
RESEARCH ARTICLE

Defining the next generation of Plasmodium

vivax diagnostic tests for control and

elimination: Target product profiles

Xavier C. Ding1*, Maria Paz Ade2, J. Kevin Baird3,4, Qin Cheng5, Jane Cunningham6,

Mehul Dhorda7,8, Chris Drakeley9, Ingrid Felger10,11, Dionicia Gamboa12,13,

Matthias Harbers14, Socrates Herrera15, Naomi Lucchi16, Alfredo Mayor17,18,

Ivo Mueller19,20, Jetsumon Sattabongkot21, Arsène Ratsimbason22,23, Jack Richards24,25,

Marcel Tanner10,11, Iveth J. González1
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Abstract

The global prevalence of malaria has decreased over the past fifteen years, but similar

gains have not been realized against Plasmodium vivax because this species is less respon-

sive to conventional malaria control interventions aimed principally at P. falciparum. Approx-

imately half of all malaria cases outside of Africa are caused by P. vivax. This species

places dormant forms in human liver that cause repeated clinical attacks without involving

another mosquito bite. The diagnosis of acute patent P. vivax malaria relies primarily on

light microscopy. Specific rapid diagnostic tests exist but typically perform relatively poorly

compared to those for P. falciparum. Better diagnostic tests are needed for P. vivax. To

guide their development, FIND, in collaboration with P. vivax experts, identified the specific

diagnostic needs associated with this species and defined a series of three distinct target

product profiles, each aimed at a particular diagnostic application: (i) point-of-care of acutely

ill patients for clinical care purposes; (ii) point-of-care asymptomatic and otherwise sub-
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patent residents for public health purposes, e.g., mass screen and treat campaigns; and (iii)

ultra-sensitive not point-of-care diagnosis for epidemiological research/surveillance pur-

poses. This report presents and discusses the rationale for these P. vivax-specific diagnos-

tic target product profiles. These contribute to the rational development of fit-for-purpose

diagnostic tests suitable for the clinical management, control and elimination of P. vivax

malaria.

Author summary

Plasmodium vivax is the second most prevalent Plasmodium species amongst the five that

can infect humans and cause malaria. The control and elimination of P. vivax is compli-

cated by its specific biology, such as hard-to-detect low densities of blood-circulating para-

sites in infected individuals, the existence of persistent liver forms causing relapse, or the

early appearance of sexual stages of the parasite during the course of an infection, which

facilitates its transmission. These difficulties are reinforced by the fact that most antima-

larial tools have been developed primarily for P. falciparum, the most prevalent malaria

species, and are not always as effective for P. vivax. Current tools for the diagnosis of P.

vivax are of limited effectiveness. Rapid diagnostic tests exist but show, in average, lower

performance than similar test for P. falciparum. P. vivax diagnosis often relies on light

microscopy which is challenging to maintain at a high quality and not sensitive enough to

detect a large fraction of all infections. Recognizing that better diagnostic tools for P. vivax
are needed, we report in this study the development of new target product profiles to

define the specific characteristics of such tests. The establishment of these consensus-

based documents is an important first step to guide research and development efforts

toward better diagnostic solutions for P. vivax malaria and to accelerate the elimination of

this species alongside P. falciparum.

Introduction

The need for better Plasmodium vivax diagnostic tests

The concerted international efforts initiated near the turn of this century to move from malaria

control to malaria elimination and ultimately eradication show remarkable progress during

the last decade [1]. Financial, political and scientific commitment to solve the malaria problem

led so far to an overall 37% decrease in global incidence between the years 2000 and 2015 and

an estimated 60% decrease in mortality during this period [1]. As a result, in sub-Saharan

Africa, where most known cases of malaria occur, malaria is no longer the prime cause of

death for children below the age of 5 years old. These gains have been driven by the cumulative

impacts of multiple entomological and antimalarial interventions implemented via improved

policies. Since 2010 the World Health Organization (WHO), for example, recommended con-

firmation of suspected malaria cases using rapid diagnostic test (RDT) or by the examination

of a stained blood smear by light microscopy (LM). The practice of presumptive treatment

without confirmation was thus discouraged. Since then, the estimated number of malaria diag-

nostic tests performed globally on suspected cases has risen significantly, especially in the Afri-

can WHO Region where the proportion of tested cases has increased from 41% in 2010 to 65%

in 2014. This increase in testing is largely due to the availability of quality-assured RDTs. The

number of RDT distributed by National Malaria Control Programs rose from less than 25

Target product profiles for P. vivax diagnostic tests
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millions in 2008 to more than 125 millions in 2014 in the African WHO Region, whereas it

remained relatively constant in other areas where P. vivax is present [1]. This highlights the

importance of high quality, affordable and easy to use point-of-care tests to facilitate the effec-

tive diagnosis and prompt treatment of malaria.

