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Defining the nitrogen regulated
transcriptome of Mycobacterium smegmatis
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Abstract

Background: Nitrogen is essential for microbial growth and its importance is demonstrated by the complex
regulatory systems used to control the transport, assimilation and metabolism of nitrogen. Recent studies are
beginning to shed light on how mycobacteria respond to nitrogen limitation and several regulators (e.g., GlnR, PII)
have been characterized at a molecular level. However, despite this progress, our knowledge of the transcriptional
response of mycobacteria to nitrogen limitation and its regulation is confined to batch culture.

Methods: To gain further insight into the response of mycobacteria to nitrogen limitation, we developed a
nitrogen-limited chemostat. We compared the transcriptional response of nitrogen-limited cells to carbon-limited
cells using RNA-seq analysis in a continuous culture model at a constant growth rate.

Conclusions: Our findings revealed significant changes in the expression of 357 genes (208 upregulated, 149
downregulated; >2-fold change, false discovery rate <5 %) in response to nitrogen limitation in continuous culture.
The vast majority of the GlnR regulon (68 %) was differentially expressed under nitrogen limitation in continuous
culture and approximately 52 % of the 357 genes overlapped with a previously published study investigating the
response of M. smegmatis to nitrogen limitation in batch culture, while expression of only 17 % of the genes
identified in batch culture were affected in our chemostat model. Moreover, we identified a unique set of 45 genes
involved in the uptake and metabolism of nitrogen that were exclusive to our chemostat model. We observed
strong downregulation of pathways for amino acid catabolism (i.e., alanine, aspartate, valine, proline and lysine),
suggesting preservation of these amino acids for critical cellular function. We found 16 novel transcriptional
regulators that were directly or indirectly involved in the global transcriptomic response of M. smegmatis to
nitrogen limitation and identified several non-coding RNAs that might be involved in the transcriptional or post-
transcriptional regulation of nitrogen-regulated gene expression.

Results: Using nitrogen-limited continuous culture we identified the nitrogen-responsive transcriptome of M. smegmatis,
including a number of small non-coding RNAs implicated in controlling nitrogen-regulated gene expression.
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Background
Carbon and nitrogen are key components of organic

material and their availability in the environment is

necessary for growth and survival of microorganisms.

The major mechanisms of carbon source utilization

and its regulation are well defined for many groups

of microorganisms, but our knowledge of nitrogen

metabolism and its regulation is largely confined to

enteric bacteria (for review see [1–3]). The import-

ance of nitrogen for microbial growth is demonstrated

by the complex regulatory systems used to control nitro-

gen assimilation in response to internal and external nitro-

gen levels. In some bacteria, nitrogen availability is sensed

by the intracellular ratio of 2-oxoglutarate:glutamine [4].

This signal ensures that the uptake of nitrogen sources are

commensurate with the metabolic requirements of the or-

ganism i.e. carbon or nitrogen. High 2-oxoglutarate levels

signal nitrogen limitation, while high glutamine levels sig-

nal nitrogen excess in bacteria [1, 4, 5].

In enteric bacteria, nitrogen metabolism is regulated

by the two-component regulatory system NtrBC and the

signal transduction protein PII [6]. These regulatory sys-

tems coordinate nitrogen metabolism by regulating

genes involved in ammonium assimilation, amino acid

transport and nitrate metabolism through protein-

protein interactions [1, 4, 6, 7]. An integral component

of this regulation is GlnD, an uridylyl transferase/uridy-

lyl-removing enzyme that senses and transmits the ni-

trogen status of the cell to the PII protein [8]. The PII
protein in its uridylylated state stimulates phosphoryl-

ation of the response regulator NtrC by the NtrB kinase,

which results in expression of the NtrBC-regulated

genes under nitrogen limitation [9]. Homologues of the

PII protein are found in many bacterial genomes, where

they are mainly involved in the regulation of nitrogen me-

tabolism. However, the PII protein may have additional

roles, as recently described in cyanobacteria, where it reg-

ulates the metabolism of inorganic carbon [10].

