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Abstract

Background: The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely
included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because
malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the
geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations,
on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a
systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical
range of the parasite reservoir capable of infecting humans.

Methodology/Principal Findings: After reviewing the published literature we identified potential host and vector species
and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current
evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The
ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the
results on a map of the Southeast and South Asia region.

Conclusions/Significance: We have ranked subnational areas within the potential disease range according to evidence for
presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management
and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown
category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are
therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of
putative host and vector species would be highly informative for the region-wide assessment.
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Introduction

The Plasmodium knowlesi parasite, found in wild monkey

populations, is a serious public health concern yet almost nothing

is known about its geographical extent. It is known to cause severe

and fatal disease in humans [1–4] and is the most common cause

of clinical malaria in high transmission regions of Malaysia [5,6]

where it is three times more likely to cause severe malaria than P.

falciparum [4]. However, costly P. knowlesi-specific molecular

diagnostic techniques are only used to confirm diagnosis by

microscopy in one area, Malaysian Borneo, whereas human cases

have been reported from Brunei [7,8], Cambodia [9], Indonesia
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[10,11], Myanmar [12–14], the Andaman and Nicobar Islands of

India [15], the Philippines [16,17], Singapore [18–20], Thailand

[12,21–24] and Viet Nam [25,26] as well as most parts of

Malaysia [2–4,6,27–42]. The geographical limits of this disease

and the spatial variation in disease risk within these limits are

simply unknown.

Malaria caused by P. knowlesi is a truly neglected tropical disease

and there are substantial obstacles to defining the geographical

extent and risk of this disease. The symptoms of the disease in

humans overlap with those caused by other malaria parasites

[43]and other diseases such as dengue [19]. Microscopy fails to

distinguish P. knowlesi from P. malariae (a more benign infection)

and P. falciparum (the leading cause of severe malaria globally) and

in routine practice P. knowlesi is also misdiagnosed as P. vivax

[44,45]. Currently, Rapid Diagnostic Tests are not only insuffi-

ciently sensitive for P. knowlesi [46] but can misidentify this species

as P. falciparum or P. vivax (summarised in [43]), and one set of

primers used in molecular assays can mistake some P. vivax isolates

for P. knowlesi [47]. The use of routine microscopy has led to large

numbers of P. knowlesi cases being missed and the parasite is only

correctly diagnosed when costly P. knowlesi-specific molecular

techniques are used. Despite high rates of infection in parts of

Malaysia and strong evidence from laboratory experiments that

human-to-human transmission by mosquitoes is possible [48,49],

this transmission route is very difficult to demonstrate in nature

and to-date no naturally occurring human cases have been

definitively linked to human-to-human transmission [43], but

equally no barriers to natural human-to-human transmission have

been demonstrated.

In the absence of complete geographical data on this disease in

humans, the presence of alternative hosts is a useful indicator of

the potential presence of a disease reservoir. A competent

anopheline vector species is also required for transmission from

monkeys to humans (or from humans to humans). These two

factors provide an opportunity to map the potential reservoir of

the parasite in the absence of human case data. Defining areas of

risk, however, is further complicated by the fact that much of the

potential parasite range is spread over a large archipelago of many

thousands of islands separated by substantial distances; a

biogeographical factor often neglected in global disease mapping

exercises and of particular relevance to a zoonotic vector-borne

disease with a reservoir in wild mammal populations.

Previous studies have defined a range for neglected diseases

such as dengue by reviewing the consensus of evidence for the

presence/absence of the disease at each location [50]. These

studies combined multiple reports of disease presence/absence and

weighted them for diagnostic quality and reporting provenance. In

the case of P. knowlesi malaria, however, there is insufficient direct

evidence of disease presence/absence to replicate this approach. In

this study, instead of assessing the consensus of evidence for disease

presence/absence, evidence on locations of host and vector

species, as well as human case data, were combined to obtain

ranked scores for the capacity to support an infectious reservoir.

We first reviewed the evidence on non-human primate hosts and

transmission by different anopheline vector species and then

gathered data on the ranges of these two groups, as well as the

locations of known human cases of the disease. This information

was used to assess the potential of each province or island to

support an infectious reservoir. The final output is a comprehen-

sive summary of the current state of evidence for a P. knowlesi
reservoir. Importantly, it is not a map of the likelihood of a

reservoir occurring within an area but it does highlight areas

where evidence is lacking. The results of this study allow us to

propose priorities for the new data that are urgently needed in

order to understand the spatial variation in risk to humans from

this disease.