This encouraging portrait of progress does not fully extend to the malaria caused by P.

vivax. In fact, P. vivax prevalence appear to decrease slower than that of P. falciparum, which

results in a significant shift to P. vivax predominance almost everywhere outside sub-Saharan

Africa. P. vivax is now the sole or main cause of malaria in approximately three quarters (26/

34) of the endemic countries currently in the elimination phase, suggesting that this species

will be much more difficult to eliminate than P. falciparum. Although approximately one half

(47%) of all malaria cases outside sub-Saharan Africa are caused by P. vivax and about 2.8 bil-

lion people live at risk of infection [2], it has been neglected in science, clinical medicine and

public health until very recently [3–5]. This has resulted in strategies and tools for malaria con-

trol and elimination suited to P. falciparum but not P. vivax. Specific biological traits of P.

vivax explain that poor fit. First, a single infectious bite of a mosquito leads to a primary attack

within about 2 weeks, but then goes on to cause multiple clinical attacks at intervals of about 2

months for as long as 4 years (but typically 2 years or less). Those later attacks, called relapses,

derive from dormant liver stages of P. vivax called hypnozoites. These forms have been shown

to cause at least 80% of all P. vivax blood-stage infections in Papua New Guinea [6], and 96%

of attacks at the Thai-Myanmar border [7]. Second, during the course of a blood stage infec-

tion, gametocytes appear simultaneously with the same 48 hour developmental cycle as asexual

parasites and, often, before the onset of symptoms and, while they do not seem to persist as

long as P. falciparum gametocytes, their infectiousness to mosquitoes may be relatively higher

[8–11]. Third, P. vivax merozoites invade only the most immature reticulocytes that most

often occur in bone marrow rather than in circulation [12]. The bulk of P. vivax biomass may

occur in extravascular tissues of the marrow and spleen rather than in circulating blood,

whereas P. falciparum is largely impounded within vascular sinuses [13]. Those observations

help explain why parasitaemias by P. vivax are naturally and consistently much lower com-

pared to P. falciparum. Parasite densities of P. vivax at clinical presentation are typically in the

range of 4 000 +/- 3 000 parasite per μL of blood (p/μL), which is three to four-times lower

than for P. falciparum, and peak parasitaemias rarely exceeds 100 000 p/μL in P. vivax but is

quite common in P. falciparum [14–18]. In fact, a large proportion of all P. vivax infections, up

to 70% in certain areas, have been found to be below the limit of detection (LOD) of micros-

copy [19]. Although present in all settings, submicroscopic infections appear to be clearly of

higher relative importance in low prevalence areas, representing an additional challenge to

elimination efforts [19].

The control and elimination of P. vivax is thus more complex than with P. falciparum as it

requires the rapid diagnosis of infection at lower parasite densities, but also initiating radical

cure treatment for hypnozoites in conjunction with acute treatment for blood stage parasites.

Problematically, the only currently available hypnozoitocidal therapy, the 8-aminoquinoline

primaquine regimen, is typically 14-days in duration and exposes glucose-6-phosphate dehy-

drogenase (G6PD) deficient patients–a widespread genetic disorder impacting 8% of residents

of malaria endemic nations [20]–to potentially life-threatening acute haemolytic anaemia.

Finally, some of the natural polymorphisms in the P450 cytochrome type 2D6 (CYP2D6)

result in null or impaired metabolism of primaquine to its active metabolite and cause thera-

peutic failure against relapse [21–23].

The increasing use of RDTs for the diagnosis of malaria resulted in significant progress in

the past ten years but less so for P. vivax specifically. Relatively poor diagnostic performance of

the most widely used RDTs for non-falciparum malaria may help explain continuing reliance
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upon microscopy for the diagnosis of P. vivax in endemic areas. RDTs for P. vivax are gener-

ally considered of lower accuracy, with performance, stability and false positivity issues being

commonly reported in the literature [24–27]. The actual diagnostic coverage and the analytical

performances of P. vivax RDTs are poorly documented. These deficiencies have been clearly

recognised in the Malaria Eradication Research Agenda (malERA) initiative, which has ex-

pressed the high priority need for “more sensitive tests for P. vivax for case management” [28].

This initiative also highlighted that RDTs for P. vivax “lack consistency in sensitivity and sta-

bility” [28]. While a recent review has indicated that the quality of P. vivax RDTs is improving,

only 59% (17/29) of P. vivax RDTs displayed an acceptable panel detection score (PDS) at 200

parasites per μl of blood as compared to 93% (38/41) for P. falciparum RDTs during the latest

WHO-FIND product testing of malaria RDTs [25,29]. While P. vivax infections can be identi-

fied via the detection of Plasmodium specific aldolase or plasmodial lactate dehydrogenase

(pLDH) enzymes, the univocal identification of P. vivax requires the specific detection of the

pLDH isoform of this species (Pv-pLDH). As a proxy of the typical performances of this type

of test, the average PDS of Pv-pLDH based RDTs appear significantly lower than that of the

RDTs detecting P. falciparum specific histidine rich protein 2 (HRP2) when considering the

cumulative results of the WHO-FIND Product Testing Programme (Table 1). This illustrates

the shortcomings associated with current P. vivax specific RDTs.

