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Abstract Medical imaging can visualize characteristics of human cancer noninvasively. Radiomics

is an emerging field that translates these medical images into quantitative data to enable

phenotypic profiling of tumors. While radiomics has been associated with several clinical endpoints,

the complex relationships of radiomics, clinical factors, and tumor biology are largely unknown. To

this end, we analyzed two independent cohorts of respectively 262 North American and 89

European patients with lung cancer, and consistently identified previously undescribed associations

between radiomic imaging features, molecular pathways, and clinical factors. In particular, we

found a relationship between imaging features, immune response, inflammation, and survival,

which was further validated by immunohistochemical staining. Moreover, a number of imaging

features showed predictive value for specific pathways; for example, intra-tumor heterogeneity

features predicted activity of RNA polymerase transcription (AUC = 0.62, p=0.03) and intensity

dispersion was predictive of the autodegration pathway of a ubiquitin ligase (AUC = 0.69, p<10-4).

Finally, we observed that prognostic biomarkers performed highest when combining radiomic,

genetic, and clinical information (CI = 0.73, p<10-9) indicating complementary value of these data.

In conclusion, we demonstrate that radiomic approaches permit noninvasive assessment of both

molecular and clinical characteristics of tumors, and therefore have the potential to advance clinical

decision-making by systematically analyzing standard-of-care medical images.

DOI: 10.7554/eLife.23421.001

Introduction
‘Precision medicine’ promotes the molecular characterization of a patient’s tumor with genomic

approaches, which requires tissue extraction usually obtained via biopsy. A number of examples

demonstrate successful translation of genomic information obtained from biopsies into clinical appli-

cations (Doroshow and Kummar, 2014), but these approaches also have inherent limitations, such
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as their invasive nature or sampling artifacts caused by intra-tumor heterogeneity (Sottoriva et al.,

2013; Fisher et al., 2013; Gerlinger et al., 2012). These limitations can be addressed by medical

imaging that has served as crucial diagnostic tool and treatment guidance in clinical oncology. In

contrast to biopsies, medical imaging is usually noninvasive, can be applied longitudinally, and pro-

vides information about the entire visible tumor volume. In this way, medical imaging has the poten-

tial to characterize phenotypic information of tumors and thus complement molecular interrogation

(Choi et al., 2016). As imaging is already used routinely throughout the course of treatment this

facilitates ready access to this type of data. Therefore, imaging has the potential to serve as valuable

diagnostic tool in clinical decision making by complementing biological interrogation or serving as a

surrogate in settings where biospecimen-derived diagnostics is not feasible, such as in longitudinal

monitoring.

Radiomics is an emerging field that translates these medical images into mineable data by

extracting a large number of quantitative imaging features that objectively define tumor intensity,

shape, size, and texture (Gillies et al., 2016; Aerts, 2016; Lambin et al., 2012; Kumar et al., 2012)

in a robust and reproducible way (Zhao et al., 2016; Fried et al., 2014; Balagurunathan et al.,

2014; Leijenaar et al., 2013). As this approach is applied to existing standard of care images, radio-

mics can be cost-effectively integrated with genomics or serve as surrogate in cases where biopsies

are not feasible (O’Connor et al., 2015). Hence, such strategies can be of value for the development

eLife digest Medical imaging covers a wide range of techniques that are used to look inside the

body, including X-rays, MRI scans and ultrasound. A process called radiomics uses computer

algorithms to process the data collected by these techniques to identify and precisely measure a

large number of features that would not otherwise be quantifiable by human experts. By doing so,

radiomics can automatically measure the radiographic characteristics of a tumor. For example,

radiomics can establish the size, shape and texture of a tumor to help to diagnose cancer and guide

its treatment.

Research has suggested that radiomics can predict certain clinical characteristics of cancer, such

as how far through the body the cancer has spread, how likely it is to respond to treatment, and

how likely a patient is to survive. However, these radiomic characteristics have not yet been precisely

linked to the biological processes that drive how cancer develops and spreads.

Cancers develop as a result of genetic changes that activate “molecular pathways” in the cells

and trigger processes such as cell division and inflammation. To work out exactly which changes are

behind a particular tumor, a sample of the tumor from biopsy or surgery is analyzed using genomics

techniques. Linking radiomics features to the molecular processes active in a tumor can generate

further information that can complement the molecular data. Images are routinely collected on all

cancer patients yet molecular data is not. Hence, in some cases, the images can be used to infer the

molecular underpinnings of cancer in individual patients.

Grossmann et al. have now analyzed radiomic, genomic and clinical data collected from

approximately 350 patients with lung cancer. The analysis revealed links between biological

processes normally detected by genomics – in particular, inflammatory responses – and radiomics

features. Furthermore, these features could also be associated with clinical characteristics, such as

tumor type and patient survival rates. These results were further validated by using a technique

called immunohistochemical staining on tumor tissue obtained by surgery.

Further investigation revealed that certain radiomics features can predict the state of molecular

pathways that are key to cancer development (such as the inflammatory response). Furthermore,

Grossmann et al. found that combining data from radiomics, genomics and clinical parameters

predicts how the cancer will progress better than any of these parameters can predict on their own.

These results demonstrate the complementary value of radiomic data to genomic and clinical data.

There are many different algorithms that can be used to process images for radiomics. Before

radiomics can be used clinically to assess the biological processes underlying the tumors of patients,

a specific algorithm needs to be decided upon and then tested in prospective clinical trials.

DOI: 10.7554/eLife.23421.002
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of clinical biomarkers for diagnosis, prognosis, and prediction of response to specific treatments

(Choi et al., 2016; Huang et al., 2016a, 2016b; Aerts et al., 2016; Nicolasjilwan et al., 2015;

Parmar et al., 2015a, Parmar et al., 2015b; Aerts et al., 2014; Chong et al., 2014; Coroller et al.,

2015; Gevaert et al., 2012; Ganeshan et al., 2012; Win et al., 2013; Mattonen et al., 2016;

Grossmann et al., 2017). Due to the enormous potential for precision medicine, an increasing num-

ber of studies have investigated associations between imaging and tumor biology in different cancer

types (Aerts et al., 2014; Gevaert et al., 2012; Diehn et al., 2008; Grossmann et al., 2016;

Gutman et al., 2015; Segal et al., 2007; Li et al., 2016; Yoon et al., 2015). However, these studies

focused on specific genetic associations, or tended to be underpowered due to a limited number of

available samples and lacked validation via independent datasets.