Methods

Defining the area of study
Maps of human disease often use administrative divisions to

subdivide countries. This is the structure in which much national

health data are provided and is a useful format to feed results back

to public health agencies. For zoonotic diseases, however, the

distributions of wild host species will not necessarily map closely to

administrative divisions. In this instance, the majority of cases

reported to-date are located within a huge archipelago where

administrative divisions can encompass multiple islands separated

by large distances. For this study we took a mixed approach using

administrative divisions to subdivide the mainland and the largest

islands in the archipelago (Papua, Borneo, Sumatra, Java and

Sulawesi). The largest administrative division in the area of study,

Xizang Zizhiqu (the Tibet Autonomous Region) in China, was

further divided into level two divisions. Additionally, islands

greater than 25 km from the mainland and greater than 200 km2

in area were defined as separate geographical units. Within the

archipelago, islands within 10 km of each other were grouped

together and islands less than 100 km2 and more than 10 km away

from any other island were disregarded. Following these approx-

imate guidelines we were able to divide this region of 19 countries

spread over approximately 25,000 islands into 475 geographical

units.

Reviewing the evidence for the pre-requisites required to
support a P. knowlesi reservoir
We conducted a literature survey in Web of Knowledge using

the terms ‘knowlesi’, ‘zoono* and malaria’, ‘monkey and malaria’

to collate journal articles on the parasite and then excluded studies

conducted solely in the laboratory (e.g. immunity studies using a

rhesus-knowlesi model). The bibliography of each article was then

searched for further published sources of information and authors

working in locations of particular interest were contacted. The

search was completed on 30 September 2013. Molecular

techniques that can distinguish the P. knowlesi parasite (alone or

in combination with microscopy) have only been available for the

last decade so this dictated the period reviewed (2004 to 2013). All

Author Summary

Plasmodium knowlesi is a malaria parasite found in
monkeys which can infect humans via mosquito bites.
People infected with the P. knowlesi parasite can suffer
severe disease and death yet this disease has often been
misdiagnosed as a different malaria type and its geo-
graphical distribution is largely unknown. The lack of data
on human infections in much of Southeast Asia means a
simple map of reported cases would likely misrepresent
the extent of the disease. Instead we evaluated and ranked
a range of evidence types according to how informative
they are about the presence of an infection risk to humans
and we mapped this ranked information. This highlighted
those geographical areas where new data on the monkey
and mosquito species involved in the infection of humans
would add most to our knowledge of the full range of
factors involved in disease risk. The resulting map
highlights known locations of the parasite, and areas
where presence of the disease in humans is unknown but
possible.

Estimating the Range of a Zoonotic Malaria
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data on wild animals tested for P. knowlesi infection were extracted

and used to determine which alternative host and vector species

would contribute to the next stage of the work.

Ranking the evidence for presence of a P. knowlesi

reservoir infectious to humans, by subnational area
Each subnational area was assigned a score based on three classes

of evidence: the presence of the parasite; the presence of a monkey

host species, and; the presence of a malaria vector species known to

bite humans (Figure 1). Each area was scored independently and

was unaffected by the scores of neighbouring areas to reflect, in part,

the patchy nature of the disease and of the evidence.

The scores assigned provide a simple ranking. In summary,

confirmation of a human infection ranked highest with +9

overriding all other evidence, then confirmation of sporozoites in

a human-biting vector scored +8. Confirmation of a monkey

infection was combined with the score for presence of a human

malaria vector (see below) to give a maximum score of +7. In the

absence of the parasite itself, presence of both a known host species

and a known vector species scored +6. Combinations of known/

putative host species presence and known/putative vector species

presence (see below) scored from +2 to +5. Combinations of host

species absence, vectors species absence and absence of any

malaria in humans (see below) scored values ranging from 21 to

29. In locations where both presence and absence indicators were

found, the respective scores were added together.

Scoring the evidence for P. knowlesi presence and other
human malaria parasites
All occurrences of the parasite, identified using either 1) P.

knowlesi-specific molecular identification methods or 2) a combi-

nation of microscopy and molecular techniques that distinguish P.

knowlesi from P. falciparum and P. malariae, were extracted from the

library of published literature described above. The location of

occurrence was defined as the location of infection, not the

location of symptom onset or diagnosis, and studies that could not

identify the location of infection (to state/island level) were

excluded. For each occurrence, the date of study, diagnostic

technique(s) and subnational location of infection were extracted.

Only the most recent infection from each area/island was

retained. In two studies we could not distinguish between adjacent

administrative divisions so these areas were combined (at the

Myanmar/China border and at the Myanmar/Thailand border).

Two reports of human cases from Brunei did not meet the

inclusion criteria because one used microscopy only for diagnosis

[8] and the other did not publish their diagnostic methods [7].

There were no survey results that provided clear evidence for

absence of the parasite in an area. In countries that routinely

Figure 1. This schematic outlines the system used to assign an evidence score to each area. Further details are provided in the text.
Pk= P. knowlesi.
doi:10.1371/journal.pntd.0002780.g001

Estimating the Range of a Zoonotic Malaria
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report cases of the four human malarias, occurrence of these other

species may mask P. knowlesi cases and, conversely, divisions within

these countries that report no malaria cases are less likely to have

undetected P. knowlesi cases. Areas within malaria endemic

countries reporting no malaria cases were defined using the

2012 World Malaria Report [51] and assigned a score of 23. For

areas without data in the 2012 World Malaria Report, we used the

2010 limits of P. falciparum and P. vivax defined by the Malaria Atlas

Project to classify each area [52,53].