Actinomycetes are a group of Gram-positive bacteria

that inhabit a wide range of aquatic, terrestrial and hu-

man habitats. In actinobacteria, two different regulatory

systems have been identified that regulate the transcrip-

tional response to nitrogen limitation, AmtR, a TetR-

type transcriptional regulator and GlnR, an OmpR-type

transcriptional regulator [11–13]. AmtR was identified

in Corynebacterium glutamicum to regulate more than

30 genes involved in nitrogen metabolism, including

the PII protein, glutamine synthetase, glutamate syn-

thase and urease [12]. In Streptomyces coelicolor, GlnR

mediates the transcriptional response to nitrogen limi-

tation by elevating expression of the amtB-glnK-glnD

operon and the glutamine synthetase glnA, while

repressing transcription of the glutamate dehydrogen-

ase gdhA [13, 14].

Slow-growing mycobacteria such as Mycobacterium

tuberculosis appear to harbor only GlnR that was shown to

regulate the expression of at least 33 genes in response to

nitrogen limitation [15]. M. tuberculosis can exploit differ-

ent nitrogen sources, however, organic nitrogen sources

(e.g. asparagine and aspartate) are preferred for extracellu-

lar and intracellular growth [16, 17]. Amino acids can func-

tion as both carbon and nitrogen sources, and although M.

tuberculosis can metabolize a variety of amino acids in

vitro, only a small number (aspartate, glutamate, asparagine

and glutamine) can support growth of M. tuberculosis at

the acidic pH that prevails in host macrophages [18].

Inorganic nitrogen sources such as ammonium and nitrate

are less efficient for growth than amino acids [18], but the

reasons for this remain unknown.

The genome of the fast growing saprophytic actino-

bacterium Mycobacterium smegmatis contains copies of

both global nitrogen regulators, GlnR and AmtR [19]. It

has recently been demonstrated that GlnR regulates the

expression of more than one hundred genes in response

to nitrogen limitation in M. smegmatis [20], while the

AmtR regulon remains unknown. Previous microarray

studies using batch culture nitrogen run out experiments

have identified 1090 genes in M. smegmatis that are dif-

ferentially expressed in response to nitrogen limitation

[21]. However, only a small subset of these genes is

under control of GlnR, while the regulatory mechanisms

for the majority have yet to be identified [20, 21]. During

nitrogen run out studies, the growth rate changes signifi-

cantly as nitrogen becomes depleted and therefore these

types of experiments may not unequivocally uncover

genes that respond solely to nitrogen limitation.

The aim of the current study was to deliver a molecu-

lar framework for how a mycobacterial cell responds to

nitrogen-depleted and -replete conditions at a defined

growth rate. To address this aim, we developed a

nitrogen-limited chemostat for M. smegmatis at a con-

stant growth rate of 0.12 h−1 (td = 5.7 h) followed by

RNA-seq analysis to identify genes responding to nitro-

gen limitation.

Results and discussion
Development and validation of nitrogen-limited continuous

culture to understand the global transcriptomic response

to nitrogen limitation

The first step of this study was to establish a defined

minimal medium limited for either nitrogen or carbon

to identify the molecular response of M. smegmatis to

nitrogen limitation. We modified HdB medium [22] by

replacing 0.05 % (w/v) Tween-80 with 0.05 % (w/v)

Tyloxapol, which cannot be metabolized as a carbon

source, and (NH4)2SO4 with NH4Cl and K2SO4 (11.4 mM)

to avoid simultaneous limitation for sulphur and nitrogen.
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Inorganic nitrogen sources (e.g. ammonium) are less effi-

cient for growth than amino acids, however, we chose an

inorganic nitrogen source to allow tighter control of the

nitrogen to carbon ratio in the medium. Using batch cul-

ture, we identified glycerol as a suitable carbon source,

with a high cell yield and no change in external pH during

the course of the experiment compared to other carbon

sources such as glucose, acetate or succinate (Additional

file 1, Figure S1A). When cells were grown in batch cul-

ture on glycerol (25 mM) under nitrogen-replete condi-

tions, growth ceased at an optical density (OD600) of 3.5

(Additional file 1, Figure S1B). When the culture was lim-

ited for nitrogen (carbon excess), the final OD600 was 2.1

(Additional file 1, Figure S1B). Based on these experi-

ments we used 30 mM glycerol and 10 mM NH4Cl (nitro-

gen-replete)/1.25 mM NH4Cl (nitrogen-depleted) for

continuous culture studies.