Here, we present a broad radiomic-genomic analysis in independent and large cohorts of patients

with lung cancer. We rigorously investigated the mechanistic connections between imaging pheno-

types and underlying molecular pathways. Furthermore, we validated key associations via immuno-

histochemical staining and related these associations to clinical factors. In addition, we developed

and validated radiomic predictors of pathway activation status, and investigated the prognostic

value of combining radiomic biomarkers with genetic and clinical data. In this study, we aimed at

uncovering whether radiomic approaches have the potential to predict both molecular and clinical

characteristics of tumors noninvasively and therefore have the potential to augment clinical decision-

making using data extracted from standard of care medical images.

Results
To uncover the mechanistic connections between radiomic phenotypes, molecular pathways, and

clinical information, we performed an integrated radiomic-genomic analysis of a lung cancer discov-

ery cohort (Dataset1, n = 262), and validated our results on an independent validation cohort
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Figure 1. Radiomics approach. (A) Workflow of extracting radiomic features: (I) A lung tumor is scanned in multiple slices. (II) Next, the tumor is

delineated in every slice and validated by an experienced physician. This allows creation of a 3D representation of the tumor outlining phenotypic

differences of tumors. (III) Radiomic features are extracted from this 3D mask, and (IV) integrated with genomic and clinical data. (B) Representative

examples of lung cancer tumors. Visual and nonvisual differences in tumor shape and texture between patients can be objectively defined by radiomics

features, such as entropy of voxel intensity values (‘How heterogeneous is the tumor?’) or sphericity of the tumor (‘How round is the tumor?’).

DOI: 10.7554/eLife.23421.003
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(Dataset2, n = 89). We defined and extracted 636 radiomic features from CT scans (Figure 1A)

quantifying tumor intensity, shape, and texture (Figure 1B), detailed in Supplementary file 1. Our

approach to integrate radiomic, genomic, and clinical data is outlined in Figure 2 and clinical cohort

characteristics are given in Table 1. Dataset1 can be downloaded as Figure 2—source data 1 and

Dataset2 can be downloaded as Figure 2—source data 2.

Association modules of radiomic features and molecular pathways
To investigate the main associations of radiomics and underlying molecular pathways, we developed

association modules describing radiomic-pathway coherency. Bi-clustering allowed simultaneous

grouping of coherently expressed features and pathways into a single module, thereby reducing

dimensionality. Using this approach, we identified thirteen radiomic-pathway modules in Dataset1

that were independently validated in Dataset2 (FDR < 0.05). Figure 3A and Table 2 summarize

these modules, while a detailed version of every module is given in Figure 3—source data 1.

In general, we found that distinct radiomic features were associated with distinct biological pro-

cesses. For example, texture entropy and cluster features, as well as voxel intensity variance features

were associated with the immune system, the p53 pathway, and other pathways involved in cell cycle

regulation in modules M2, M9, and M12 (Table 2 and Figure 3A). In another module (M8), we found

those features to also be associated with transforming growth factor beta (TGF-b) receptor

signaling.

Further examples for radiomic-pathway links included two modules (M13 and M7) that were

highly enriched for pathways involved in mitochondrial pathways, transcription, translation, and RNA

regulatory mechanisms; with only one exception, all features in the larger module (M13) were voxel

intensity entropy features. In addition to this feature type, the smaller module (M7) contained mainly

textural variance and information correlation features.

Clinical information contained in modules
For every module, we assessed prognostic association to overall survival (OS) and associations to

stage and histology based on the radiomic features of a module (Figure 3B and Table 3). Three

modules (M2, M9, and M12) were significantly prognostic for OS (p<0.02), ten modules (M2, M4-8,

and M10-13) were significantly associated with stage (p<0.01), and five modules (M5, M6, and M10-

12) were significantly associated with histology (p<0.05). The exact p-values of all modules are given

in Supplementary file 2.

We examined and summarized the relationships of clinical status, module size, and overlap of

modules in a network (Figure 3B and Table 3). We found that smaller modules tended not to be

associated with the tested clinical factors. The total number of shared features or pathways was gen-

erally low (mean Jaccard index 0.22, range [0.01, 0.59]). Interestingly, certain modules with higher

overlap still showed different clinical associations.

Radiomic predictors of pathway status
To test whether radiomic features can predict if a pathway is activated or deleted in individual

patients, we fitted univariate models of radiomic features on Dataset1 and selected for every module

the strongest predictor in Dataset1 according to the area under the curve (Fawcett, 2006) (AUC) for

validation in Dataset2. As shown in Table 3 and Table 3—source data 1, the overall biological and

radiomic themes in a module were well represented by these individual predictors. For example, a

Laplace of Gaussian intensity standard deviation feature was predictive of the autodegration path-

way of the E3 ubiquitin ligase COP1 (AUC = 0.69, p<10�4) in module M2, which was also associated

with p53. Importantly, COP1 mediates p53 and may interact with autophagy (Rabbani et al., 2014;

Kobayashi et al., 2013), which are known drivers of tumorigenesis. Indeed, this module M2 was

associated with OS. We found further examples of this radiomic-genomic-clinical link to be impor-

tant: For example, a texture feature (information correlation) predicted trafficking of GLUR2 contain-

ing AMPA receptors (AUC = 0.69, p<10�4) in module 5, which was associated with lipoprotein

metabolism and stage. Further, two shape features (sphericity and compactness) predicted TRAF6

mediated NFkB activation (AUC = 0.66, p=0.003) in module 10, which was also associated with axon

guidance and histology.
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Figure 2. Schema of our strategy to define robust radiomic-pathway-clinical relationships. Two independent lung cancer cohorts (D1 and D2) with

radiomic (R), genomic (G), and clinical (C) data were analyzed. D1 (n = 262) was used as a discovery cohort and D2 (n = 89) was used to validate our

findings. A gene set enrichment analysis (GSEA) approach assessed scores for radiomic-pathway associations. These scores were biclustered to

modules that contain features and pathways with coherent expression patterns. These modules may overlap and vary in size. Clinical association to

overall survival (red), pathologic histology (purple), and TNM stage (yellow) was statistically tested in both datasets, and results were combined in a

meta-analysis to investigate relationships of modules.