Scoring the evidence for alternative host (monkey)
presence
Based on the data collected from published studies (see Results),

we made the decision to use the ranges of two monkey species.

Macaca fascicularis (the long-tailed or crab-eating macaque, also

known as the cynomolgus or kra monkey) and M. nemestrina (the

pig-tailed or Southern pig-tailed macaque). Two other species

have been identified as hosts, Trachypithecus obscuras and Presbytis
melalophus, however the ranges of these species fall entirely within

the range of M. fascicularis, therefore, these areas already receive

the maximum score for presence of a known non-human host

species.The ranges for M. fascicularis and M. nemestrina were initially
defined using the International Union for Conservation of Nature

(IUCN) ranges [54] and a score of +3 assigned to all subnational

areas that overlapped with one or both of these ranges. The IUCN

ranges, however, estimate the natural range of each species and do

not always include introduced populations, and new data may

have been collected since the ranges were last revised. For these

reasons we also included evidence for presence of each species

outside the IUCN ranges from 1985 onwards and gave a score of

+3 to records of a host species collected since 2000 and +2 for

records collected between 1985 and 1999. A score of +1 was

assigned to areas where the published evidence indicated

introduced populations have hybridised out with endemic species

in the area. The published literature does not cover all islands in

the Malay Archipelago so we also contacted conservation and

wildlife organisations in Indonesia, Malaysia and the Philippines to

request information on which islands support populations of these

species and assigned a score of +3 to any new areas identified by

these organisations. After published studies reported finding P.

knowlesi infections in M. nemestrina monkeys, this monkey species

was divided by taxonomists into M. nemestrina and M. leonina (the

Northern pig-tailed macaque). We made the decision to include

both species because, although it is likely that the monkeys tested

were M. nemestrina (as currently classified), human cases have been

found outside the ranges of M. nemestrina and M. fascicularis but

within the range of M. leonina. A lower score of +2 was assigned to

areas within the M. leonina range.

The IUCN ranges were combined for all three macaque species

and a score of 21 was assigned to areas outside the combined host

species range (excluding locations with introduced populations)

and 22 for those areas more than 100 km outside this range. The

maximum possible negative score was not assigned because we do

not have a definitive list of primate species that can host a reservoir

of P. knowlesi parasites in the wild, and laboratory studies have

shown that other species can be infected by this parasite [55].

Scoring the evidence for anopheline vector presence
Based on evidence from the published literature on which

Anopheles species are capable of transmitting P. knowlesi (see Results)

and evidence for which vectors transmit human malaria [56], we

assigned the highest vector score of +3 to the Leucosphyrus

Complex and the Dirus Complex. This score was assigned to areas

where a human malaria vector belonging to either of these two

Complexes was recorded as present. Specifically we used

published ranges for the Dirus Complex, Anopheles leucosphyrus

and An. latens combined, and An. balabacensis. The species were

grouped in this way because studies publishing vector species

occurrence frequently do not distinguish individual species within

these groupings. In the absence of these species, the presence of

other sylvatic vector species (forest/margins dwelling, and

therefore more likely to encounter macaques) known to transmit

malaria to humans but of unknown P. knowlesi vector status was

assigned a lower score of +2. The species in this category were the

Fluviatilis Complex, the Minimus Complex, An. koliensis, An.

aconitus, An. annularis, the Culicifacies Complex and An. flavirostris.

Finally, where no vector species from either of the above two

classes were present, presence of any of the other human malaria

vectors was assigned a lower score of +1 to reflect the fact that

these species are known to have the capacity to transmit malaria

parasites to humans [56] and have not been ruled out as vectors of

P. knowlesi. To assess the presence of all three vector classes, we

used the predicted distributions generated by the Malaria Atlas

Project [56] and defined all points with a probability of occurrence

of .0.5 as presence locations. Presence of any one of the species

from a vector class within an administrative division or island was

considered sufficient to record that vector class as present.

A score of 24 was assigned to areas outside the combined range

of the vector species and 26 to areas 100 km outside this range.

This score (smaller than the maximum negative score but greater

than the negative score assigned to absence of known monkey host

species) reflected the fact that there is a lack of evidence for the

definitive list of vectors transmitting P. knowlesi but much stronger

evidence for the definitive list of vectors that transmit malaria to

humans.

Calculating the overall score
The scores were combined as shown in Figure 1 and the overall

scores, providing a relative ranking of the cumulative evidence for

each subnational area, were displayed on a map of the region. A

second simplified map was then created, to aid visualisation of the

results, by grouping the scores into four classes: scores of +7 to +9

were classed as ‘confirmed infectious reservoir’; scores of +6 were

classed as ‘confirmed reservoir prerequisites’; scores of +1 to +5

were classed as ‘weak evidence for a reservoir’; and scores of29 to

0 were classed as ‘absence of reservoir prerequisites’.

