4). A model optimized to predict OS as endpoint, resulted in significant 
stratification in validation data with a hazard-ratio of 2.5 and Log-Rank p-value of 1.1 x 10-

3. Furthermore, our analyses revealed that those models were independent of volumetric 
measurements, including total tumor volume and maximal tumor diameter, and were also 
independent of clinical prognostic covariates, including Karnofsky performance status, 
age, and gender.  
 Both our multivariable and univariable analyses suggested that radiomic features 
generally yield more prognostic value when derived from postcontrast enhanced T1-
weighted images compared to features derived from FLAIR images. While it is difficult to 
interpret why this is the case, previous studies have documented similar conclusions [48–
50]. These analyses also suggest that PFS can be predicted more accurately than OS, which 
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could be explained by the fact that PFS was a more clearly defined endpoint in the BRAIN 
trial as the trial protocol specified follow-up MR imaging every six weeks to identify pro-
gression of the disease and discontinue those patients from the trial. The univariable anal-
ysis of our models allowed us to gain understanding of which features had the highest 
prognostic value. Accordingly, those are features that quantify textural heterogeneity; for 
example, the textural-heterogeneity features information-correlation was significantly 
prognostic across all tested endpoints using baseline data and also had higher scores for 
patients with early progression.  

These results presented in Chapter 5 could lead to the development of predictive 
imaging-based biomarkers for bevacizumab in patients with recurrent glioblastoma. To 
verify that the prognostic predictions are also predictive of treatment outcome, a treat-
ment-negative arm would be necessary. Alternatively, failure of our models in treatment-
negative cohorts could indicate predictive character of our proposed radiomic imaging 
biomarkers [51]. As patients were treated with either bevacizumab only or bevacizumab 
and irinotecan (i.e., chemotherapy), differences in those treatment arms could be sus-
pected but have not been suggested by previous studies [52–54]. Hence, to increase sta-
tistical power we followed the approach of those studies and pooled all samples. 
 Robustness of our radiomic approach to imaging biomarkers in this study is en-
sured by the facts that we reduced the high-dimensional radiomic space by unsupervised 
feature selection blinded from clinical data, we utilized two independent cohorts to select 
and evaluate radiomic features, respectively, we developed our models from prospective-
ly collected, multicenter trial data of high quality with standardized enrollment protocol, 
and we validated our proposed multivariable models in training-independent data. In this 
way, we aim at ensuring that the number of potential false-discoveries is drastically lim-
ited. Validation in multiple external cohorts following the same treatment combination 
would add statistical validity, but availability of these datasets is very limited as bevaci-
zumab only has regulatory approval for recurrent glioblastoma in a few countries including 
the United States.  
 While our study focused on developing imaging biomarkers by utilizing radiomic 
approaches for standard MRI, combining MRI radiomics with other imaging modalities 
could be feasible. For example, recent studies have suggested that apparent diffusion co-
efficient histogram analysis has prognostic value in a subset of the BRAIN cohort [54,55]. 
Similarly, FDG-PET imaging could predict survival in high-grade gliomas treated with the 
same combination therapy as in the BRAIN trial [56]. Future studies need to determine 
whether these alternative imaging modalities, which are widely used in cancer care, have 
additive value and can complement MRI radiomic predictions to increase prognostic per-
formances. If those studies cannot verify complementarity, applying to radiomics directly 
to T1-weighted MRI may ultimately benefit current clinical workflows as MRI is standard 
to care of patients with glioblastoma in modern cancer centers. Furthermore, integration 
with biological biomarkers could be considered; in particular, highly prognostic molecular 
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markers in glioblastoma such as methylation status of MGMT promoter [57] or other 
markers described in Chapter 4. 
 In conclusion, our study presented in Chapter 5 presented independently validat-
ed prognostic pretreatment radiomic imaging biomarkers to stratify patients with recur-
rent glioblastoma treated with bevacizumab. These results could translate into the devel-
opment of predictive radiomic biomarkers to specifically predict response benefits of 
bevacizumab for this patient population. 
 