DOI: 10.7554/eLife.23421.004

Figure 2 continued on next page
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Furthermore, we assessed these representative features in terms of their predictive value for

driver mutations in the discovery cohort; based on a subset of 60 patients whose tumors were pro-

filed with Sanger sequencing, we estimate that the prevalence of mutated EGFR, KRAS, and TP53

are 15%, 35%, and 20%, respectively. In particular, we found strong performance for mutations in

EGFR and KRAS by several features, but only one considerable performance for TP53 (Figure 3—fig-

ure supplement 1). Interestingly, predictive value for EGFR and KRAS were selective in that features

had relatively high performance for one gene but not both. Predictive power for smoking history

was low to moderate (Figure 3—figure supplement 2).

Figure 2 continued

The following source data is available for figure 2:

Source data 1. Dataset1.

DOI: 10.7554/eLife.23421.005

Source data 2. Dataset2.

DOI: 10.7554/eLife.23421.006

Table 1. Proportions of clinical characteristics in Dataset1 and Dataset2, Figure 2.

Histology and TNM stage were based on pathology were available.

Dataset1 Dataset2

Gender

Male 100 (45%) 59 (68%)

Female 124 (55%) 28 (32%)

Histology

Adenocarcinoma 129 (58%) 42 (48%)

Squamous 61 (27%) 33 (38%)

Other 34 (15%) 12 (14%)

Stage

I 123 (55%) 39 (45%)

II 35 (15%) 26 (30%)

III 46 (21%) 12 (14%)

Other 20 (9%) 10 (11%)

Smoking Status

Current 66 (29%) NA

Former 141 (63%) NA

None 17 (8%) NA

Tumor site

Primary 224 (100%) 87 (100%)

Endpoints

Overall survivals 134 (60%) 41 (47%)

Overall deaths 90 (40%) 46 (53%)

Follow up
(median months)

32 31

DOI: 10.7554/eLife.23421.007
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Figure 3. Radiomic-pathway-clinical modules. (A) Clustering of significantly validated radiomic-pathway association modules (FDR < 0.05). Normalized

enrichment scores (NESs) have been biclustered to coherently expressed modules. Every heatmap in this figure corresponds to a module (M1 - M13)

with radiomic features in columns and pathways in rows. Heatmap sizes are proportional to module sizes. Elements are NESs given in Z-scores across

features, and are displayed in blue when positive and green when negative. Horizontal color bars above every module indicate radiomic feature groups

(black = first order statistics, orange = texture, purple = shape, red = wavelet, and pink = Laplace of Gaussian). Representative molecular pathways are

displayed. (B) Clinical module network. We investigated if modules were associated with overall survival (red), stage (yellow), histology (purple), or no

clinical factor (white). Relationships of modules based on their number of shared radiomic features (thickness of blue lines) are displayed by a network.

While we found that most modules yield clinical information, overlaps of modules did not indicate relationships to similar clinical factors.

DOI: 10.7554/eLife.23421.008

The following source data and figure supplements are available for figure 3:

Source data 1. Enlarged heatmaps of every module depicting normalized enrichment scores (NESs) of every pair of radiomic feature and molecular

pathway clustered in a module.

DOI: 10.7554/eLife.23421.009

Figure 3 continued on next page
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Immunohistochemical investigation
To further investigate putative connections between radiomics, immune response pathways, and OS

we performed immunohistochemical staining of 22 tumors for CD3, a T-cell co-receptor. These

tumors were predicted to show relatively high or low immune response by a radiomics feature

selected from the three modules (M2, M9, and M12) that were associated with OS. As represented

in Figure 4, we found agreement between radiomics and pathology; cases that were pathologically

scored to have high CD3 enrichment also expressed significantly higher radiomic values (one-sided

Wilcoxon rank sum test, p=0.008). Furthermore, we tested the extent to which radiomic predictors

of inflammation can be reproduced immunohistochemically. We built on our previous results sug-

gesting that the radiomic shape feature sphericity predicts NFkB activation (module 10) and

analyzed 24 stained tumors that were predicted to have relatively high or low NFkB activity for RelA,

the p65 subunit of NFkB (Figure 4—figure supplement 1). Pathological assessment of enrichment

for RelA revealed that those cases that indicated high RelA enrichment on average also had higher

radiomic feature scores (one-sided Wilcoxon rank sum test, p=0.06).

Figure 3 continued

Figure supplement 1. Predictive capabilities of representative radiomic features from every module for genetic mutations in KRAS, EGFR, and TP53 in

a subset of the discovery cohort.

DOI: 10.7554/eLife.23421.010

Figure supplement 2. Association of representative features with smoking history in a subset of the discovery cohort.

DOI: 10.7554/eLife.23421.011

Table 2. Summary of common themes in all of the identified radiomic-pathway association modules. Columns 1–3 display the module

name, the number of radiomic features (nr), and pathways (np), respectively. Columns 4–5 hold the radiomic and pathway themes pres-

ent in each module.

Module nr np Radiomic Pathway

M1 6 7 Wavelet texture gray-level runs Lipid and lipoprotein metabolism, Notch signaling, circadian clock

M2 58 5 Wavelet intensity entropy; Laplace of Gaussian intensity
standard deviation

Immune system, p53

M3 4 17 Wavelet minimum intensity Neural system, axon guidance

M4 25 14 Intensity variance and mean; wavelet minimum intensity min Biological oxidations, signaling by insulin receptor, signaling by GPCR,
neuronal system

M5 58 8 Wavelet texture gray-level runs; wavelet intensity range and
median; (wavelet) texture information correlation and cluster
tendency

Axon guidance and synaptic transmission, lipoprotein metabolism, cell
type determination

M6 64 7 Laplace of Gaussian standard deviation; wavelet texture gray-
level runs; wavelet texture cluster tendency

Circadian clock, signaling by Notch

M7 39 8 Laplace of Gaussian intensity entropy; wavelet intensity
variance; Laplace of Gaussian texture information correlation

Mitochondria, Pol III transcription

M8 20 17 Laplace of Gaussian standard deviation TCA cycle and electron transport, TGF-beta receptor signaling,
response to stress, transcription regulation, protein synthesis,

M9 8 30 Intensity variance; wavelet intensity variance Immune system, p53, cell cycle regulation checkpoints, cell-cell
interaction, circadian clock

M10 5 83 Shape surface (SH); wavelet texture gray-level runs Axon guidance, neuronal system, (innate) immune system, hemostasis,
FGFR signaling, TGF-beta receptor signaling, Notch signaling,
circadian clock