To test the scores generated, the scores that would have been

obtained if evidence for presence of the parasite itself was excluded

were compared between areas with confirmed parasite presence

and those of unknown parasite status. A jackknife approach was

then used to assess the dependence of the final scores on each

individual factor. Each individual factor was excluded and the

scores were re-calculated. The results were compared between

areas with confirmed parasite presence and those of unknown

parasite status, and the relative ranking of all areas before and after

each factor was removed were compared. To assess the predictive

power of the scores, the area under the receiver operating

characteristic curve (AUC) was calculated for each version of the

scoring system created when single factors were removed in turn

(with parasite presence excluded) [57].

Results

The review of published studies of P. knowlesi infection in wild

monkey populations is summarised in Table 1. It is immediately

clear that only a few species and populations have been tested in a

few countries. High infection prevalences have been found in M.

fascicularis and M. nemestrina populations in Sarawak in Malaysian

Estimating the Range of a Zoonotic Malaria
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Borneo and lower prevalences in Singapore, Kuala Lumpur and

Pahang States in Malaysia, Narathiwat and Ranong Provinces in

Thailand, and North Sulawesi Province in Indonesia. Older

studies (pre-2004) have also found infected M. fascicularis monkeys

in Cebu, Philippines [58].

The review of published studies of P. knowlesi in wild mosquito

populations is summarised in Table 2. The most striking result is

that published studies have only been conducted in Khanh Hoa

Province in Vietnam and Pahang State and Kapit Division of

Sarawak State in Malaysia. Other countries have very different

vectors that are known to transmit malaria to humans but their

role in P. knowlesi transmission is unknown. In the areas studied,

there is evidence that Anopheles latens from the Leucosphyrus

Complex and members of the Dirus Complex transmit P. knowlesi.

Members of both Complexes are known to transmit human

malarias. Earlier studies (pre-2004) have implicated members of

the Hackeri Subgroup in transmission of P. knowlesi within monkey

populations in Peninsular Malaysia [59], however, these mosquito

species are not known to bite humans. Laboratory studies have

shown that a wider range of species may be able to transmit P.

knowlesi, however, these studies also confirmed that the most

effective vectors, of those tested, were members of the Leuco-

sphyrus Group [60,61].

The information from the reviews of monkey hosts and of

vectors was used to generate parasite, host and vector evidence

scores for each geographical area and these were combined with

the evidence for parasite presence to give an overall score

representing the evidence for potential presence of a parasite

reservoir that is infectious to humans (shown in Figure 2A). The

individual evidence scores assigned to each subnational area (for

evidence of human infection, parasite occurrence, known and

potential host occurrence, and known and potential vector

occurrence) are given in Table S1.

Figure 2A shows the full range of scores generated. The

variation in cumulative evidence for presence of the prerequisites

required to support an infectious reservoir can be seen, from a

complete absence of all prerequisites and thus evidence for

absence of a reservoir (29,) to a lack of evidence and high

uncertainty (0), to presence of a full set of prerequisites but

unknown parasite status (+6), to confirmation of human cases (+9).

Figure 2B shows a simplified version of the same information with

the scores grouped into four classes: areas where both the parasite

itself and a vector able to transmit it to humans have been found;

areas with known monkey hosts, known vectors of P. knowlesi and

no factors indicating absence of a reservoir (presence of the

parasite itself is unknown); areas of weak evidence for the presence

of a full set of reservoir prerequisites; and areas where there is

evidence for an absence of reservoir prerequisites. It is important

to note that Figure 2 is not a map of the likelihood of a reservoir

occurring within each area, for example, an area may receive a

zero score because evidence is lacking or it may in fact be less likely

to support an infectious reservoir.

Figure 3A provides a histogram of the full range of scores

assigned to the 475 subnational areas with scores +7 to +9

Table 1. Published cases of P. knowlesi infection in non-human primates, from studies conducted since 2004.

No. individual monkeys positive for P. knowlesi infection/no. tested Ref.

M. fascicularis M. nemestrina* P. melalophus T. obscurus Other species

Bangladesh

Bhutan

Brunei

Cambodia

China

India

Indonesia 1/31 [70]

Laos

Malaysia 10/143 0/1 0/1 [29]

71/82 13/26 [86]

Myanmar

Nepal

Palau

PNG

Philippines

Singapore 3/13 [18]

Sri Lanka

Thailand 0/99 [87]

1/195 4/449 1/7 0/4 [88]

Timor Leste

Vietnam

TOTAL 86/563 17/476 1/7 0/4

* Macaca nemestrina has since been divided into sibling species M. nemestrina and M. leonina.
doi:10.1371/journal.pntd.0002780.t001

Estimating the Range of a Zoonotic Malaria
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exclusively assigned to areas with confirmed parasite presence.