Performance of light microscopy is directly dependent on operator proficiency and sample

preparation, and species determination in areas of P. falciparum and P. vivax co-endemicity

may be challenging [31,32]. Microscopy, like RDTs, also suffers limited sensitivity and often

fails to identify a substantial fraction of P. vivax infections of blood [19]. Alternative diagnostic

methods, based on nucleic acid amplification techniques (NAATs) and serological markers

exist or are emerging. While microscopy and RDTs are recommended by WHO as “the pri-

mary diagnostic tools for the confirmation and management of suspected clinical malaria in

all epidemiological situations including areas of low transmission as well as for routine malaria

surveillance”, a potential role for NAAT- and serology-based approaches is considered relevant

in areas of low endemicity and near elimination for epidemiological research and surveys

aimed at mapping submicroscopic infections to guide intervention measures specific to these

settings [33]. While the research and laboratory applications of these tests is clear, their value

for P. vivax infection detection and their optimal application are, however, currently unclear.

Currently available diagnostic tests for P. vivax are not optimal to address the full range of

infection detection needs, from clinical case management to surveillance and elimination-ori-

ented interventions through “surveillance-response”. Currently, poor diagnostic effectiveness

contributes to the resilience of P. vivax to global and national malaria intervention strategies.

Table 1. Average panel detection scores of quality-controlled RDTs from WHO-FIND Product Testing

Programme (n = 126).

Species Antigen n Average PDSa and range

P. vivax Pv-pLDH 32 59% (0%-100%)

P. vivax Pvom-pLDHb 3 77% (63%-91%)

P. vivax aldolase 6 41% (0%-82%)

P. falciparum Pf-pLDH 9 52% (6%-89%)

P. falciparum HRP2 113 82% (32%-99%)

aAverage panel detection score (PDS) of the corresponding Plasmodium species at 200 parasites per μL of

blood. Extracted from [30].
bRepresenting the pLDH epitopes common to P. vivax, P. ovale, and P. malariae, enabling the

indiscriminate detection of these three species.

https://doi.org/10.1371/journal.pntd.0005516.t001
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Defining target product profiles for Plasmodium vivax diagnostic tests

In order to facilitate the development of improved P. vivax tests, a set of target product profiles

(TPPs) addressing the specific needs associated with this species were developed through

expert consensus. These TPPs are intended to guide the efforts of test developers, donors and

other stakeholders in the global health community to address the P. vivax challenge. A limited

number of TPPs for malaria diagnostic tests have been developed in the past few years (S1

Table). The malERA initiative published two generic TPPs in 2011, one for the diagnosis of

malaria clinical cases and one for screening and surveillance activities, with parameters that

could be applied to both, P. falciparum and P. vivax [28]. In 2014, the 10th session of the WHO

Malaria Policy Advisory Committee Meeting released recommendations for malaria diagnosis

in low transmission settings and described the ideal characteristics of future tests for this appli-

cation, without defining species-specific needs [34]. A malaria diagnostic TPP was also devel-

oped by PATH for the Diagnostics for Malaria Elimination Toward Eradication (DIAMETER)

project that supports the development and implementation of diagnostic solutions for malaria

elimination [35]. The format and target of the test described in this profile are restricted to that

of lateral flow immunoassay detecting HRP2 for P. falciparum infections. Finally, while it did

not include a full TPP, the 2015 WHO technical brief about the control and elimination of P.

vivax malaria highlighted the need for research to develop tests that can detect P. vivax at a

minimum of 25 p/μL of blood as well as tests that “can detect submicroscopic, asymptomatic

infections in elimination settings, where it is critical to detect all infections” [3]. While the very

specific biological and clinical nature of P. vivax infections requires adapted tools, none of

these TPPs addressed the needs of P. vivax infection detection. To fill this gap, FIND, a not-

for-profit organization supporting the development and implementation of diagnostic solu-

tions for diseases of poverty, consulted with P. vivax experts, all co-authors of this publication,

to define the diagnostic needs for P. vivax and established consensus-based TPPs, with the goal

to guide product development efforts toward optimized diagnostic solutions and to ultimately

accelerate elimination of this malaria species.

Methods

TTPs were developed in an iterative and consensus-decision-making process involving a large

number of experts from academic research institutions, national malaria control programmes,

the WHO Global Malaria Programme, and the WHO Americas Regional Office (AMRO)/Pan

American Health Organization (PAHO). An initial expert meeting took place in October 2015

to review current practices and topics of interest for the diagnosis of P. vivax malaria. Three

TPPs were defined based on specific intended uses, a list of forty-three TPP characteristics to

be informed was established based on an initial list proposed by FIND, and preliminary values

for each of these characteristics were discussed. TPPs were gradually refined through five

rounds of drafts review and update through online communication (draft versions 0.1 to 0.6).