M11 17 66 Wavelet intensity range; wavelet texture information
correlation

Hemostasis, neural system

M12 32 27 Wavelet texture entropy; intensity variance; wavelet texture
cluster tendency

P53, immune system

M13 39 26 Intensity entropy Gene expression regulation, Pol II/III transcription

DOI: 10.7554/eLife.23421.012
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Prognostic value of radiomic signatures
To build on previously published results, we investigated prognostic value of an existing radiomic sig-

nature for survival of lung cancer. We fitted a Cox proportional-hazards model of this signature on

Dataset1 and observed significant validation by the concordance-index (CI) on Dataset2 (CI = 0.60,

Noether p=0.04). Furthermore, we tested combinations of clinical, genetic, and radiomic data and

observed that the combinations of data types tended to result in higher performances than given by

the individual data alone (Figure 5). In particular, the performance of a clinical model increased from

CI = 0.65 (Noether p=0.001) to CI = 0.73 (p=2�10�9) when adding the radiomic and an existing gene

signature (Hou et al., 2010); this increase was significant at p=0.001 by permutation test. This com-

bined radiomic-genetic-clinical model also performed significantly better than the combined radio-

mic-clinical model (p=0.007) and the clinical-genetic model (p=0.01). Adding radiomics to clinical data

alone did not result in a significant increase (p=0.3). We repeated this analysis with a novel radiomic

survival signature and other published gene signatures (Yuan et al., 2004; Chen et al., 2007;

Hsu et al., 2009), and found that the clinical-genetic-radiomic models consistently yielded the highest

performances in nearly all cases (Figure 5—figure supplement 1 and Figure 5—figure supplement

2).

Table 3. Pathway prediction and clinical association. For every module, the independent validation performance of the strongest

radiomic based pathway predictors is indicated per module by the area under the curve (AUC) of the receiver operator characteristic.

In addition, we highlight whether a module was significantly associated with overall survival (OS), TNM stage (ST), or pathologic histol-

ogy (HI) (p<0.05).

Module Strongest radiomic based pathway prediction AUC OS ST HI

M1 Wavelet (HHH) texture (GLCM) correlation fi
Cholesterol biosynthesis

0.64,
p=0.014

M2 Laplace of Gaussian intensity standard deviation fi
Autodegration of the E3 Ubiquitin ligase COP1

0.69,
p=8e-4

x x

M3 Wavelet minimum intensity fi
Trafficking of GLUR2 containing AMPA receptors

0.67,
p=0.003

M4 Wavelet intensity minimum fi
Glutathione conjugation

0.68,
p=9e-4

x

M5 Texture information correlation fi
Trafficking of GLUR2 containing AMPA receptors

0.69,
p=7e-4

x x

M6 Wavelet texture cluster prominence fi
Notch1 intracellular domain regulation of transcription

0.66,
p=0.007

x x

M7 Laplace of Gaussian intensity entropy fi
RNA polymerase III transcription

0.62,
p=0.031

x

M8 Laplace of Gaussian intensity standard deviation fi
Pyruvate metabolism and citric acid TCA cycle

0.72,
p=6e-5

x

M9 Wavelet intensity variance fi
Trafficking of GLUR2 containing AMPA receptors

0.64,
p=0.020

x

M10 Shape compactness and shape sphericity fi
TRAF6 mediated NFkB activation

0.66,
p=0.003

x x

M11 Wavelet texture cluster tendency fi
Platelet aggregation plug formation

0.69,
p=6e-4

x x

M12 Wavelet texture entropy fi
G0 and early G1

0.65,
p=0.007

x x x

M13 Laplace of Gaussian intensity entropy fi
RNA polymerase II transcription initiation and promoter opening

0.68,
p=0.001

x

DOI: 10.7554/eLife.23421.013

Source data 1. Radiomic pathway predictors.

DOI: 10.7554/eLife.23421.014

Grossmann et al. eLife 2017;6:e23421. DOI: 10.7554/eLife.23421 9 of 22

Research article Cancer Biology Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.23421.013Table%203.Pathway%20prediction%20and%20clinical%20association.%20For%20every%20module,%20the&x00A0;independent%20validation%20performance%20of%20the%20strongest%20radiomic%20based%20pathway%20predictors%20is%20indicated%20per%20module%20by%20the%20area%20under%20the%20curve%20(AUC)%20of%20the%20receiver%20operator%20characteristic.%20In%20addition,%20we%20highlight%20whether%20a%20module%20was%20significantly%20associated%20with%20overall%20survival%20(OS),%20TNM%20stage%20(ST),%20or%20pathologic%20histology%20(HI)%20(p%3C0.05).%2010.7554/eLife.23421.01310.7554/eLife.23421.014Table%203&x2014;source%20data%201.Radiomic%20pathway%20predictors.%2010.7554/eLife.23421.014ModuleStrongest%20radiomic%20based%20pathway%20predictionAUCOSSTHI&x2003;M1Wavelet%20(HHH)%20texture%20(GLCM)%20correlation%20&x2192;Cholesterol%20biosynthesis0.64,p=0.014&x2003;M2Laplace%20of%20Gaussian%20intensity%20standard%20deviation%20&x2192;Autodegration%20of%20the%20E3%20Ubiquitin%20ligase%20COP10.69,p=8e-4xx&x2003;M3Wavelet%20minimum%20intensity%20&x2192;Trafficking%20of%20GLUR2%20containing%20AMPA%20receptors0.67,p=0.003&x2003;M4Wavelet%20intensity%20minimum%20&x2192;Glutathione%20conjugation0.68,p=9e-4x&x2003;M5Texture%20information%20correlation%20&x2192;Trafficking%20of%20GLUR2%20containing%20AMPA%20receptors0.69,p=7e-4xx&x2003;M6Wavelet%20texture%20cluster%20prominence%20&x2192;Notch1%20intracellular%20domain%20regulation%20of%20transcription0.66,p=0.007xx&x2003;M7Laplace%20of%20Gaussian%20intensity%20entropy%20&x2192;RNA%20polymerase%20III%20transcription0.62,p=0.031x&x2003;M8Laplace%20of%20Gaussian%20intensity%20standard%20deviation%20&x2192;Pyruvate%20metabolism%20and%20citric%20acid%20TCA%20cycle0.72,p=6e-5x&x2003;M9Wavelet%20intensity%20variance%20&x2192;Trafficking%20of%20GLUR2%20containing%20AMPA%20receptors0.64,p=0.020x&x2003;M10Shape%20compactness%20and%20shape%20sphericity%20&x2192;TRAF6%20mediated%20NFkB%20activation0.66,p=0.003xx&x2003;M11Wavelet%20texture%20cluster%20tendency%20&x2192;Platelet%20aggregation%20plug%20formation0.69,p=6e-4xx&x2003;M12Wavelet%20texture%20entropy%20&x2192;G0%20and%20early%20G10.65,p=0.007xxx&x2003;M13Laplace%20of%20Gaussian%20intensity%20entropy%20&x2192;RNA%20polymerase%20II%20transcription%20initiation%20and%20promoter%20opening0.68,p=0.001x
http://dx.doi.org/
http://dx.doi.org/10.7554/eLife.23421