Figure 3B shows the range of scores assigned when evidence for

parasite presence was excluded from the scoring system. The

scores assigned to areas that are known to support the parasite

ranged from +1 to +6, i.e. the parasite has been found in areas

outside the known monkey and/or vector ranges, or areas with

factors that indicate absence of a reservoir prerequisite. The area

that scored +5 was the northern part of Myanmar (Shan State

North and East) bordering China, and the evidence for parasite

presence here came from two independent studies [13,14]. The

known monkey host species (M. fascicularis and M. nemestrina) have
not been found in this area but M. leonina is present. Studies that

have investigated malaria parasites in the monkey populations in

this area have not yet found evidence of P. knowlesi infection in any

of the species present (Qijun Chen, unpublished data).

Two neighbouring areas with confirmed parasite presence

scored only +1 when the evidence for parasite presence itself was

excluded. These were two islands in the north of the Andaman

and Nicobar Islands; Smith Island and Car Nicobar. The southern

islands fall within the range of M. fascicularis but there is no

evidence of any known or putative monkey host species

populations on the northern islands, including Smith Island and

Car Nicobar [62]. The evidence for human P. knowlesi infections in

these locations (and also on Great Nicobar and Teressa, two of the

southern islands with known hosts and known vectors) comes from

a single study of human malaria cases in the Andaman and

Nicobar Islands [15]. A total of 15 cases were found on Smith

Island and 25 on Car Nicobar, which rules out a one-off imported

case. Further work is required to investigate the possibility of a P.
knowlesi reservoir existing on the northern islands of the Andaman

and Nicobar Islands, including the possibility of human-to-human

transmission and the possibility of a parasite reservoir in the

captive long-tailed macaques at Port Blair’s zoo [63].

Finally, Figure 2 shows that many areas in the region have weak

evidence for their ability to support an infectious reservoir, but

cannot be ruled out altogether. A small number of areas fall

outside the ranges of all known or putative hosts or vectors, which

provides evidence that these areas could not support a P. knowlesi
reservoir. If this study had covered a broader geographic area, the

number of these areas would be much higher.

Table 3 provides the AUC values calculated when evidence for

parasite presence was excluded, and each time the scoring system

was adjusted to remove a single factor in turn. The AUC value

obtained when parasite presence only is excluded was 0.7979,

indicating the scoring system has very good predictive power. No

set of factors modelled the known locations of the parasite perfectly

but the result was similar when different factors were removed and

was always &0.5, indicating that the accuracy of the scoring

system is always good and not heavily dependent on any single

factor. Figure S1 shows the full range of scores obtained when

individual factors were excluded. In each case, scores for the

subnational areas with confirmed parasite presence (31 subna-

tional areas; 29 with confirmed human cases and 2 confirmed in

monkey only) can be visualised compared to the scores for the 444

other areas. Figure S2 shows the relative ranking of the 475 areas

after a single factor has been removed, against the ranking using

Table 2. Published cases of P. knowlesi infection in Anopheles vectors, from studies conducted since 2004.

No. individual mosquitoes positive for P. knowlesi infection/no. tested Ref.

An. latens An. introlatus
Dirus

Complex

Hackeri

Subgroup

Riparis

Subgroup

Other Leucosphyrus

Group

Other

species

Bangladesh

Brunei

Cambodia

China

India

Indonesia

Laos

Malaysia 2/211 0/1 0/127 [29]

4/1073 0/4 0/9 0/8 0/1414 [89]

8/339 [90]

4/940 0/2 0/5 0/540 [91]

Myanmar

Nepal

Palau

PNG

Philippines

Singapore

Sri Lanka

Thailand

Timor Leste

Vietnam 37/5686 [26]

TOTAL 12/1412 0/4 43/6837 0/12 0/8 0/5 0/2081

doi:10.1371/journal.pntd.0002780.t002
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all factors. The relative ranking does not appear to be strongly

affected by the removal of any single factor, i.e. the individual

factors are highly correlated as indicated by the consistently high

AUC values shown in Table 3. Table S2 provides the full set of

scores for each area including the scores achieved after each

individual factor had been removed.

Discussion

By assessing the evidence in a systematic way based on the

current state of knowledge, we have been able to map subnational

areas where a P. knowlesi reservoir capable of infecting humans has

been confirmed and those that support known hosts and vectors.

In the absence of routine confirmation of P. knowlesi in human

cases, and of definitive lists of host and vector species, it is harder

to map areas of known disease absence. We have, however, been

able to classify the rest of the region into areas that range in the

evidence for their capacity to sustain a parasite reservoir that is

infectious to humans, based on the current state of knowledge.

Both the review of species shown to host and transmit P. knowlesi,

and the ranking of the evidence for a parasite reservoir, highlight

the urgent need for more evidence in large parts of the region of

study and provide information on the types of data that are

needed. The results of this study highlight priority geographical

areas for future study that would enable us to build a more precise

map. Areas of Indonesia (Kalimantan, Sumatra, part of Java and

parts of Sulawesi), parts of the Philippines, Cambodia, S.