A radiomic response phenotype for gefitinib treatment in lung cancer 
 
To investigate whether radiomic approaches could identify patients who are sensitive to 
gefinitib using CT imaging pre (baseline) or post (follow-up) administration, we analyzed 
data from a clinical phase II trial in Chapter 6 [41]. Gefitinib is a specific inhibitor of EGFR 
signaling [58], implying that gefitinib will have high effectiveness for patients whose tu-
mors contain a EGFR sensitizing mutation and no effectiveness otherwise. Therefore, it is 
imperative to correctly detect EGFR mutations for this patient population. Genetic tests 
are available to assess EGFR mutation status, but the vast majority of these tests rely on 
biopsy-based tissue and thus cannot be used to monitor mutation status over time [59]. 
To this end, we retrospectively applied radiomics to a prospectively collected phase II clin-
ical trial cohort [60] of patients with and without EGFR mutation who all received treat-
ment with gefitinib. 

Our results demonstrate that radiomics can predict EGFR mutation status from 
pre- and post-treatment images in patients with NSCLC treated with gefitinib. Predictabil-
ity of EGFR via radiomics has also been suggested by related research [61,62]. As EGFR is 
the explicit target of gefitinib, this leads to the conclusion that radiomics also predicts re-
sponse to treatment with gefitinib. In particular, “laws texture energy”, a feature that 
quantifies gray-scale heterogeneity, yielded the strongest performance (AUC = 0.67, 
p = 0.03) at pre-treatment imaging. It is important to note that none of the traditional vol-
umetric features (i.e., tumor volume and maximal diameter) were predictive at baseline 
imaging before treatment has been initiated (p > 0.27). This illustrates that radiomics pro-
vides predictive capabilities in cases where standard clinical measurements fail to indicate 
the presence of a drug target. Moreover, our analysis revealed that advanced radiomic 
features and standard volumetric features correlate only low, reinforcing our earlier find-
ing from Chapter 5 that radiomic features and standard volumetric features may provide 
complementary, clinically relevant information. It is reasonable to assume that individual 
radiomic features offer unique insight into tumor phenotypic characteristic and hence are 
complementary to each other as well, as their pairwise correlation was low too. To esti-
mate the degree of these complementarities, however, large prospective, randomized, 
multi-center trials have to be conducted. 

Although the availability of biomarkers before treatment has been initiated is re-
quired to augment treatment decisions, incorporating post-treatment imaging into predic-
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tive models allows monitoring. Thus, we compared our baseline results to follow-up imag-
ing, in particular by assessing the delta of radiomic features between pre- and post-scans. 
As expected, we found that volumetric measurements had strongest performance in pre-
dicting EGFR mutations as geftinib should have the highest effect on tumor size (i.e., a sur-
rogate of response) in patients that harbor the sensitizing EGFR mutation. However, we 
also found that the radiomic features “gabor” energy had significant performance, as well. 
Here as well, these features had only low correlation with tumor volume and diameter, 
indicating independent information. 

To rule out batch effects due to variability of imaging acquisition and reconstruc-
tion parameters inherent in clinical protocols, we conducted a technical validation. We 
assessed robustness of those radiomic features that significantly predicted EGFR muta-
tions, by evaluating feature stability in another, independent test/retest dataset. All radi-
omic predictors could be validated with high stability (ICC > 0.87). The optimal parame-
ters, however, have to defined by independent consortia, such as the QIN (Quantitative 
Imaging Network) and the QIBA (Quantitative Imaging Biomarker Alliance), that include 
multiple stakeholders. As the sample size of the cohort used to defined radiomic predic-
tors was relatively low, further studies with more samples need to be conducted to con-
firm predictive capabilities for EGFR. A negative control arm of patients could additionally 
quantify how specific the predictive performance is to gefitinib, but ethical concerns may 
arise as conducting such as a study would require not treating patients that have a EGFR 
sensitizing mutation with gefitinib although its effectiveness is known. 

In conclusion, the study presented in Chapter 6 shows that radiomics can define a 
gefitinib response phenotype that indicates the presence of an EGFR sensitizing mutation. 
Similar to the results presented in Chapter 5, these results of Chapter 6 prompt for further 
translational research towards the development of predictive CT imaging biomarkers to 
assess response to gefitinib in patients with lung cancer. 
 