Discussion
Medical imaging plays a crucial role in cancer diagnosis, treatment, and response monitoring. Radio-

mics allows quantification of the radiographic phenotype of a tumor (Kuo and Jamshidi, 2014;

Gillies et al., 2010; Rutman and Kuo, 2009), but the underlying connections of radiomics to tumor

biology and clinical factors have not been elucidated yet. In this study, we identified novel and con-

sistent associations between radiomic phenotype data, underlying molecular pathways, and clinical

factors of patients with lung cancer in a North American cohort, and validated our findings in a Euro-

pean cohort and with immunohistochemical staining. In addition, we presented radiomic predictors

for pathway activations, and demonstrated the complementary prognostic value of combining radio-

mic, genetic, and clinical information.

Preliminary studies have previously investigated associations between imaging features, clinical

factors, and molecular data for a number of cancer types as outlined in recent reviews (Gillies et al.,
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Figure 4. Test for agreement between radiomic and pathological immune response assessment. Two representative cases are shown where radiomic

predictions of immune response were confirmed by immunohistochemical staining for nuclear CD3 highlighting lymphocytes in brown. Each case is

displayed in 0.6X and 2.0X magnification of the tumor slides, and an axial slice of the corresponding diagnostic CT scan and the total tumor volume is

given for comparison. Automated quantifications of lymphocytes are displayed in addition to the radiomics score incorporated to classify into high and

low responders.

DOI: 10.7554/eLife.23421.015

The following figure supplement is available for figure 4:

Figure supplement 1. Representative cases of immunohistochemical staining for RelA.

DOI: 10.7554/eLife.23421.016
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Figure 5. Combining prognostic signatures for overall survival. We tested combinations of clinical, genomic, and radiomic signatures. To a clinical Cox

proportional-hazards regression model with stage and histology, we first added a published gene signature and next a published radiomic signature.

These models were fitted on Dataset1 and evaluated with the C-index (CI) on Dataset2. An asterisk indicates significance (p<0.05). Combining different

data types resulted in increased prognostic performances. By adding radiomic and genomic information, the initial performance of the clinical model

was increased from CI = 0.65 (Noether p=0.001) to CI = 0.73 (p=2�10�9).

DOI: 10.7554/eLife.23421.017

The following figure supplements are available for figure 5:

Figure supplement 1. Prognostic performance of two radiomic signatures (i.e., a previously published and a novel signature) combined with genetic

and clinical information.

DOI: 10.7554/eLife.23421.018

Figure 5 continued on next page
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2016; Kuo and Jamshidi, 2014; Gillies et al., 2010; Rutman and Kuo, 2009; Cook et al., 2013).

Our analysis builds on these studies in that we performed a rigorous classification of a comprehen-

sive set of radiomic features in terms of underlying molecular pathways on a genome-wide scale and

clinical factors in large and independent cohorts. Although the long-term vision is to augment clinical

decision making, the current goal of our study is to satisfy the need of the radiomic and oncological

community to better understand the underlying biological rationale of radiomic predictions. Further-

more, we are the first to publicly share all study data and analysis code with the growing radiomic

and biomedical community to enable further translational research.

We identified and independently validated thirteen radiomic-pathway modules with coherent

expression patterns, eleven of which were significantly associated with OS, stage, or histology. By bas-

ing these clinical associations exclusively on radiomic features, we could demonstrate that the associ-

ated molecular pathways robustly matched radiomic- based hypotheses. For example, based on

radiomic features modules M2, M9, and M12 were prognostic and also associated with stage. These

modules were highly enriched for immune system, p53, and cell-cycle regulation pathways, biological

processes that are widely recognized to play key roles in lung cancer. For example, it has been estab-

lished that cell cycle regulation is of utmost importance in lung cancer (Baldi et al., 2011). Further-

more, the status of p53 is reported to be a predictor of survival in lung cancer patients (Ahrendt et al.,

2003) and a recent review has laid out how p53 can modulate innate immune system responses

(Menendez et al., 2013). Radiomic features in these prognostic modules M2, M9, and M12 quantified

textural entropy and dispersion image intensity values suggesting associations between textural het-

erogeneity, cell cycling, and prognosis. Therefore, these results suggest that noninvasive radiomic sur-

rogates may benefit diagnostic methods in assessing cell cycling and immune system states of tumors.

We aimed at confirming our statistical results indicating connections between radiomics, immune

response, and survival by immunohistochemical staining of lymphocytes in cases for which a relatively

high or low immune response was predicted according to a radiomics score. We generally found high

agreement between pathology and radiomics, especially in cases where immune response was pre-

dicted to be high. In cases of predicted low responders that showed high pathological immune

response, the cause of disagreement may be a heavy distribution of CD3 clusters in the extreme

periphery of the tumor with very little staining in the bulk of the tumor. In cases of predicted high res-

ponders that showed little to no immune response, this could be due to the lack of normal tissue mar-

gin around the edge of the tumor section or a sampling effect. Similarly, we stained tissue for RelA,

the p65 subunit of NFkB, to validate radiomic predictions of inflammation. Overall, we found high

agreement between pathology and radiomics, although at lower statistical significance. Future studies

with whole mount sections stained with multi-plex phenotyping can help determine the relationship

between a radiomic and a genetic immune or inflammation signature, and the gold standard.