Thailand, S. Myanmar and S. Vietnam support both the known

hosts and the known vectors, and are obvious targets for studies

investigating new locations of parasite infections and disease

prevalence. Locations with high disease potential could be

targetted further by identifying areas that report cases of P.

malariae malaria when using microscopy for routine species

confirmation. The blank cells in Tables 1 and 2 indicate the

regions that have not been tested for parasite presence in

alternative hosts and vectors, and the species that have not been

tested. In this case, data on absence of the parasite will be as

important as presence data and will help to refine the disease

limits.

When parasite presence was excluded from the scoring system,

the predictive power of the scores generated from the evidence on

hosts, vectors and human malarias was very good (AUC=0.8146).

It is important, though, not to assume that the factors used in this

scoring system give the full picture. It is likely that the researchers

who designed the P. knowlesi studies conducted outside of Malaysia

used the same assumptions about host and vector species as this

study, when choosing their study locations, leading to a bias in

locations where the parasite has been found. Evidence from human

cases in returning travellers, however, may not be subject to the

same biases for presence of presumed host and vector species. All of

the published cases of P. knowlesi infection in returning travellers,

diagnosed outside the region, involve patients that had spent time in

one or more subnational areas where both the known monkey hosts

and the known vectors are present [7,10,17,22,30,31,34,35,37,64–

66] providing corroborating evidence for the assumptions made in

this study. Absence of a parasite is harder to prove and negative

results are harder to publish, but there is a limited amount of

unpublished data that provides further corroboration of our

approach. Investigation of 349 human malaria cases from across

Laos (average score 4.25=weak evidence) found no P. knowlesi (M.

Mayxay, unpublished data) while surveys of macaque populations in

Nepal (average score 21=weak evidence/absence of reservoir

prerequisites) and Bangladesh (average score 1.67=weak evidence)

also found no evidence of P. knowlesi infection (Ananias Escalante,

unpublished data).

The sensitivity analysis presented here suggests that some of the

factors included in this study could be removed and the scores

would still perform as well, however, the areas with confirmed

parasite presence are a potentially biased sample and so it would

be unwise to remove any potential factors until we are closer to a

definitive list of vectors and alternative hosts. This would help to

refine the map presented here, enabling us to assign higher

positive or negative scores for either presence or absence, and

therefore to delineate more accurately the outer limits of the

disease reservoir. This is necessary in order to provide precise

information to public health agencies, and to provide a

contemporary baseline to monitor future changes in the disease

distribution. Longitudinal studies in Sabah, Malaysia have shown

that P. knowlesi incidence has increased at this location over the last

decade [6] but further research is required to assess whether this is

linked to factors such as changing land use, changes in human

behaviour and/or changes in the behaviour of the alternative hosts

or vectors, including the possibility that human-to-human

transmission is a factor [67].

In the past a lack of diagnostics meant that data on human cases

was lacking and high population movement further complicated

the picture. We are now in a better position to obtain human case

data and this study has highlighted the regions to target. Further

studies of the monkey species able to host this parasite would also

be particularly informative, particularly in Northern Myanmar

where M. fascicularis and M. nemestrina are absent but M. leonina, M.

assamensis and T. phayrei are present [54]. Studies of any monkey

populations on Smith Island in the Andamans would also be

informative although no monkey species are endemic to this island

or nearby Car Nicobar [54] and there are no confirmed reports of

domestic or introduced primate species on these islands. Port Blair

Zoo on Smith Island has long-tailed macaques in captivity [63] but

there is no evidence for presence of captive monkeys on Car

Nicobar. The report of human cases of P. knowlesi malaria on

Smith Island and Car Nicobar [15], and the primate status of

these islands, certainly merits further investigation. Both the

monkey and vector species involved in P. knowlesi transmission are

a complex and dynamic mix of subspecies and sibling species

[56,68]. No studies to-date have considered the ability of the full

range of macaque species to host malaria parasites nor have the

many hybrids occurring in areas where these species are co-

endemic [69] been investigated for their parasite status.

As well as their susceptibility to P. knowlesi, the social

organisation of these primates differs, in terms of ranging patterns,

relationships to humans and time spent on the ground versus the

canopy. These factors may have an important influence on their

relevance as a reservoir for transmission of P. knowlesi to humans.

These factors also differ between populations; for example, in

areas with extensive primate hunting, primate reservoir popula-

tions may be pushed far from humans reducing the probability

that humans will intersect with primate-vector cycles.