Machine Learning to Improve Prognostic Value of Radiomic Approaches 
 
The previous chapters revealed the biological foundation of radiomics (Chapters 2-4) and 
how these phenotype-genotype interactions could translate into imaging biomarkers for 
targeted therapies (Chapters 5-6). However, to enable accurate and robust imaging bi-
omarkers, advanced machine learning approaches are required. Therefore, we presented 
additional research in Chapters 7-9 in which we for the first time described and applied an 
extensive range of machine learning algorithms that are applicable to predicting overall 
survival of patients with non-small cell lung cancer (NSCLC) [63,64]. Furthermore, we used 
these algorithms to train both univariate and multivariate models to predict the patholog-
ical response to neoadjuvant chemotherapy [65] and to predict the future development of 
distant metastases in patients with NSCLC [12]. In particular, we discovered novel radiomic 
signature that improved clinical prognostic models, results some of which were also vali-
dated in independent data. We thereby demonstrated that radiomics has to be regarded 
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as a data science, following stringent statistical study designs, in order to fulfill its role as a 
clinical decision support system [66,67]. 
 
Machine learning methods for radiomics 
 
Machine learning comprises a large panel of statistical algorithms that aim at fitting coeffi-
cients of classification models using training data in order to provide accurate predictions 
on novel data [68]. Machine learning is widely employed in biomedical sciences to develop 
predictive and prognostic biomarkers, especially in the field of gene expression signatures 
[69] as a majority of machine learning methods require quantitative data. This makes ma-
chine learning particularly applicable to radiomics, where all imaging features are quanti-
tative. In radiomics, machine learning is mostly used to fit models to predict survival of 
patients, as survival is considered the gold standard among clinical endpoints for bi-
omarkers [70]. However, most radiomic studies do not consider the choice of a particular 
machine learning method as part of their statistical design, although the final results are 
highly subjective to the choice of the training algorithm. Furthermore, radiomics operates 
in high-dimensional space and as such underlies the ‘course of dimensionality’ [71]. Ac-
cording to the course of dimensionality, the required amount of data to obtain statistically 
sound results grows exponentially with the number of features; however, data volume 
and quality are usually the limiting factor in clinical cohorts [72,73]. As a result of consider-
ing too many features without sufficient data, ‘overfitting’ can occur in which classification 
models are fit to spurious signals in the training data and thus do not generalize to novel 
data (i.e., the actual goal of predictive models) [74]. To mitigate this problem, feature se-
lection methods can be used to identify an irredundant subset of features that best repre-
sents the information encoded in the entire data [75]. This also allows quicker training of 
models and easier interpretation of model outputs. 

To support future radiomic studies employing machine learning methods in their 
analysis, we conducted a comprehensive and comparative study of a large panel of 12 and 
14 of the most popular and broadly used classification and feature selection methods, re-
spectively, and present the results in Chapter 7 [63]. These classification methods [76] 
included generalized linear model (GLM), support vector machine (SVM), and random-
forest (RF). The feature selection [77] methods included the minimum redundancy maxi-
mum relevance algorithm (MRMR), and Chi-Square. mutual information maximization 
(MIM). We investigated the prognostic capabilities of the combinations of these classifica-
tion and feature selection methods in terms of predicting two-year overall survival, also 
against data perturbation. Importantly, parameters of all classifiers were set to unbiased 
values proposed by a large and comprehensive study by Fernández-Delgado et al., who 
compared classification algorithms across 121 datasets [78]. The study was conducted on 
two large and independent cohorts totalling 464 patients with NSCLC. The goal of our 
comparative study was to propose more suitable methods for radiomic prognostication to 
justify a particular choice of algorithms.  
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A Wilcoxon feature selection generally yielded the highest power when combined 
most classifiers. However, one influential proposal from our study is the suitability of 
mRMR for effective radiomic feature selection. MRMR selects the highest performing fea-
tures that are also complementary to each other at the same time [79]. Various radiomic 
studies have been published that employ mRMR [12,14,40,80,81]. Furthermore, with this 
study we propose random-forest classifiers as applicable choice for predictions of overall 
survival at two years. This is a reasonable finding, considering that random-forests have 
been widely used to achieve state-of-the art performances. 