A variety of textural features were also associated with stage and histology (module M5). Similar

associations have been reported by Ganeshan et al. (2010), who suggested that 2D texture features

of lung cancer CT scans could predict if tumor stage was II or above. Here, we found that texture

features were enriched for axon guidance and lipoprotein metabolism. Furthermore, we observed

strong associations between image intensity entropy features and pathways involved in gene expres-

sion, transcription regulation, and mitochondrial processes (M13 and M7). Previous research has sug-

gested that imaging can detect consequences of an increase in the hypoxia-inducible factor as a

result of absence of oxygen (Gillies et al., 2010). Hence, if extracting quantitative

information about mitochondrial pathways from medical images leads to assessment of hypoxia sta-

tus of a tumor, this may ultimately aid in clinical decision-making as alternative therapies for hypoxic

tumor areas are being developed (Denny, 2010; Bryant et al., 2014). Indeed, previous work has

indicated that CT pixel intensities correlate with hypoxia markers such as Glut-1 and pimonidazole

(Ganeshan et al., 2013). Those two modules (M1 and M3) that were not associated with any of the

tested clinical factors were relatively small modules; these modules suggested radiomic associations

to circadian clock and neural system. The impact of these pathways to the clinical factors we tested

Figure 5 continued

Figure supplement 2. Prognostic performance of two radiomic signatures combined with different gene signatures and clinical information.

DOI: 10.7554/eLife.23421.019
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is not apparent from current lung cancer literature, which could explain why these modules did not

show clinical associations.

Our results further suggest that radiomic approaches could have the potential to predict molecu-

lar states of pathways. We found that the highest predictors of every module was also a suitable rep-

resentative of the overall biological and radiomic themes of that module. Amongst these examples

of pathways that showed high predictability in terms of radiomics, we found various pathways essen-

tial for tumorigenesis such as cell cycle pathways (e.g., G0 and early G1), signaling pathways (e.g.,

Notch and NfKB), and tumor suppressor pathways (e.g., COP1 autodegration and p53). Further-

more, we tested those radiomic pathway predictors for predictive value of driver mutations.

Thereby, the highest performances were found for mutations in EGFR and KRAS, which is in line with

current radiomic-genetic literature (Aerts et al., 2016; Gutman et al., 2015; Liu et al., 2016;

Rizzo et al., 2016). Interestingly, however, the highest performance for the tumor suppressor and

cell cycle regulator TP53 we found was given by a textural entropy feature that also predicted G0

and early G1 (module M12). In addition, features expressed selectivity for predicting mutations,

which was suggested previously (Gutman et al., 2015). These results highlight the diagnostic poten-

tial, as ready information on pathway and mutation status may permit advanced patient stratifica-

tion. Previous studies have indicated that gene expression can be predicted by imaging features

(Gevaert et al., 2012; Segal et al., 2007; Gevaert et al., 2014). To our knowledge, however, no

study has examined and independently validated radiomic models for specific pathways, including

biological validation such as immunohistochemical staining.

Finally, we verified a previously described prognostic radiomic signature and observed that the

best performance is achieved when combining radiomic, genetic, and clinical data. These

results strongly suggest that radiomic data contain complementary prognostic information and are

robust, as the published radiomic signature (Aerts et al., 2014) has not been tested on our data

before. Notably, these prognostic improvements were relatively stable to substitution of radiomic or

gene signatures. A related indication of improved survival predictions by combining imaging fea-

tures and molecular data has been recently given for glioblastoma, however without validation

(Nicolasjilwan et al., 2015). It is worth noting that for the first time we also demonstrate that radio-

mic prognostication generalizes across cohorts from different continents.

Three research tracks have recently been proposed for clinical translation of such imaging bio-

markers (O’Connor et al., 2017), including biological validation, technical validation, and evaluation

of cost-effectiveness. Our study conforms with several of these roadmap recommendations by

advancing results on a previously proposed radiomic signature (Aerts et al., 2014) with additional

biological validation and investigations on how genetic data and clinical factors impact this signa-

ture. Fixing a radiomic signature for technical validation and cost-effectiveness verification should be

considered in subsequent studies to overcome additional translational gaps. Although the long-term

vision would be to augment clinical decision making, the current goal of our study is to

contribute in satisfying the need of the radiomic and oncological community to understand the

underlying biology of radiomic predictions.

Our study is limited by its retrospective nature. Imaging protocols are not standardized and

hence variability in CT acquisition and reconstruction parameters is inherent in clinical practice. How-

ever, despite this, no corrections by cohort or scanner type were made in this study illustrating the

translational aspect of our results that generalized across institutions. Hence, we expect that the per-

formance of radiomics will further improve, as imaging data are becoming more standardized. In

fact, multiple studies have already documented the robustness of radiomic feature extractions in

terms of reproducibility and repeatability in test/re-test settings (Fried et al., 2014;

Balagurunathan et al., 2014; Leijenaar et al., 2013; Parmar et al., 2015a; Aerts et al., 2014;

Grove et al., 2015). Another limitation of this study is that the current cohorts mainly focused on

early stage (I - III) tumors, hence generalization of radiomic-genomic associations to late stage

tumors should be drawn with precaution only. However, most radiomic applications do focus on

early stage tumors as the current radiomic approach requires segmentation of tumors which for late

stage tumors remains to be of particular complexity. Furthermore, although our study provides mul-

tiple facets of validation, immunohistochemical validation was restricted to considerably smaller sam-

ple sizes as compared to our statistical validations due to limited availability of frozen tissue.

Prospective protocols can ensure availability of sufficient tissue for additional validation.
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Biological material investigated in this study has been acquired by single-needle biopsies, thus

the interpretation of our genomic data is limited due to heterogeneity of lung cancer tumors. How-

ever, as our results validated in independent data and because known drivers of tumorigenesis were

among the main pathways found to be associated with radiomic features, this suggests that these

associations have been established in an early evolutionary step in tumorigenesis and are therefore

reasonable representatives of the overall tumor. Prospective studies with defined spatial matchings

of biopsies and/or single cell analyses could provide deeper insight into whether the strengths of

these associations can be further increased. Prospective studies will also be required to assess clini-

cal utility of combining radiomic, genomic, and clinical data into prognostic models.

In conclusion, this study presented novel and consistent associations between radiomics,

molecular pathways, and clinical factors. We applied an independent discovery and validation design

on large patient cohorts from different continents with enough variability that allowed confidence in

the generalization of our results. Furthermore, we performed biological validation and demonstrated

that radiomics predicts molecular pathway status and thus improves the prognostic performances of

clinical and gene signatures. The clinical impact of our results is illustrated by the fact that it advan-

ces the molecular knowledge of automated radiomic characterization of tumors, information cur-

rently not used clinically. This may provide opportunities to improve decision-support at low

additional cost as imaging is routinely used in clinical practice as standard of care.