This work also highlights the importance of understanding the

role of introduced populations when the ultimate goal is to map a

Figure 2. Panel A is a map displaying the evidence scores assigned to each area ranging from strong evidence for presence of a
parasite reservoir infecting humans to weak or no evidence through to absence of host and vector species indicating that an
infectious reservoir would not be supported. Panel B shows the same scores grouped into four classes.
doi:10.1371/journal.pntd.0002780.g002
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Figure 3. Panel A shows the distribution of scores for each subnational area. Panel B shows the scores assigned when the evidence for
parasite presence was removed (i.e. the scores based solely on host presence/absence, vector presence/absence, other human malaria presence and
presence of M. mulatta). Those areas with confirmed parasite presence are shown in black.
doi:10.1371/journal.pntd.0002780.g003
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disease reservoir. Plasmodium knowlesi has been found on Sulawesi

[70] where none of the host species are endemic but where M.

fascicularis and M. nemestrina are kept as pets and have escaped into

the wild [71–73]. Future studies of parasites in introduced

populations would increase our understanding of the likelihood

of a founder population being infected and of persistence of the

parasite within a new population following introduction. This

would inform the criteria used to decide which populations are

included in mapping studies.

When monkey host species have been introduced to areas where

other macaque species are endemic [74], hybrids have been found

outside the range of the host species and further interbreeding may

lead to genes from these host species being introgressed into the

native species population [75]. This again raises the question of the

infection status of hybrids and of non-host species populations with

introgressed genes from M. fasciularis or M. nemestrina. Hybrids are

likely to occur in the narrow contact zone between M. fascicularis

and M. mulatta in Thailand, Vietnam, Laos and Myanmar [76,77].

Hybrids found within the range of known P. knowlesi host species

will not impact the geographical limits of the disease, but if hybrids

are found beyond the range of the known hosts this could affect

the disease risk in these locations.

The disease status of hybrids between known hosts, whose

populations can sustain high P. knowlesi infection prevalences, and

rhesus monkeys, that may not be able to survive in the presence of

P. knowlesi, is particularly interesting and currently unknown. The

impact on P. knowlesi host status following introgression of genes

from one species into populations of another is also unknown; we

simply do not know whether introgression (contemporary or

ancient) of M. fascicularis genes into M. mulatta populations at the

southern end of their range [78–80] increases their ability to host

this parasite or whether introgression of genes from M. mulatta into

M. fascicularis populations north of peninsular Thailand reduces

their ability to act as a reservoir for this parasite, or whether more

complex genetic interactions occur. Which genes are important in

P. knowlesi infection and their status in any of these species or

populations is unknown. Taking a pragmatic approach for the

purpose of producing a map of disease risk for public health use,

however, the most important questions are 1) what is the

prevalence of human infection at precise locations and 2) what is

the prevalence of infection in species/hybrids of monkeys and

mosquitoes at precise locations across the region? A recent

preliminary finding reports a P. knowlesi infection in either a M.

mulatta monkey or a M. mulatta/M. fascicularis hybrid in Vietnam

close to the location of known human and vector infections [81].

Further investigation of P. knowlesi in wild M. mulatta populations,

and in populations of hybrids, is needed to provide evidence for

their role in hosting a parasite reservoir.

Large numbers of laboratory experiments have shown that P.

knowlesi readily infects and is usually fatal to M. mulatta (,70% of

individuals are killed) but the surviving animals have the ability to

pass the parasite on to mosquito vectors [82], leading to

contrasting hypotheses that either M. mulatta populations cannot

co-exist with the parasite [83] and could therefore be used as a

negative indicator for a disease reservoir, or M. mulatta could be a

natural host for the parasite [81] and therefore be used as a

positive indicator. Alternatively, populations of M. mulatta in

different locations may differ in their level of immunity to P.

knowlesi, which would mean both hypotheses could be true

depending on location. The overlap of the P. knowlesi parasite

and the rhesus monkey found in two subnational areas (N

Myanmar and NW Thailand) suggests the parasite and the rhesus

macaque may co-exist, however, within these two areas the precise

locations of the parasite and of the macaque may still differ. A

finer scale approach will help to resolve the question of whetherM.

mulatta can co-exist with P. knowlesi. In addition, a second monkey

species, Presbytis (Semnopithecus) entellus, which is also known to have

a high fatality rate when infected in the laboratory [84], could be

used as an indicator of P. knowlesi absence or alternatively this

species could also provide a parasite reservoir. Inclusion of P.

entellus as a negative indicator would reduce the scores for areas of

Southern India and Sri Lanka on the edges of the area of this

study. More data on the naturally-occurring malaria infections

found in the full range of species in the region is needed and

further data to back up the finding of a P. knowlesi infection in

either a M. mulatta monkey or a M. mulatta/M. fascicularis hybrid in

Vietnam [81] would resolve the issue of whether M. mulatta

presence is a useful indicator for a potential disease reservoir.

The approach used in this paper has the limitation that presence

of a single isolated host population in one part of a state/island

increases the score assigned to the whole state/island. One

example of this is Papua, a Province of 320,000 km2 which is not

endemic for any of the known or potential host species but which

supports a single isolated population of M. fascicularis near

Table 3. The area under the curve of the receiver operating characteristic for the overall model excluding evidence for parasite
presence and when individual factors were excluded in turn.