In continuous culture, M. smegmatis was grown at

50 % air saturation and at a dilution rate of 0.12 h−1

until steady-state conditions were achieved (typically

after 3–4 resident times). Nitrogen-limited cultures

(1.25 mM NH4Cl/30 mM glycerol) reached steady-state

at an OD600 of 0.8 and no residual ammonium could be

detected (Fig. 1a, top). The residual concentration of gly-

cerol in the medium was approximately 18 mM indicat-

ing cells were not carbon limited (Fig. 1a, middle). At

this stage, addition of 25 mM NH4Cl into the culture

vessel led to an immediate increase in optical density,

demonstrating that the cultures were indeed limited for

nitrogen (Fig. 1a, top). Addition of 10 mM glycerol to a

nitrogen-depleted culture had no effect (Fig. 1a, bottom).

In the carbon-limited culture (10 mM NH4Cl/30 mM

glycerol), the steady-state-phase was reached after 56 h

at an OD600 of 4.3 with the residual ammonium

Fig. 1 Growth of M. smegmatis in continuous culture under nitrogen-depleted and nitrogen-replete conditions. Optical density (OD600), residual
glycerol and ammonium concentrations in the medium were monitored during the experiment. a The effect of a pulse with 25 mM
NH4Cl on residual ammonium (open squares) and glycerol (closed triangles) concentrations in the medium and OD600 (closed circles) in a nitrogen-
depleted culture. A pulse with 10 mM glycerol had no effect in a nitrogen-depleted culture. b The effect of a pulse with 30 mM glycerol on residual
glycerol (open triangles) and ammonium (closed squares) concentrations in the medium and OD600 (closed circles) in a nitrogen-replete culture. A
pulse with 1 mM NH4Cl had no effect on the nitrogen-replete culture, respectively
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concentration in the medium remaining constant at 0.5-

1 mM (Fig. 1b, middle). A pulse of 1 mM NH4Cl into the

culture vessel had no effect on growth (Fig. 1b, bottom),

while the addition of glycerol led to a significant increase

in OD600, demonstrating nitrogen excess (replete) under

these conditions (Fig. 1b, top).

For each condition, three independent biological rep-

licates were grown until steady-state-phase and cells

were harvested after at least 3 volume changes in the

chemostat vessel. The analysis of the transcriptome

using RNA-sequencing revealed a total of 357 differen-

tially expressed genes under nitrogen limitation [>2-fold

change, false discovery rate (FDR) was <5 %] i.e. approxi-

mately 5 % of the M. smegmatis genome (Additional file 2,

Table S1). Moreover, the usage of different thresholds (i.e.

2-fold, <1 % FDR; 2-fold, <0.1 % FDR; 1.5-fold, <0.1 %

FDR) had no major effect on the number of differentially

expressed genes. In total, 208 genes were upregulated and

149 were downregulated. Classification of these genes into

functional categories showed major changes in transport

proteins, genes that are associated with nitrogen and

amino acid metabolism and genes that are functionally

assigned as regulatory proteins. A large number of genes

encoding for hypothetical proteins were differentially

expressed (36 upregulated; 38 downregulated), however,

their function in response to nitrogen depletion needs to

be investigated (Additional file 3, Figure S2).

Nitrogen limitation studies in continuous culture versus

batch culture

Previous work published by Williams et al. focused on

the response of M. smegmatis to nitrogen stress in batch

culture nitrogen run out experiments and showed differ-

ential expression of 1090 genes (574 upregulated, 516

downregulated) (Fig. 2) [21]. Surprisingly, 903 of these

genes were not differentially expressed in our continu-

ous culture. In fact, only 17 % of the genes reported by

Williams et al. responded to nitrogen limitation in con-

tinuous culture, including 70 genes that were predicted

to be under control of GlnR (Fig. 2a) [20]. Despite the

differences in methodology between the two studies, we

were able to identify a significant overlap in nitrogen

metabolism related genes. For example, expression of a

similar set of ammonium and nucleotide uptake systems

(Table 1) and metabolic pathways (Table 2) were

Fig. 2 Distribution of differentially expressed genes comparing nitrogen-depleted continuous culture versus nitrogen-depleted batch culture [21].
In this comparison we included genes that were reported to be under control of GlnR [20]. a Included are all genes that were reported
to be differentially expressed in continuous culture and batch culture. b Upregulated genes that are upregulated in continuous culture
and batch culture and activated by GlnR. c Downregulated genes that are downregulated in continuous culture and batch culture and
are repressed by GlnR. Numbers indicate the total number of genes that fall into the respective category
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elevated in both studies. In addition, we identified a