Materials and methods

Discovery and validation data
Data underlying this study is made publically available with this article; Dataset1 can be downloaded

as Figure 2—source data 1 and Dataset2 can be downloaded as Figure 2—source data 2. We ana-

lyzed two cohorts of patients with non-small cell lung cancer (NSCLC), Dataset1 and Dataset2, each

consisting of pretreatment diagnostic computed tomography (CT) scans, gene expression profiles,

and clinical data. While the larger cohort Dataset1 (North American) is novel and served as a discov-

ery cohort, Dataset2 (European) has been previously published with CT scans and gene expression

data (Aerts et al., 2014), and was used for independent validation of our findings. Patients in Data-

set1 were treated in the Thoracic Oncology Program at the H. Lee Moffitt Cancer Center, Tampa,

Florida, USA; we included patients with diagnosed primary tumors who underwent surgical resection

and collected contrast-enhanced CT scans obtained within 60 days of the diagnosis between years

2006 and 2009. Patients in Dataset2 were treated at MAASTRO clinical, Maastricht, NL; we included

patients with confirmed primary tumors who received surgery. Further details of Dataset2 are given

by Aerts et al. (2014). The majority of CT scans were recorded to be contrast-enhancing (89% and

71% of patients in Dataset1 and Dataset2, respectively).

For analyses involving CT scans and gene expression data, 262 and 89 patients were available for

Dataset1 and Dataset2, respectively. In addition, clinical data were available for 224 and 87 patients,

respectively. Clinical outcomes investigated were overall survival (OS), pathologic TNM stage (com-

bined T, N, and M stages, according to the latest version 7 of the IASLC guideline for lung cancer

[Mirsadraee et al., 2012]), and pathologic histology (grouped into adenocarcinoma, squamous car-

cinoma, and others). Clinical stage and histology were used when pathologic information was not

available. Tumors in these cohorts were mainly early stage; in Dataset1 among the 224 clinically

annotated cases 26 were stage IIIB or IV and in Dataset2 among the 87 clinically annotated cases 3

cases were stage IV. These late stages have been grouped into ‘other’ for analysis. Further clinical

cohort characteristics are given in Table 1.

For tumors in both cohorts, expression of 60,607 probes was measured on a custom Rosetta/

Merck Affymetrix 2.0 microarray chipset (HuRSTA_2a520709.CDF, GEO accession number

GPL15048) by the Moffitt Cancer Center. Gene expression of Dataset2 is available also at Gene

Expression Omnibus (GEO) through accession number GSE58661. Gene expression values were nor-

malized with the robust multi-array average (RMA) algorithm (Irizarry et al., 2003) implemented in

the ‘affy’ Bioconductor package (Gautier et al., 2004). Probes have been curated by choosing the

most variant representative among probes mapping to the same gene identifier (Entrez Gene)

resulting in a total of 21,766 unique genes.
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Radiomic features
We extracted 636 features grouped into I) tumor intensity (voxel statistics), II) shape, III) texture, IV)

wavelet, and V) Laplace of Gaussian features. Group I-IV features have been defined as specified by

Aerts et al. (2014). In addition, we added new features to Group III (see GLSZM below). Group I fea-

tures are first-order statistics (e.g. mean, skewness) of all voxel intensity values in the tumor volume

mask. Group II features describe the shape and size of a tumor (e.g. compactness). Group III features

quantify texture in tumor images describing clustering of voxels with similar appearance by means of a

gray-level co-occurrence matrix (GLCM), a run-length gray-level matrix (RLGL), or a gray-level size-

zone matrix (GLSZM). These features quantify how frequent voxels of same gray-level are adjacent to

each other (GLCM), how many voxels of the same gray-level appear in a consecutive run (RLGL), or the

sizes of flat zones, areas of same gray-level in all directions (GLSZM). Group IV features are Group I-III

features (except GLSZM) assessed after a wavelet decomposition of the image, which highlights sharp

transitions in the intensity frequency spectrum. Group V consists of Group I features that have been

calculated after applying a Laplace of Gaussian transformation to the image, which highlights edge

structures. Detailed description and analytical definitions of the features added to the Aerts et al.

(2014) feature set (n = 440) are given in Supplementary file 1. Features were calculated in 3D. For

normalization, slice thicknesses of all scans were interpolated to a voxel sizes of 1 � 1�1 mm3.

Pathway analysis
To test if a radiomic feature was associated with a molecular pathway, Spearman’s rank correlation

coefficient rho was calculated for the expression of every gene across all patients and weighted by -

log10(p), where p is the p-value of rho. The resulting gene rank was input to a preranked gene set

enrichment analysis (GSEA) algorithm (Subramanian et al., 2005) version 2.0.14 on the C2 collection

version 4 of the Molecular Signature Database (MSigDB) (Liberzon et al., 2011). This collection con-

tains the expert-curated set of pathways from the Reactome database (Joshi-Tope et al., 2005).

Those 511 out of 674 pathways were considered that contained at least 15 and at most 500 genes.

GSEA reports normalized enrichment scores (NESs) for every pathway, which we further analyzed.

Radiomic-pathway association modules
To identify coherently expressed expressed features and pathways, a matrix holding an NESs for every

pair of radiomic feature and Reactome pathway was biclustered with the Iterative Signature Algorithm

(ISA) using the ‘isa2’ and ‘eisa’ packages in R and Bioconductor (Bergmann et al., 2003; Csárdi et al.,

2010). As a result, each bicluster contains a set of coherently expressed features and pathways and is

referred to as module. Potential module redundancy was limited using the ‘isa.unique’ function in the

‘isa2’ package with a maximum correlation threshold of 0.3. To avoid parameter sensitivity with ISA,

row and column clustering seed thresholds were set to a liberal sequence of 1.5 to 2.5 by 0.5 to include

all potential signals. This procedure yielded 20 putative modules. To validate these modules, we

developed and applied a correlation based statistic r:=mean(CX)+mean(CY), where CX and CY are the

Spearman rank correlations of all pairs of features and pathways in a module, respectively. The true r

was calculated for every module in Dataset1 and validated on Dataset2 with random permutation tests

(N = 1000). After correcting for multiple-hypothesis testing with the false-discovery-rate (FDR)

(Benjamini and Hochberg, 1995), the validation resulted in 13 significantly enriched modules

(FDR < 0.05). In total, the modules captured the associations between 210 radiomic features and 206

pathways.