Finally, an online survey was conducted to collect comments from each contributor on the

remaining debated characteristics and establish a majority vote to issue final TPPs (versions

1.0) reported here.

For each TPP, the intended use, target populations and users, the implementation level

as well as expected performance, operational and financial characteristics were defined. For

most of these characteristics, minimal and optimal values have been defined, providing a

range of values from the minimally acceptable value to the ideal one. The minimal values have

been typically set to provide a distinguishing advantage over existing diagnostic solutions for

P. vivax while the optimal ones were defined as the value that could provide optimal diagnostic

effectiveness.

Target product profiles for P. vivax diagnostic tests
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Results

Intended uses

The malaria diagnostic needs are wide and primarily defined by the type of infection to be

detected, either restricted to clinical cases or including the largest possible number of infec-

tions, regardless of symptoms. Additional important factors are the test outcome, which can

be to guide treatment or only to inform surveillance systems, and the implementation level,

which will determine how simple to implement a given test needs to be. Three TPPs were

defined to cover three distinct intended uses across this spectrum (Fig 1). TPP PvA (Pv stands

for P. vivax) is addressing the diagnosis of P. vivax clinical symptomatic infection for confir-

mation of suspected cases (passive case detection). The two other TPPs (TPP PvB1 and PvB2)

are geared toward elimination settings and address the diagnosis of all infections, symptomatic

or not. TPP PvB1 addresses the need for point-of-care diagnosis of P. vivax infections regard-

less of the presence of symptoms including sub-microscopic parasitaemia, enabling proactive

and reactive infection detection interventions, while TPP PvB2 specifically addresses the

requirements for a population screening test for P. vivax infection surveillance and epidemio-

logical surveys, independent of individual infection treatment. The specific intended uses and

test outcomes as well as key distinguishing characteristics for these three TPPs are summarized

in Table 2.

TPP PvA: Diagnosis of P. vivax malaria acute infection

TPP PvA addresses the need for better diagnostic for the parasitological confirmation of clini-

cal cases in passive case detection scenarios (S2 Table). This TPP is therefore designed for a

point-of-care test that is simple to implement (requiring ideally half-a-day of training and

Fig 1. Malaria testing strategies and TPP coverage. Testing strategies are typically classified as passive and active detection where passive detection

concerns symptomatic cases and active detection all infections, symptomatic or not. Passive detection is used for the confirmation of symptomatic

suspected cases presenting to the healthcare system where treatment is based on a positive parasitological test (PCD: passive case detection). Active

detection is typically divided as reactive and proactive detection where reactive detection consists of the active screening of a set of individuals linked

geographically or sociologically to an index case for infection detection and treatment. Proactive detection can either be linked with treatment in focal

screen-and-treat (FSAT) or mass screen-and-treat (MSAT) interventions or in location-based testing (e.g. boarder screening) or be independent of

treatment in epidemiological surveys. The coverage of each of the three TPPs for P. vivax diagnostic tests, PvA, PvB1 and PvB2, is indicated in relation to

these testing strategies. The classification of intervention types is adapted from [36].

https://doi.org/10.1371/journal.pntd.0005516.g001
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three steps or less) and rapid (time-to-results� 30 min.) to guide prompt clinical management

of P. vivax malaria patient: blood-stage treatment of acute P. vivax infections as well as radical

cure for populations to which 8-aminoquinolines can be administrated safely.

Table 2. Summary of key distinguishing features of TPP PvA, PvB1, and PvB2

Type Characteristic PvA PvB1 PvB2

Scope Intended use For parasitological confirmation

of symptomatic suspected cases

of P. vivax malaria

For parasitological confirmation of all

infections of P. vivax malaria

(symptomatic and asymptomatic)

For indication of present or recent P.

vivax infection for epidemiological

surveys and surveillance activities

Test outcome Guide individual treatment in

passive case detection

Guide individual treatment in reactive

and proactive case detection

Inform epidemiological surveys, guide

population interventions

Target population All individuals suspected to

suffer from clinical P. vivax

infection

All individuals susceptible to suffer

from P. vivax infection in endemic

settings

All individuals in an endemic setting

Target users Mb: Community and facility-

based health workers

M: Community and facility-based

health workers

M: Laboratory technicians

Implementation

level

Community health facilities,

health posts, health centers

Community health facilities, health

posts, health centers

District hospitals and reference

laboratories

Performance Analytical

sensitivitya
M: 25 p/μL

Ob: 5 p/μL

M: 20 p/μL

O: 1 p/μL

M: 0.1 p/μL (irrelevant for recent past

infection detection)

O: 0.01 p/μL (irrelevant for recent past

infection detection)

Analytical specificity M: Discriminate P. vivax form

other Plasmodium spp.