Model (scoring system) Area under the curve (AUC)

P. knowlesi presence excluded 0.7979

P. knowlesi presence and Leucosphyrus vectors excluded 0.7319

P. knowlesi presence and other sylvatic vectors excluded 0.8037

P. knowlesi presence and other human vectors excluded 0.7990

P. knowlesi presence and vector absence excluded 0.7978

P. knowlesi presence and other human malarias excluded 0.7875

P. knowlesi presence and the natural range of M. fasciularis excluded 0.8624

P. knowlesi presence and) the natural range of M. nemestrina excluded 0.7990

P. knowlesi presence and introduced Mf/Mn populations excluded 0.7808

P. knowlesi presence and M. leonina excluded 0.7970

P. knowlesi presence and host absence excluded 0.8055

Mf=M. fascicularis and Mn=M. nemestrina.
doi:10.1371/journal.pntd.0002780.t003
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Jayapura [85]. Surveys of the malaria parasites found in isolated

introduced populations would provide an evidence base for the

score assigned to these populations. Furthermore surveys which

show that an isolated population is P. knowlesi-free can be used to

exclude the population from the scoring system. A surveyed

population that is found to be infected will still affect the score for

the whole state/island, as will an isolated human case or infected

vectors at a single discrete location, and a finer resolution mapping

approach is needed to address this limitation of the current map.

The map presented here has divided the region into 475 areas

and provides good subnational resolution, but it is not a fine

resolution map and cannot distinguish the large variation that may

exist within a province or island. Specifically, there will be areas

within most provinces/islands that are less likely to support a

reservoir. Point-located data for the parasite, hosts and vectors is

available, which opens up the possibility of using ecological niche

modelling techniques to produce a finer resolution map. Niche

models will identify areas suitable for disease transmission that fall

outside the actual disease range, unless constrained by information

on the geographical extent of the disease. The study published

here has used an evidence-based approach to examine the putative

range of the disease reservoir and can be used to delineate outputs

from studies that use a niche modelling approach to map this

disease on a fine scale. Furthermore, the methods developed in this

study are broadly applicable and could usefully be extended to

other severely neglected vector-borne and/or zoonotic diseases

such as scrub typhus or chikungunya.

The goal of the map presented here is to provide a

comprehensive summary of the current state of evidence for a P.
knowlesi reservoir. It is not a map of the likelihood of a reservoir

occurring within each area and an area may receive a zero score

because the evidence available is lacking or it may in fact be less

likely to support an infectious reservoir. This issue is particularly

apparent within the Malay Archipelago. Smaller islands are less

likely to have evidence for parasite and/or host and/or vector

presence, but they may also differ in their underlying ability to

support a parasite reservoir. The map shows where evidence is

strong and is inherently biased to areas where studies have been

conducted. When considering methods to model the probability of

occurrence of a reservoir, on a fine-scale, it will be essential to

address the issue of sample bias. In order to produce such fine

scale maps, more data is needed and the current study has

highlighted the types of data and the geographical areas of study

that would be most informative, based on our current state of

knowledge.

Supporting Information

Figure S1 A figure showing histograms of the scores generated

each time the scoring system was adjusted. Subnational areas with

confirmed cases of knowlesi malaria in either humans or macaques

are marked in black and all other areas are light grey. Panel A

shows the scores when evidence of parasite presence is excluded.

Panels B–L show the scores generated when a second individual

evidence class is excluded: B) Leucosphyrus vectors excluded; C)

other sylvatic vectors excluded; D) other human vectors excluded;

E) combined vector range excluded; F) other human malarias

excluded; G) the natural range of M. fasciularis excluded; H) the

natural range of M. nemestrina excluded; I) introduced M. fascicularis

and M. nemestrina populations excluded; J) M. leonina excluded; K)

combined monkey range excluded.

(TIF)

Figure S2 A figure showing ranked scores generated when

individual factors were excluded. Each graph shows the ranked

scores when evidence of parasite presence is excluded (the x axis)

against the ranked scores when the score is adjusted as follows: A)

the mean score obtained across all exclusions (B–L); B) Leucosphyrus

vectors excluded; C) other sylvatic vectors excluded; D) other

human vectors excluded; E) combined vector range excluded; F)

other human malarias excluded; G) the natural range of M.

fasciularis excluded; H) the natural range of M. nemestrina excluded;

I) introduced M. fascicularis and M. nemestrina populations excluded;

J) M. leonina excluded; K) combined monkey range excluded.

(TIF)

Table S1 An Excel file containing the full set of individual scores

for each evidence class and the overall evidence score as displayed

in Figure 2A of the manuscript.

(XLSX)

Table S2 An Excel file containing the scores assigned to each

subnational area when parasite evidence was excluded and the

scores generated when each individual evidence class was

removed.

(XLSX)
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