unique set of genes involved in the metabolism of amino

acids, nucleotides and urea that were nitrogen-

responsive in continuous culture (Table 2). We identified

36 additional genes, including those encoding for regula-

tory enzymes, which showed an inversed expression pro-

file in continuous culture compared to batch culture

(Additional file 4, Table S2). In batch culture it is often

difficult to assign transcriptional changes to a single

stimulus due to changes in growth rate, nutrient deple-

tion and end-product buildup. It is striking that there

was very little overlap in the downregulated genes in re-

sponse to nitrogen limitation between batch culture and

continuous culture (Fig. 2c). A major portion of the 497

downregulated genes in batch culture was associated

with the general reduction in cellular metabolism due to

a reduced growth rate. Development of a nitrogen-limited

continuous culture enabled us to define transcriptional

changes purely in response to nitrogen limitation exclud-

ing growth rate effects. We showed that using continuous

culture we can identify the set of genes involved in nitro-

gen uptake and metabolism that were reported by Wil-

liams et al., however, this system allowed us to further

extend our knowledge towards the transcriptional re-

sponse to nitrogen limitation and reduce the number of

genes responding to other environmental factors [21].

Nitrogen limitation activates the expression of genes

involved in scavenging nitrogen sources in the

environment

In this study, a total of 53 genes encoding for transporters

or corresponding binding proteins were differentially

expressed in response to nitrogen limitation (Additional

file 2, Table S1). Of the upregulated genes, 18 encoded for

transporters that are generally involved in uptake of both

organic and inorganic nitrogen-containing compounds

like amino acids (e.g. msmeg_2525), nucleotides (e.g.

msmeg_5730) and ammonium (e.g.msmeg_4635) (Table 1).

Previously published data by Berney and Cook showed

downregulation of nine of these transporters in a carbon-

limited continuous culture comparing slow growth

(td 69 h) versus fast growth (td 4.6 h) [23]. All three

ammonium transporters and several amino acid (3 of 8)

and nucleotide transporters (3 of 7) showed a significant

decrease in transcript level, however transcription of all

of these genes was enhanced upon nitrogen limitation.

The GlnR regulon comprises 15 of these nitrogen com-

pound transporters including the three ammonium

transporters and the majority of nucleotide and amino

acid transporters. The most prominent amino acid per-

mease (msmeg_2525) was not under direct control of

GlnR. In continuous culture, we identified 4.8-fold up-

regulation of a polar amino acid ABC transport system

Table 1 Differentially expressed genes that are involved in uptake of nitrogen compounds during nitrogen limitation

Predicted transported substrate mc2155 locusa Expression ratiob FDRc Description

Amino acids msmeg_2525 13.18 8.41E-26 amino acid permease

msmeg_2184 7.09 4.86E-11 amino acid permease

msmeg_6735 6.11 1.56E-13 amino acid permease

msmeg_2981 5.81 5.53E-29 branched-chain amino acid ABC transporter permease

msmeg_1613d 4.88 3.38E-07 polar amino acid ABC transporter inner membrane protein

msmeg_3231 2.16 1.80E-02 cysteine ABC transporter permease/ATP-binding protein

msmeg_6876 2.14 9.32E-03 branched-chain amino acid transport ATP-binding protein

msmeg_3203d 0.33 4.71E-05 transporter LysE family protein

Ammonium msmeg_4635 7.49 9.82E-37 ammonium transporter

msmeg_6259 2.70 2.06E-04 ammonium transporter

msmeg_2425 2.70 3.95E-11 ammonium transporter

Nucleotides msmeg_2570 6.79 4.33E-08 xanthine / uracil permease

msmeg_5730 6.55 1.50E-26 permease for cytosine / purines / uracil / thiamine / allantoin

msmeg_4011 6.30 2.56E-12 pyrimidine permease RutG

msmeg_6660 4.22 1.88E-17 permease for cytosine / purines / uracil / thiamine / allantoin

msmeg_1177 4.22 4.90E-08 cytosine / purines / uracil / thiamine / allantoin permease