O: Discriminate between P.

vivax, P. falciparum and other

Plasmodium spp.

No cross-reactivity with other

pathogens

M: Discriminate P. vivax from other

Plasmodium spp.

O: Discriminate between P. vivax, P.

falciparum and other Plasmodium

spp.

No cross-reactivity with other

pathogens

M: Discriminate between P. vivax, P.

falciparum and other Plasmodium spp..

O: Discriminate between all

Plasmodium spp.

No cross-reactivity with other

pathogens

Diagnostic

sensitivityc
M: >95%

O:� 99%

M: >95%

O:� 99%

M: >95%

O:� 99%

Diagnostic

specificityc
M: >95%

O:� 99%

M: >95%

O:� 99%

M: >95%

O:� 99%

Operational

aspects

Assay format M and O: Single-use in vitro

diagnostic

M and O: Single-use in vitro

diagnostic

M: 96-well format

O: 384-well format

Assay throughput Single assessment per test Single assessment per test with the

option to batch test up to 100

samples per run in a POC format

Batch testing in line with assay format

Equipment M: small (<100 cm2 footprint)

and portable (<5 kg)

O: none

M: small (<100 cm2 footprint) and

portable (<5 kg)

O: none

M: Transportable (<20 kg)

O: Portable (<5 kg)

Sample type M: Capillary blood

O. Capillary blood or any less

invasive validated sample

M: Capillary blood

O. Capillary blood or any less

invasive validated sample

M: Capillary blood

O. Capillary blood or any less invasive

validated sample

Sample volume (if

capillary blood)

M: � 100 μL

O:� 50 μL

M:� 100 μL

O:� 50 μL

M:� 200 μL

O:� 100 μL

Time-to-result M: � 1 hour

O:� 30 minutes

M:� 6 hours

O:� 30 minutes

M:� 1 month

O:� 7 days

Cost End user price per

test

M: �1.0 USD

O:�0.5 USD

M:�2.0 USD

O:�1.0 USD

M:�1.0 USD

O:�0.1 USD

Cost of diagnosis

per sample

M: �2.0 USD

O:�1.0 USD

M:�5.0 USD

O:�2.0 USD

M:�1.2 USD

O:�0.5 USD

aValues in parasite per μL of blood might not be relevant for all assay types, especially for TPP PvB2, which is not for a parasitological test and includes the

detection of recent infection.
bM: minimal, O: optimal
cas compared to standard PCR with a know limit of detection of 1 p/μL (PvA and PvB1) and a method with an analytical sensitivity at least equal to that of

the index test (PvB2).

https://doi.org/10.1371/journal.pntd.0005516.t002
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Current tests for this intended use are RDTs and microscopy and the characteristics of this

TPP were established with the objective to overcome the limitations of these tests. A key per-

formance characteristic for this TPP is the analytical sensitivity. Expert microscopy is consid-

ered to provide a LOD of 50 p/μL but this value is typically assumed to be significantly higher

in many endemic areas [37,38]. A recent analysis of the analytical performances of the best-in-

class Pv-pLDH RDTs indicated these would fail to detect a majority of samples containing

200 p/μL (Jimenez et al., submitted elsewhere). A minimal target LOD of 25 p/μL would there-

fore represent at least a two-fold improvement over the practical microscopy LOD and be a

significant improvement over current RDTs. However, an optimal LOD should be equal or

inferior to 5 p/μL, corresponding to one order of magnitude below the typical lowest periph-

eral parasitaemia at presentation for uncomplicated P. vivax malaria, ensuring that no clinical

cases would be missed because of inadequate LOD [15,39]. Regarding diagnostic specificity,

the univocal identification of P. vivax as the Plasmodium infecting species is essential as only

this species and the relatively rare P. ovale require radical cure for liver-stage parasite removal.

For areas of co-endemicity between P. vivax and P. falciparum (39 out 98 malaria endemic

countries [1]), a distinguishing advantage would be the capacity to identify and discriminate

between these two major species. Regarding both the diagnostic sensitivity and specificity, the

minimal values have been set to at least match that of current P. falciparum RDTs and the opti-

mal ones to provide a distinguishing advantage at 95% and 99%, respectively [25].

In terms of operational characteristics and beyond the required simplicity and rapidness of

the test, stability during transport, storage and usage is important. An analysis of the typical

RDT supply chain revealed that these are frequently exposed to temperature above 30˚C and

sometimes up to more than 40˚C, hence a test destined to the same intended use needs to with-

stand such harsh conditions, being ideally stable for up to 12 months at 45˚C and 90% relative

humidity and usable at temperatures as low as 5˚C and as high as 45˚C.