One apparent limitation is that we only investigated survival at two years. Alt-
hough this binary endpoint is considered a gold standard in lung cancer research as in re-
search of other cancer types [70], further investigation has to reveal whether the pro-
posed methods are also feasible with ordinal or continuous endpoints. Furthermore, this 
study focused on overall survival of patients with NSCLC; hence, conclusions about utility 
of these methods for other cancer types is difficult to draw. However, in a follow-up study 
we achieved verification of these methods for patients with head & neck cancer [64]. 
 
Radiomics for pathological response 
 
To directly measure response to neoadjuvant chemotherapy in NSCLC treated with trimo-
dality (i.e., surgery, chemotherapy, and radiation), pathological response is often assessed 
after surgical resection [82]. Previous research has suggested that pathological response is 
a prognostic factor [83,84] and could be used as surrogate endpoint for survival [85]. Pre-
dicting pathological response prior to surgery would allow omitting surgery and potential-
ly intensify chemoradiation for patients who would otherwise not benefit from added sur-
gery.  
In Chapter 8, we investigated whether radiomics can be used to predict pathological re-
sponse for neoadjuvant chemotherapy in NSCLC by developing an unsupervised feature 
selection algorithm [65]. We applied this algorithm to a comprehensive radiomic feature 
set of 1,603 features to identify a canonical subset of features. In this way, the radiograph-
ic phenotype of tumors was still represented but on a significantly smaller feature dimen-
sion (n=15 in this case). Reduction of dimensionality is crucial to data mining of radiomic 
data, as spurious results could otherwise be derived [86]. This especially holds for cases in 
which independent validation is not part of the analysis. Unsupervised feature selection 
techniques particularly avoid data leakage, as they do not take the classification target 
(i.e., clinical endpoints) into account. 

Among the 15 unsupervised selected features in the study presented in Chapter 
8, seven were significantly prognostic and predicted gross residual disease (i.e., poor re-
sponse); however, only one of those features also significantly predicted pathologic com-
plete response (i.e., complete response). Interestingly, spherical disproportionality was 
one of the predictors and indicated that more spherical tumors are more likely to be asso-
ciated with gross residual disease. It is important to note that conventional volumetric 
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features, in particular tumor volume and diameter, did not significantly predict pathologi-
cal response in this study; these results confirm prior results [87,88] and once again indi-
cate that advanced radiomic features can provide disease information beyond traditional 
imaging metrics. Multivariate analysis indicated that combining radiomic and volumetric 
features may outperform volumetric features alone. 
Interestingly, however, radiomic features in this study did not significantly predict overall 
survival, local recurrence, or distant metastasis; an explanation for this could be the rela-
tively data collection period of 12 years which could influence these treatment outcomes. 
Further limitations of this study are the lack of independent validation of the results and 
the relatively low number of patients who experienced complete pathological response 
(27 out of 127). In this study presented in Chapter 8, however, we for the first time ap-
plied unsupervised feature selection techniques on a vast number of features and thereby 
demonstrated the utmost importance of dimensionality reduction in radiomic studies uti-
lizing machine learning methods. 
 
Radiomics machine learning for distant metastases 
 
In current radiomic literature, machine learning methods are widely employed to predict 
overall survival of patients. As in many cancers, however, a major reason for cancer-
related death in NSCLC is the development of distant metastasis (DM). The incidence of 
DM is estimated to be as high as 40% [12]. despite combined treatment modalities, includ-
ing surgical resection, chemotherapy, and radiation therapy. Identifying patients at high-
est risk of developing DM could help intensifying systemic therapy and therefore poten-
tially improve outcome. To this end, we applied the machine learning methodologies from 
Chapter 7 to develop a generalizable radiomic-based signature, which is presented in 
Chapter 9. 

In the current Chapter 9, we conducted univariate and multivariate analyses of 
635 radiomic features in two cohorts of a total of 182 patients with NSCLC, more specifi-
cally locally advanced adenocarcinoma treated with chemo-radiation therapy [12]. As ex-
pected, we found strong correlations between DM and overall survival; the linear Pearson 
correlation coefficient R between the C-indices for DM and overall survival of all features 
was R2

 = 0.92 (p = 2.7x10-243). Univariately, we found that 15 features had strong prognos-
tic power for DM (C-index > 0.60 and FDR < 0.05); in comparison, only 12 features met this 
criteria for overall survival. 