msmeg_1293 3.98 1.09E-17 xanthine / uracil permease

msmeg_3402 2.23 3.57E-06 cytosine permease

Nitrate msmeg_0433 3.67 1.73E-04 nitrite extrusion protein
aLocus number of gene in M. smegmatis mc2155
bMean gene expression ratio of three biological replicates
cP-values of gene expression ratio from three biological replicates were corrected for multiple testing using the Benjamini and Hochberg False Discovery Rate (FDR)
dGenes in the nitrogen regulated transcriptome that were discovered in this study
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Table 2 Genes involved in nitrogen metabolism that are differentially expressed during nitrogen limitation in M. smegmatis mc2155

Metabolic pathway mc2155 locusa Expression ratiob FDRc Description

Amino acids msmeg_2526 8.68 7.15E-35 tyramine oxidase

msmeg_3993 5.19 3.03E-14 Asp/Glu racemase

msmeg_0567 4.89 2.27E-12 selenophosphate synthetase

msmeg_3973 3.85 3.71E-05 N-methylhydantoinase

msmeg_4459d 3.22 1.59E-03 agmatinase

msmeg_3317 3.06 1.59E-08 dihydrodipicolinate reductase N-terminal
domain-containing protein

msmeg_6261 2.73 4.86E-04 glutamine amidotransferase

msmeg_6260 2.63 1.54E-04 glutamine synthetase

msmeg_2493 2.42 3.78E-03 aminotransferase class I and class II family protein

msmeg_6197d 2.40 1.58E-02 diaminopimelate decarboxylase

msmeg_2494 2.20 8.20E-03 Xaa-Pro aminopeptidase

msmeg_5374 2.18 4.69E-05 glutamate-ammonia ligase

msmeg_6263 2.07 1.21E-02 glutamate synthase

msmeg_2100d 2.02 9.01E-03 peptidase M20/M25/M40

msmeg_6256d 0.49 7.47E-06 aspartate-semialdehyde dehydrogenase

msmeg_5612d 0.40 1.25E-07 amino acid acetyltransferase

msmeg_2691d 0.40 6.92E-03 N-acetylglutamate synthase

msmeg_1762d 0.32 4.60E-07 piperideine-6-carboxylic acid dehydrogenase

msmeg_5454d 0.28 7.84E-08 choloylglycine hydrolase

msmeg_5119d 0.25 5.76E-09 1-pyrroline-5-carboxylate dehydrogenase

msmeg_0019d 0.21 5.06E-23 amino acid adenylation protein

msmeg_5117d 0.19 5.23E-07 proline dehydrogenase

msmeg_1414d 0.19 5.97E-03 amidinotransferase

msmeg_1413d 0.18 1.92E-05 ornithine-oxo-acid transaminase

msmeg_0022d 0.18 3.49E-28 L-ornithine 5-monooxygenase

msmeg_0021d 0.18 1.83E-21 aspartate alpha-decarboxylase

msmeg_1764d 0.13 1.45E-03 L-lysine aminotransferase

Nucleotides msmeg_4012 9.42 1.31E-24 phenylhydantoinase

msmeg_5729 7.24 5.08E-19 hydantoin racemase

msmeg_1294 3.89 2.39E-17 OHCU decarboxylase

msmeg_1296 3.78 2.28E-07 uricase

msmeg_2748 3.69 1.44E-05 soluble pyridine nucleotide transhydrogenase

msmeg_1298 3.67 6.88E-12 guanine deaminase

msmeg_3996 3.53 3.56E-13 phenylhydantoinase

msmeg_1295 3.52 2.55E-12 transthyretin

msmeg_3553d 2.95 1.98E-04 phenylhydantoinase

msmeg_6116 2.64 1.09E-08 OHCU decarboxylase

msmeg_3473 2.55 6.53E-03 uracil phosphoribosyltransferase

msmeg_5727 2.21 4.92E-06 allantoicase

Urea msmeg_2187 3.33 5.04E-06 urea amidolyase

msmeg_1425d 2.60 2.80E-08 creatininase subfamily protein

msmeg_3623 2.45 1.22E-06 urease accesory protein UreG

msmeg_0435d 2.40 6.48E-06 allophanate hydrolase subunit 2
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that has not been reported to be affected by nitrogen