Another crucial element often difficult to resolve is that of cost. The cost of diagnosis (in-

cluding sample collection, processing, and transmission of the results to the patient) for RDT

and light microscopy were evaluated to be between 1.0 and 2.0 USD in 2011 in Uganda, a

P. falciparum endemic country [40]. It is somewhat complex to define at what end-user price

and overall diagnosis cost a PvA test might become cost-effective as the cost of misdiagnosed

and relapsing P. vivax infections is difficult to evaluate but it was assumed that the end user

price should ideally not be superior to the current price of RDT (~0.5 USD) and that the over-

all cost of diagnosis should not be superior to the values mentioned here above.

TPP PvB1: Point-of-care diagnosis of sub-clinical P. vivax infection

TPP PvB1 extends the scope of PvA to address the detection of all blood-stage infections,

regardless of the presence of symptoms, to enable reactive and proactive case detection and

treatment (S3 Table). This TPP is defining the characteristics of tests that could be deployed in

elimination settings to identify the asymptomatic reservoir known to contribute to residual

transmission and guide blood-stage and, if appropriate, liver-stage treatments for the asymp-

tomatic carriers.

Similar to PvA, PvB1 tests need to be deployable in a point-of-care manner (or “point-of-con-

tact” since it would not necessarily be used in a medical care context) and therefore require very

similar characteristics in terms of ease-of-training, ease-of-use, short time-to-results and opera-

tional robustness. There is no such test currently in use and while NAATs might meet many of

the required characteristics, they are not easily deployable as a point-of-care diagnostic solution.

The main distinguishing feature of PvB1 as compared to PvA is the lowered analytical sensi-

tivity needed to (i) detect a substantial fraction of the asymptomatic and low parasitaemia

Target product profiles for P. vivax diagnostic tests

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005516 April 3, 2017 8 / 15

https://doi.org/10.1371/journal.pntd.0005516


infections, and thus (ii) support elimination interventions by providing crucial information

about these parasite populations. A modelling study investigating the case of a P. falciparum
diagnostic test used to trigger focal mass drug administration (focal MDA, i.e. village-based

mass drug administration in case of a local prevalence identified above a certain threshold)

suggested that in such low prevalence settings, an analytical sensitivity of 20 p/μL might suffice

to ultimately reduce the parasite prevalence to zero within a ten-year time frame [41]. It is

however not clear how such a model could apply to P. vivax, for which a majority of infections

are relapses from liver stage parasites. A recent study evaluating the parasitaemia distribution

in more than 1,500 P. vivax infected asymptomatic individuals at the Thai-Myanmar border

revealed a geometric mean parasitaemia of 5.6 p/μL and a unimodal log normal distribution of

parasitaemia in this population [42]. The minimally acceptable and ideal analytical sensitivity

values for PvB1 tests were established around these estimates at 20 p/μL and 1 p/μL, respec-

tively. The optimal value would allow to detect up to 58% of all asymptomatic infections ac-

cording to the modelling of the data from Imwong et al. [42]. The other performance and

operational characteristics are essentially identical between PvA and PvB1, with the notable

exception that the test format of PvB1 should ideally be amenable to batch testing of up to 100

individuals relatively easily. This is in consideration of the reactive or proactive case detection

scenarios for which this type of test would be used, requiring the rapid diagnosis and treatment

of a potentially large number of individuals as opposed to passive case detection, where testing

is normally performed on demand and as suspected cases present at health posts and medical

centers.

Another key distinguishing feature of PvB1 is the cost. As mentioned above, the cost ele-

ments of diagnoses are difficult to factor in the absence of comprehensive costing analyses and

cost-effectiveness studies of existing solutions. In the case of PvB1, it was assumed that the

increase in analytical sensitivity requirement would translate in an increased end-user test

price (minimal: 2.0 USD, optimal: 1.0 USD) and cost of diagnosis (minimal: 5.0 USD, optimal:

2.0 USD) but that these values should ideally be lower than current NAAT tests, estimated

between 2 to 4 USD per reaction, excluding capital cost [43–45]. Another element typically

weighted against the cost of a diagnostic test is that of a treatment course, especially when con-

sidering mass interventions. If a diagnostic test is not significantly cheaper than a treatment

course, typically targeted to 1 USD or less [46], it is, from a pure economic point-of-view,

cheaper to treat in the absence of testing than screen-and-treat. We dismiss this argument as

too simplistic and are of the opinion that the true financial and societal costs of MDA or mass

screen-and-treat cannot be distilled down to the only cost of the commodities associated with

these interventions. We would not recommend for a test to be cheaper than a treatment course

in order to be an adequate PvB1 diagnostic solution. This is especially true in the case of P.

vivax, which requires not only blood-stage detection, but also potentially G6PD testing for rad-

ical cure.