In a multivariate analysis, we leveraged the proposed supervised mRMR algo-
rithm from Chapter 7 to select a non-redundant yet complementary set of features. We 
used this canonical set of three features to fit a multivariate Cox proportional-hazards re-
gression model to calculate a risk score of developing DM. We added significantly per-
forming clinical covariates (i.e., overall stage and tumor grade) to this model, hereby 
demonstrating the added value of a radiomics model to a clinical model alone, validated 
on independent data (C-index 0.60 vs C-index 0.57; difference by bootstrapping p < 1.56 x 
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0−11). Furthermore, this model significantly stratified patients into a high and low risk 
group (log-rank p < 0.049).  
In this study, our proposed model for DM substantially benefitted from the sophisticated 
feature selection algorithm, mRMR, we employed. This step contributed in avoiding over-
fitting when validating the predictions on the independent cohort. Our careful design al-
lowed to investigate both univariate and multivariate performances of features and clini-
cal covariates. An important finding in our study is also that the volumetric maximal three-
dimensional slice was a stronger prognostic factor than the conventionally used two-
dimensional maximal axial slice. At the time of publication, two other studies have been 
published that suggested prognostic value in CT derived textural features for DM. On the 
one hand, Fried et al. [89] suggested prognostic value for DM of a model with CT texture 
and clinical covariates; however, the relatively small sample size of this study (n = 54) 
makes it difficult to conclude general validity. Similarly, Ganeshan et al. [90] investigated 
radiomic features extracted from two-dimensional imaging slides (i.e., the largest cross 
sections); here, comparison with our study cannot directly be drawn as we considered the 
entire tumor volume. Future studies have to conclude whether three-dimensional anal-
yses are superior to single-slice analyses. 

As we also discussed for other chapters, the current study was limited by its ret-
rospective nature. Patients included in the analysis were treated between 2001 and 2013, 
during which CT imaging protocols and other acquisition parameters may have changed. 
However, training and validation data were temporally separated; as our models validated 
against this temporal split, our results indicate generalizability beyond temporal variabil-
ity. Furthermore, generalizability across different cancer types and institutes has to be 
investigated.  

In conclusion, with this Chapter 9 we for the first time showed that machine-
learning based radiomic approaches are viable tools to develop prognostic imaging bi-
omarkers for the prediction of DM, which is a highly complex molecular process. Hence, 
with this work we laid the groundwork to investigating how prognostication via radiomics 
is justified biologically. 