limitation. Further work is required, to identify the

regulatory mechanisms that mediate the uptake of

amino acids under nitrogen depletion. We observed a

decrease in gene expression for the catabolism of five

amino acids (Table 2), suggesting M. smegmatis at-

tempts to balance the availability of ammonium and

particular amino acids under nitrogen depletion. This

finding is supported by a recent report of a proteasome-

mediated amino acid recycling in M. smegmatis under

nutrient limitation [24]. The transcriptomic response of

M. smegmatis to increase its ability for the uptake

(scavenging) of nitrogen compounds is remarkably dif-

ferent from other actinobacteria like C. glutamicum,

where no amino acid permeases were upregulated under

nitrogen limitation [25].

Peptides appear to play an important role in replenishing

the intracellular ammonium pool necessary for the different

anabolic pathways in M. smegmatis (Table 2), (Fig. 3).

Amongst the genes induced in response to nitrogen limita-

tion we identified a peptidase, an aminopeptidase and an

aliphatic amidase catalyzing the successive degradation of

peptides to amino acids and the subsequent recovery of

ammonium (Table 2). Furthermore, expression of a gene

encoding the dipeptide transporter DppB (msmeg_1085)

was induced 7.7-fold (FDR < 0.1 %). The dipeptide trans-

porter facilitates the import of dipeptides into the cyto-

plasm, where they can be hydrolyzed in order to replenish

the intracellular amino acid pool or serve for incorporation

into proteins [26]. The importance of (di-)peptides as ni-

trogen donors in mycobacteria remain to be explored,

whereas previous work suggested that peptides cannot be

used as carbon source [27].

Strong induction of nucleotide catabolism and recovery

of ammonium

In our analysis we identified a novel set of genes that were

significantly upregulated upon nitrogen limitation and ap-

peared to be involved in the breakdown of nucleotides

and inorganic nitrogen sources (Table 2). Nucleotides

contain a high level of nitrogen and their degradation

plays an important role in nitrogen metabolism in a large

number of different microorganisms (e.g. Bacillus subtilis),

where purine catabolic pathways are described as an alter-

native pathway of nitrogen utilization once primary nitro-

gen sources are exhausted [28]. Genes encoding for

Table 2 Genes involved in nitrogen metabolism that are differentially expressed during nitrogen limitation in M. smegmatis mc2155
(Continued)

msmeg_0436d 2.17 1.19E-04 allophanate hydrolase subunit 1

msmeg_2189 2.16 9.92E-03 allophanate hydrolase

msmeg_3624 2.11 1.40E-03 urease accesory protein UreF

msmeg_3627 2.06 3.27E-04 urease subunit γ

C-N bond msmeg_5358 7.23 9.62E-35 acetamidase/formamidase

msmeg_5359 4.64 6.37E-14 cyanate hydratase

msmeg_0571 4.06 1.08E-17 carbon-nitrogen hydrolase

msmeg_3995 3.99 1.09E-13 N-carbamoyl-L-amino acid amidohydrolase

msmeg_6266 3.68 5.45E-18 thiocyanate hydrolase subunit β

msmeg_4367 3.67 2.87E-17 formamidase

msmeg_6267 3.42 2.79E-15 thiocyanate hydrolase subunit γ

msmeg_0566 2.96 3.15E-06 aliphatic amidase

msmeg_4381 2.58 1.56E-08 amidase

msmeg_3403 2.38 2.83E-06 formamidase

msmeg_5373 2.35 1.43E-04 nitrilase 2

msmeg_0443d 2.28 1.82E-02 carbon-nitrogen hydrolase

msmeg_3397 2.26 3.75E-04 acetylornithine deacetylase

msmeg_2491 2.25 3.45E-02 acetylornithine deacetylase

Nitrate/Nitrite msmeg_0427 4.42 1.52E-03 nitrite reductase, large subunit

msmeg_0332d 0.16 7.18E-10 2-nitropropane dioxygenase

CoA biosynthesis msmeg_6097d 0.49 9.14E-05 pantoate-β-alanine ligase
aLocus number of gene in M. smegmatis mc2155
bMean gene expression ratio of three biological replicates
cP-values of gene expression ratio from three biological replicates were corrected for multiple testing using the Benjamini and Hochberg False Discovery Rate (FDR)
dGenes in the nitrogen regulated transcriptome that were discovered in this study
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proteins involved in the degradation of purine nucleotides