TPP PvB2: Population screening for P. vivax infection surveillance

The TPP PvB2 is designed to answer the needs for high quality tests for epidemiological sur-

veillance activities (S4 Table). This TPP is similar to PvB1 in the sense that it aims to detect all

infections, including asymptomatic and low parasitaemia typically not seen by RDTs or

microscopy, but it differs from PvB1 in that the diagnostic outcome is not directly linked with

treatment interventions at the individual level. A PvB2 test is designed to inform surveillance

system and to support epidemiological surveys. Because of this nature, such a test would not

need to be deployed in a point-of-care manner but would be restricted to district hospitals and

national reference laboratories, and would need to provide a very high analytical sensitivity.
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Current tests in this category include highly complex and specialized NAAT protocols, such as

high volume quantitative PCR, reverse-transcription quantitative PCR, or PCR targeting

highly repetitive elements, which all reach analytical sensitivity of approximately 0.02 p/μL

[47–49]. The PvB2 minimal and optimal analytical sensitivity values were set at 0.1 p/μL (one

order of magnitude lower than optimal PvB1 test) and 0.01 p/μL (two-fold lower than current

state-of-the art technologies), respectively. Such values would in principle allow to detect up to

80% and 93% all of P. vivax asymptomatic infection as modelled by Imwong et al. [42]. When

defining the optimal test sensitivity, it is pivotal to take into account the sampling procedures

and blood sample volume. The blood volume equivalent that is added to a molecular assay crit-

ically determines the detection of low parasitaemias. All tests that target asymptomatic individ-

uals should thus aim at maximizing the input material. For surveillance, collecting finger prick

blood samples is considered feasible, whereas larger venous samples may be collected for

research purposes only. In remote settings, sampling on filter paper will be required for storage

and transport. This will compromise the detection of low parasitaemia in a significant way, as

filter paper punches (directly added to the reaction or extracted) can only hold a limited blood

volume. Ideally, 200 μL whole blood should be used for preparation of nucleic acids, and the

final DNA solution should be concentrated as much as possible. Multi-copy target genes or

reverse transcription reactions can help to detect a single parasite in the large blood volume

sampled [48,49].

As a surveillance tool, PvB2 also includes tests that might not necessarily detect currently

occurring infection but also recent past infections, such as serological tests, as a most effective

way of estimating the residual transmission in an area of interest and potentially detect hypno-

zoite carriers. Obviously in such cases, an analytical sensitivity expressed in parasites per μL of

blood becomes irrelevant and test-specific values would have to be defined (e.g. antibody level

detected by a serology test). Ideally, the analytical specificity would also be expected to be

greater than that required for PvA and PvB1 tests, and the optimal specificity would be a detec-

tion and discrimination of all five Plasmodium spp. infecting humans. Regarding the diagnostic

sensitivity and specificity, these values were defined as similar to PvA and PvB1, however the

actual reference test against which they would be determined might not easily be defined since

in terms of pure analytical sensitivity, an optimal PvB2 index test is likely to be the new best

standard of truth. The operational characteristics for the PvB2 TPP allow for less environ-

ment-resistant tests compared to PvA and PvB1: transport, storage and operation conditions

allow for cold transportation and storage and are generally set to correspond to the typical con-

ditions found in air-conditioned reference laboratories. The assay format is at a minimum a

96-well format and ideally a 384-well format to enable high throughput and the characteriza-

tion of a high number of samples concurrently. This is linked with less stringent requirement

in terms of equipment, with a tolerance for electricity requirement, up to 20 kg of equipment,

and sample processing, with up to 20 steps for the assay procedure being acceptable. Similarly,

the time-to-result is not of the essence in this case with an optimal time-to-results being less

than 7 days, but at a minimum requirement of up to one month. These characteristics might

become more critical if the test is used to target focal MDA, in which the optimal value (one

week) would be a requirement.

The cost associated with such a test is arguably expected to be high, since it is likely to

involve complex laboratory procedures, reagents, and equipment as well as specialized and

highly trained laboratory officers. Yet, the high throughput and high volume of testing

required for population surveillance interventions is expected to drive the cost of such test

down to an acceptable 1.0 USD end-user price per sample (minimal requirement). The opti-

mal value was set one order of magnitude below this, at 0.1 USD, which might be achievable

for a test relying on simpler procedure and limiting the sample processing steps.
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Discussion

We present here the first consensus TPPs for P. vivax specific diagnostic tests to address the

particular needs for the control and elimination of malaria due to this species. A summary of

key characteristics is given in the main text (Table 2) and complete TPPs are specified in the

supplementary material section (S2 to S4 Tables). Consensus-based review and discussion

exercises of a large group of experts in the field guided the development of key characteristics.

In this report, we describe important biological specificities of P. vivax and outline in a detailed

manner the diagnostic needs associated with this malaria species. TPPs have been deliberately

developed in a platform and technology-independent manner so that the capacity of diagnostic

solutions based on any existing or new technology to fit with these profiles can be evaluated.