FUTURE PERSPECTIVES  

This thesis aimed at closing translational gaps in understanding how radiomics, tumor bi-
ology, and clinical outcome of patients are linked to each other. We have shown that as-
sociations between radiomic features and molecular pathways can guide towards prog-
nostic biomarkers for targeted therapies using advanced machine learning algorithms. 
Ultimately, this body of doctoral research can be used to develop predictive imaging bi-
omarkers that would allow identification of patients who would benefit most (or worst) 
from a specific treatment. To this end, several prerequisites must be accomplished.  
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 Obviously, regulatory authorities require any proposed biomarker to be validated 
through prospectively executed clinical trials. Within those trials, however, standardized 
protocols for image acquisition and processing can also be deduced. These protocols 
should be adhered by future radiomic studies to ensure reproducible interpretation of the 
results across different research laboratories. Standardization will also be crucial in the 
definition of radiomic features. Currently, it is unclear which parameter settings, including 
image transformation and interpolation, yield optimal performances and thus variance in 
those parameters is high among current radiomic literature [91]. Standardization of fea-
ture definitions will be of particular importance as automated feature definitions using 
deep learning techniques become more popular in medical image analysis [92]. Several 
organizations now aim at producing consensus guidelines for image standardization, in-
cluding the Quantitative Imaging Network (QIN) [93] from the U.S.National Cancer Insti-
tute (NCI), the Quantitative Imaging Biomarker Alliance (QIBA) [94], the European Organi-
sation for Research and Treatment of Cancer (EORTC) [95], the European Society of Radi-
ology (ESR) [96], and the Cancer Research UK (CRUK) [97]. These guidelines should also 
include recommendations about tumor delineation and segmentation software; to date, it 
is an open question how accurate tumor delineations have to be drawn. 
 In addition to image standardization, other technical hurdles need to be over-
come when planning to integrate a novel technology into existing clinical workflows. To 
integrate radiomic applications in future clinical cancer management, robust and secure 
infrastructure has to be developed, allowing storage of massive amounts of sensitive pa-
tient data, model development and validation, as well as transparent data and method 
sharing to foster collaborative research [98]. To facilitate collaborative research, novel 
concepts such as distributed and continuous learning could be valuable tools [66,99,100]. 
In particular, innovative and open source software, such as PyRadiomics for radiomic fea-
ture extraction (https://pyradiomics.readthedocs.io), the 3D Slicer suite for managing im-
age data [101], and BraTumIA for automatic segmentation [102], can contribute in repro-
ducing independent results in the growing radiomic research community. Besides tech-
nical advancements, it could be advisable to offer additional training for clinicians to be-
come more accustomed to data-driven diagnostics [103]. 
 This thesis proposed a number of radiomic and radiogenomic biomarkers. A novel 
concept for clinical trial validation could include blinded validation. Therefore, future stud-
ies would fix the parameters of the underlying models of such a biomarker and transfer 
this fixed signature to multiple independent groups for validation. This multi-center effort 
could also include additional biological validation or association studies to emerging diag-
nostic approaches such as liquid biopsies [104]. A meta-analysis of the individual datasets 
could provide further confidence in the results [105]. Furthermore, while this thesis mainly 
focused on radiomics derived from CT and MR imaging, further imaging modalities and 
analyses could be explored for applicability in biomarker development, including PET and 
proton imaging [106–109], as well as semantic and other qualitative approaches to image 
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analysis [110–112]. Similarly, radiomics can be applied to disease sites other than lung and 
brain [64,80,113–117] .  
 In conclusion, this dissertation advances our understanding of the biological basis 
of radiomics and the implications for novel concepts to cancer diagnostics. On the basis of 
the non-invasive imaging and machine learning, future studies could build on these results 
to develop and validate radiomic biomarkers for targeted therapies. Ultimately, this could 
routinely augment decision-making in daily clinical practice and thus lead to improved pa-
tient outcome. 
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SUMMARY   

Radiomics is a promising field that aims at leveraging existing medical imaging data with 
advanced computational methods to provide novel quantitative and actionable data for 
clinical decision support. Notably, radiomic approaches enable integration of these previ-
ously untapped sources of information in a noninvasive, objective, reproducible, and cost-
effective way. Numerous studies have suggested prognostic and predictive associtions of 
radiomics and clinical endpoints, including overall survival. However, the molecular biolo-
gy underlying these associations were largely unknown. To this end, this dissertation con-
tributed in unraveling the connections between radiomic, molecular, and clinical data. 
Furthermore, these results were put in context to radiomic predictions for targeted thera-
pies, as well as in context of optimizing these predictions with advanced machine learning 
methods. 
 This thesis was organized in five parts, where Part 1 introduced and outlined the 
objectives, Parts 2 to 4 contained the main research results, and Part 5 discussed these 
results. We briefly summarize the content of the thesis below. 
 
Part 1: Introduction 
 
In Chapter 1 we introduced the concept of radiomics and explained the implications of 
radiomics for precision medicine in cancer. In this chapter, we outlined the objectives of 
this thesis to uncover the underlying biology of radiomics and therefore reason how radi-
omics can be used as imaging biomarkers for targeted therapies. We motivated these ob-
jectives by the fact that radiomics has been suggested to contain prognostic and predic-
tive value, but that biological reasoning of this has not been achieved yet. 
 
Part 2: Radiomics and its Underlying Biology 
 
Chapter 2 presented a broad radiogenomic study that revealed mechanistic connections 
of a large set of radiomic CT features, molecular pathways, and clinical factors in lung can-
cer. Importantly, all associations were validated in independent data. Additionally, key 
associations were also validated biologically. Furthermore, we for the first time demon-
strated that radiomics provides complementary prognostic value to traditional genetic and 
clinical predictors. 
 