Module size was defined as n/N + m/M, where n and m are the number of features and pathways

in a module, respectively, and N = 636 and M = 511 are the total numbers of features and pathways

across all modules, respectively. Overlap of two modules was defined by the Jaccard index

(Theodoridis and Koutroumbas, 2008), which is the size of union of features divided by the

size of intersection of features of two module. Hereby, same feature names under different transfor-

mations were considered equivalent.

Pathway predictions
To test radiomic pathway predictors, we used gene set variation analysis (GSVA) in Bioconductor

(Hänzelmann et al., 2013) to calculate pathway enrichment scores per patient. Next, we fitted uni-

variate logistic regression models of every feature to predict the NES sign of pathways (which
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corresponded to activation or deletion) in Dataset1. We assessed the concordance between the pre-

dicted probabilities of the pathway sign and the true sign with the area under the curve (AUC) of the

receiver operator characteristic (ROC) (Bradley, 1997). The strongest predictor of each module

according to the AUCs in Dataset1 was evaluated on Dataset2 for validation; significance of AUCs

was calculated according to Noether for binary outcomes (Pencina and D’Agostino, 2004).

Associations to clinical factors
Associations to OS were assessed by calculating the mean concordance-index (Harrell et al., 1982)

of all features in a module univariately using the ‘survcomp’ package in Bioconductor

(Schröder et al., 2011), and by validating this statistic with repeated random permutation tests

(N = 1000). Similarly, associations to stage and histology were assessed by the mean of Kruskal-

Wallis chi square statistics and permutation tests. As clinical information was not part of the module

identification process, a meta-analysis of the results in Dataset1 and Dataset2 was conducted to

account for sample size differences and other dataset specific variations. For this, a Fisher Z-transfor-

mation (Whitlock, 2005) of the independent p-values in both datasets was employed for every mod-

ule with weights equal to the respective sample sizes in Dataset1 and Dataset2.

We tested additive prognostic effects of integrating radiomic, gene expression, and clinical data by

combining in a Cox proportional-hazards model the predictions of (I) a clinical Cox model with stage

and histology, (II) an NSCLC OS gene signature, and (III) an NSCLC OS radiomic signature. We tested

five published gene signatures (Hou et al., 2010; Yuan et al., 2004; Chen et al., 2007; Hsu et al.,

2009) without inclusion of clinical and radiomic data and retained the strongest performing signature

byHou et al. (2010) to challenge potential performance increases. To test for generalizability of radio-

mics, we tested a published radiomic signature by Aerts et al. (2014) and a novel signature developed

in the current study. We developed this novel radiomic signature using a supervised feature selection

algorithm followed by a stepwise Cox regression approach on Dataset1: First, we employed the mini-

mum-redundancy maximum-relevance (mRMR) algorithm implemented in the ‘mRMRe’ R package

(De Jay et al., 2013) on all radiomic features with respect to OS to select a non-redundant, highly

informative ranked set of complementary features. Next, we trained Cox models incrementally, add-

ing features starting by the highest ranked feature. We performed repeated random cross-validation

(N = 1,000) to measure the performance of each model, and retained the model with the highest

mean CI. Finally, these fitted models were tested on Dataset2 for validation.

All statistical analyses were carried out using the R software (R Development Core Team, 2013)

version 3.1.0 on a Linux operating system. Details of version numbers of utilized packages are avail-

able in Supplementary file 2.

Immunohistochemical staining for CD3
We selected 25 cases each that were predicted to have high and low immune response by using the

value of the radiomic feature in the prognostic modules M2, M9, and M12 that showed the highest

absolute correlation to the mean expression of genes in the CTLA4 inhibitory pathway that is sup-

ported to be associated with immune activity (Postow et al., 2015; Pardoll, 2012; Wolchok and

Saenger, 2008). In total, 22 cases were available with enough tumor tissue and sufficient staining

quality. Tumor cross section slides were stained using a Ventana Discovery XT automated system

(Ventana Medical Systems, Tucson, AZ) as per manufacturer’s protocol with recommended reagents.

Briefly, slides were deparaffinized with EZ Prep solution (Ventana) and a heat-induced antigen

retrieval method was used under mild cell conditioning using CC1 antigen retrieval buffer (Ventana).

A rabbit primary antibody for CD3, (790–4341, Ventana) was used at supplied concentration and

incubated for 16 min. Next a Ventana OmniMap Anti-Rabbit Secondary Antibody was applied to the

samples for 16 min and the Ventana ChromoMap kit was used as the detection system. Slides were

then counterstained with Hematoxylin and dehydrated. Finally, the slides were cover slipped as per

normal laboratory protocol.

Immunohistochemical staining for RelA
We selected 25 cases each that were predicted to have high and low NFkB activity. The same proce-

dure as for the CD3 staining was applied, with the exception that a standard cell conditioning was

used with CC2 antigen retrieval buffer (Ventana). Furthermore, a rabbit polyclonal primary antibody
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for RelA (NFkB p65), (Spring Biosciences E2750) was used at 1:600 dilution* and incubated for 32

min. In total, 24 cases were available with enough tumor tissue and sufficient staining quality.

Evaluation a immunostained slide
The lymphocytes are highlighted by brown nuclear staining of CD3. The staining pattern was ana-

lyzed by a board-certified pathologist (MB) and scored into low and high enrichment. The percent-

age and intensity (weak 1+, moderate 2+ and intense 3+) of staining were recorded as well as the

number and size of clustering of CD3 positive cells. The pathologist also chose the appropriate area

from each sample for image analysis. We observed that the tissue section that has a complete cross

section of the tumor with a complete rim of adjacent benign lung parenchyma is most ideal for

image analysis. This is because the lymphocytic infiltration is commonly present at the periphery of

the tumor. In addition to this assessment by a pathologist, a computational system was implemented

for automatic evaluation (Supplementary file 3).
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Schröder MS, Culhane AC, Quackenbush J, Haibe-Kains B. 2011. Survcomp: an R/Bioconductor package for
performance assessment and comparison of survival models. Bioinformatics 27:3206–3208. doi: 10.1093/
bioinformatics/btr511

Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, Chan BK, Matcuk GR, Barry CT, Chang HY, Kuo MD. 2007.
Decoding global gene expression programs in liver Cancer by noninvasive imaging. Nature Biotechnology 25:
675–680. doi: 10.1038/nbt1306, PMID: 17515910

Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S. 2013.
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