These include (i) TPPs for the parasitological confirmation of suspected cases in clinical set-

tings (PvA), (ii) the detection of a large number of infections, regardless of symptoms for reac-

tive and proactive interventions (PvB1) and (iii) the identification of the majority of current or

recent past infections for population-based “surveillance-response”, i.e. an active/passive sur-

veillance strategy that calls for response packages tailored to the respective endemic settings

(PvB2). P. vivax, on average, has lower parasite densities than P. falciparum, placing an extra

challenge on the analytical sensitivity requirements of P. vivax diagnostic tests. Another key

characteristic of P. vivax is the existence of hypnozoites, which requires complex and poten-

tially toxic treatment to be deployed to achieve radical cure. The haemolytic toxicity risk asso-

ciated with primaquine requires a G6PD test to rule out significant deficiency in this enzyme

before initiating a treatment course. G6PD testing should be an integral component of the

management of P. vivax infection, and accurate tests to detect its deficiency are required. TPPs

for G6PD deficiency testing have been previously defined by a group of experts and are pub-

licly available [50]. The need for better G6PD tests has been previously recognized and a new

point-of-care test is showing promising results [51–54]. With the development of improved

G6PD tests, the opportunity of combination test to concomitantly detect P. vivax blood-stage

infections and determine the G6PD status of the host should be considered from a technologi-

cal and cost-effective point-of-view.

The persistence and reactivation of hypnozoites is one of the main drivers of the resilience

of P. vivax to antimalarial interventions. Developing a specific hypnozoite test is widely

regarded as an extremely challenging technical task. It would require the ability of a test to

detect a very small number of metabolically inactive, or poorly active parasites, sequestered in

the liver. Despite the theoretical advances of such a test, the group did not consider such a test

to be crucial in achieving elimination as indirect diagnostic approaches might be more promis-

ing. This is because a P. vivax blood stage infections can be assumed with a high probability to

be also associated with residual hypnozoite infections. Hence, the detection of low blood-stage

parasitaemia (PvB1) together with the potential detection of past recent infections (PvB2)

would appear to be a more promising avenue to identify most hypnozoite carriers. Alterna-

tively the likelihood that hypnozoites would ultimately lead to new blood stage infections sug-

gests that it might be sufficient to sustain diagnostic efforts to detect blood stage parasites and

guide the administration of radical cure for the eventual removal of hypnozoites from all carri-

ers. This approach would however require intense, long-lasting and costly surveillance efforts

to be implemented and might require to specifically target the population most at risk of P.

vivax infection.

The TPPs defined here are considered to be evolving documents by nature and should stim-

ulate discussions within the malaria community and be periodically revised to ensure that they

still represent the actual needs for the diagnosis of P. vivax. These profiles will also serve to

evaluate current and future tests, and should facilitate an ongoing discussion on the capacity of
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these tests to address the existing P. vivax diagnostics gaps. They will also serve to guide inno-

vation and development efforts in areas of greatest need. The first one of these being better

tests for the clinical management of P. vivax infections, so that the positive impact that has

been observed for affordable high-quality P. falciparum RDTs can also be obtained for P. vivax
malaria. Second, highly sensitive point-of-care tests will be needed to support reactive and pro-

active infection detection strategies through the accurate detection of asymptomatic and low

density parasitaemia for those settings where plain MDA will not be adequate, that is in areas

of low prevalence, where overtreatment would be unacceptably high, or in areas with a high

prevalence of G6PD deficiency. Finally, no control or elimination programme can bypass the

need for high quality and highly sensitive prevalence survey data. While high-performance but

also high-cost and high technology NAAT approaches exist, cheaper and more standardized

solutions are needed.

The limitations of the TPPs are directly linked with those of our knowledge on P. vivax
malaria. For instance, more research is clearly needed on the epidemiology of asymptomatic P.

vivax infections. While this parasite population has been described in South East-Asia [42],

similar quantitative investigations are lacking in other settings. Similarly, a better understand-

ing of the prevalence and distribution of P. vivax in sub-Saharan Africa [55], a place from

which this species was historically thought to be mostly absent, is needed. Research is also

needed for the potential identification of serological biomarker which could facilitate the

detection of recent past infections. In addition, cost-effectiveness studies of current diagnostics

and interventions are required to guide improvements and definition of parameter to measure

impact.

Since more international organizations are becoming aware of the significant and specific

role played by P. vivax malaria, we think that this initial set of P. vivax specific diagnostic TPPs

highlights particular diagnostic gaps and defines specific parameters that may guide the global

health community to address these needs coherently and thus contribute to the ongoing suc-

cessful control and elimination efforts.

Disclaimer

The views and opinions expressed in this article are consensus views and opinions from all

individual authors and do not necessarily reflect the official policy or position of any of the

authors institutions.
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