In Chapter 3 and Chapter 4 we extended the results from Chapter 2 to associations be-
tween volumetric phenotype features, molecular pathways, and somatic gene mutations 
in brain cancer. In this way, we complement Chapter 2 by sheding light on how imaging-
genomic connections behave in another aggressive cancer type assessed by an alternative 
imaging modality, namely glioblastoma and MRI, respectively. 
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Part 3: Radiomics for Targeted Therapies 
 
Understanding genotype-phenotype interactions in tumors as aimed for in Chapters 2-4 
allows reasoning about radiomic phenotype predictors for targeted therapies that exploit 
genetic properties of tumors. Therefore, in Chapters 5 and 6 we aimed at developing nov-
el imaging biomarkers to identify patients who would respond best to bevacizumab and 
gefitinib in brain and lung cancer, respectively. In both studies, we leveraged prospectively 
acquired data of previously published clinical phase II trials. 
 
Particularly, in Chapter 5 we achieved to develop (and validate) radiomic biomarkers for 
patients with recurrent glioblastoma that stratified overall survival, as well as progression-
free survival, at multiple timepoints including pre-treatment and follow-up at six and 
twelve weeks post-treatment initiation of bevacizumab. This study strongly suggests that 
radiomics can be used to develop predictive biomarkers for stratifying this patient popula-
tion prior to treatment decision, which could be crucial as recent phase III clinical studies 
failed to suggest improvement of overall survival due to absence of effective biomarkers. 
 
In Chapter 6 we explored radiomic predictors for gefitinib, an EGFR inhibitor, by assessing 
predictive value of radiomics for EGFR mutations. Similar to Chapter 5, we investigated 
imaging data pre- and post-treatment, as well as the delta change of features values be-
tween those timepoints. While we observed predictive value of radiomic features at base-
line (i.e., before treatment), traditional volumetric features such as tumor volume and 
diameter showed no predictive value at baseline. 
 
Part 4: Prognostic Value of Radiomic Machine Learning 
 
As we have observed from the previous chapters, radiomics is moving towards a data sci-
ence, critically dependent on efficient machine learning methods. Therefore, in our final 
research Chapters 7-9 we investigated applicability of a wide range of machine learning 
algorithms to optimize radiomic predictions. 
 
In Chapter 7 we present a study that evaluated a host of potential machine learning algo-
rithms for radiomic prognostication. Specificially, we investigated 14 feature selection and 
12 classification methods, and compared their performance in predicting overall survival 
at two years. With this study, we aimed at providing recommendations as to which popu-
lar machine learning methods are the most promising ones for the development of radio-
mic prognostic biomarkers. 
 
Finally, wih Chapter 8-9 we used unsupervised feature selection to identify a canonical set 
of radiomic features that could potentially predict pathological response in lung cancer 
following neoadjuvant chemoradiation. In Chapter 8 we used a similar methodology to 
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derive features that predicted the development of distant metastasis, while optimizing the 
predictive model with supervised feature selection. 
 
Part 5: Discussion and Future Perspectives 
 
This dissertation concluded with a discussion and outlook in Chapter 10. Our research un-
covered a large proportion of the molecular biology underlying radiomics, results that are 
necessary to justify translation of radiomics into clinical applications. We now gained bet-
ter understanding about the high prognostic potential of combining radiomics with ge-
nomics and clinical records, as well as the implications for targeted therapies. Further-
more, we propose advance machine learning algorithms to increase prognostic and pre-
dictive performance of radiomic models. In conclusion, our work demonstrates the signifi-
cance of systematically analyzing routine medical images with radiomics, as well as its in-
tegration with molecular and clinical data, to develop predictive tools for cancer diagnos-
tics.  
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VALORIZATION ADDENDUM   

The central objective of this dissertation was to enable biological reasoning of radiomic 
prognostic models to facilitate the development of imaging-based biomarkers for clinical 
decision support. Such biomarkers will be crucial in the success of targeted therapies. As 
this thesis has shown, radiomics has unprecedented potential to provide actionable data 
for noninvasive and cost-effective biomarker for specific cancer treatments. Furthermore, 
this thesis has also demonstrated that advanced machine learning algorithms are neces-
sary to provide the level accurateness and robustness required for clinical applications. 

To translate research of this thesis into clinical tools, further validation of the pro-
posed models must be performed. To this end, transparacy in the processed data and 
methods used is critical. Therefore, we made data and code publicly available to the wider 
scientific community wherever possible. In particular, we released radiomic, genomic, and 
clinical data, as well as open sourced our analysis code from Chapter 2 online 
(https://elifesciences.org/articles/23421), which is the core of our results that associate 
radiomic with biological data. In addition, results from Chapter 2 were extended in Chap-
ters 3 and 4, and data underlying Chapter 3 and 4 were collected through The Cancer Ge-
nome Atlas (TCGA, https://cancergenome.nih.gov/) and The Cancer Imaging Archive (TCIA, 
http://www.cancerimagingarchive.net/), which are public repositories. Hence, reproduci-
bility of those results can be assured, as well. Obviously, releasing data is not possible for 
all studies due to intellectual property; for instance, this was the case for data underlying 
Chapters 5 and 6, which analyzed data from clinical trials. Similar holds for the remaining 
Chapters 7-9. Hence, more efforts should be performed to achieve global data sharing. 

One solution to facilitate data sharing could be distributed learning, an emerging in-
frastructural concept in which machine learning models are distributed to different sites 
(i.e., clients such as hospitals) to learn from data of each site. In this way, data never 
leaves a site and hence only learned model coefficients are shared across sites. Obiously, 
however, full transparency in underlying data can only be achieved with access to raw da-
ta. Regarding transparency in methods, three parts have to be considered: 1) Segmenta-
tion, 2) Feature extraction, and 3) Analysis. In this thesis, methods for segmenting tumors 
were already publicly available either commercially (e.g, EclipseTM) or open source (e.g., 
3D Slicer). Methods for feature extraction were recently shared through an open-sourced 
Python package at pyradiomics.readthedocs.io. All algorithms used for the analyses in this 
thesis were implemented in ‘R’, an open source package for statistical analysis.  

General employment of open source methods can significantly support reproducibility 
analysis even in clinical studies, because reasons for deviating results can more easily be 
deduced. This can also have an impact on standardization of radiomic methods, which also 
must be achieved to gain regulatory approval for clinical use. Currently, major internation-
al consortia, such as QIN, QIBA, EORTC, and ESR, are developing guidelines for standardi-
zation in image acquisition, registration, and analysis. 
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Results of this dissertation can also be leveraged to improve existing biomarker ap-
proaches, as our thesis also suggests complementary prognostic value of radiomics to vol-
umetric, genomic, and clinical assessments. To achieve effective combinations of radi-
omics and traditional methods, one radiomic signature should be fixed first. This radiomic 
signature can then be combined with genomic or clinical signatures that have been exten-
sively described in recent literature to understand how this combination can be reproduc-
ibly and robustly optimized for a predefined clinical endpoint. Ideally, training and valida-
tion of such novel combinations should be performed by independent groups, ensuring 
absence of data leakage and thus generating overoptimistic results. Should radiomic ap-
proaches continue to show complementary value, combined biomarkers will lead to more 
accurate and cost-effective diagnostic strategies, and hence safer treatments. Inherently, 
more accurate biomarkers can also save considerable amount of funds required to con-
duct a clinical trial, as the target population can be identified easier and thus less patients 
need to be recruited to gain statistical significance. 

Major parts of this dissertation have gained broad attention for its innovative ap-
proaches. For example, parts of the study prestend in Chapter 2 were honored with the 
Best in Physics award at the Annual Meeting of the American Association of Physicists in 
Medicine (http://www.aapm.org/meetings/2015AM/PRAbs.asp?mid=99&aid=29354), and 
was also announced with an online press release about Hot Topics (http://www.aapm.org/ 
meetings/2015AM/VirtualPressroom/NewsReleases.asp#HotTopics). In addition, the signif-
icance of this work has also been suggested by a recent press release: 
https://www.sciencedaily.com/releases/2017/08/170803135210.htm. Altogether this em-
phasizes the anticipated impact that radiomics will make in clinical decision support. Finally, 
it should be noted that radiomic approaches have translational potential beyond oncology; 
as radiomic processes standard of care imaging techniques, any disease that can routinely 
be assessed by medical imaging can also be a potential application of radiomics, including 
cardiovascular, neurodegenerative, and bone diseases. 
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