were previously reported to be upregulated in M. smegma-

tis during nitrogen limitation [21]. The enzyme guanine

deaminase is upregulated 3.7-fold (FDR < 0.1 %) catalyzing

the reaction from guanine to xanthine and releasing 1 mol

of ammonium per 1 mol guanine. The three enzymes, uri-

case (up 2.8-fold, FDR < 0.1 %), transthyretin (up 3.5-fold,

FDR < 0.1 %) and 2-oxo-4-hydroxy-4-carboxy-5-ureidoi-

midazoline decarboxylase (up 3.9-fold, FDR < 0.1 %)

catalyze the subsequent steps of urate degradation result-

ing in the production of allantoin. This metabolite is then

further degraded with the concomitant production of

ureidoglycolate and urea, which is broken down in either

a one-step reaction via urease or a two-step reaction via

urea carboxylase/allophanate hydrolase enzyme complex to

ammonium (Fig. 3). Transcription of the urease-encoding

genes was elevated also in the batch culture, while genes

encoding for an allophanate hydrolase (msmeg_0435-

msmeg_0436) were upregulated only under nitrogen deple-

tion in continuous culture [21].

We observed an upregulation of the pyrimidine nucleo-

tide degradation gene cluster and detected differential ex-

pression of a third copy of a putative phenylhydantoinase

(msmeg_3553; up 3-fold, FDR < 0.1 %) that plays an im-

portant role in the degradation of pyrimidine nucleotides.

Catabolism of pyrimidine nucleotides can occur through

three different pathways; a reductive pathway in which

uracil is reduced to two molecules of CO2 and one mol-

ecule of ammonium and β-alanine, respectively, an oxida-

tive pathway and a recently identified Rut pathway [29].

M. smegmatis harbors a reductive uracil degradation path-

way [30], which is induced upon nitrogen limitation. How-

ever, not all of the genes in this pathway have been

identified in M. smegmatis. After the import of uracil

by several nucleotide permeases, the first step of this reduc-

tive pathway is catalyzed by a dihydropyrimidine dehydro-

genase that is able to reduce uracil and thymine to 5,6-

dihydrouracil and 5,6-dihydrothymine (Fig. 3), followed by

a reaction catalyzed by a phenylhydantoinase. This en-

zyme hydrolyzes the opening of the heterocyclic ring and

Fig. 3 Diagram of pathways involved in nitrogen metabolism during nitrogen limitation in M. smegmatis. Shown are selected metabolic pathways
that are discussed. Fold change in gene expression and predicted directionality of reaction are indicated by numbers and arrows. Solid black arrows
indicate one-step reactions and dotted black arrows indicate multi-step reactions. 2-DHpantoate: 2-dehydropantoate; 2-OG: 2-oxoglutarate; 3-methyl-
ob: 3-methyl-2-oxobutanoate; 4-OH-THPP: 4-hydroxy-2,3,4,5-tetrahydrodipicolinate; AA: amino acid; meso-2,6-DAP: meso-2,6-diaminopimelate; NH4

+:
ammonium; NO2

−: nitrite
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β-alanine synthase (msmeg_3555; up 1.9-fold, FDR < 1 %)

is catalyzing the last step of this pathway (Fig. 3).

Amino acid catabolism is strongly downregulated under

nitrogen limitation

A large cohort of genes, particularly in the catabolism of

the amino acids alanine, aspartate, valine, proline and ly-

sine were downregulated 5-40-fold in response to nitro-

gen depletion (Table 2), (Fig. 3). Interestingly, most of

these genes showed an elevated transcription in batch

culture (Additional file 5, Table S3). The amino acid ala-

nine has a substantial importance as a central metabolite

in bacterial metabolism and also its role in the synthesis

of peptidoglycan as D-/L-alanine is essential for bacteria.

Several pathways have been described contributing to the

biosynthesis of L-alanine and β-alanine, e.g. catabolism of

amino acids (i.e. valine and cysteine) and transamination of

pyruvate. In M. smegmatis, genes encoding for all of the

aforementioned pathways were differentially expressed in

response to nitrogen limitation (Table 2). The conform-

ation of the amino acid β-alanine does not allow its incorp-

oration into proteins, but it serves together with pantoate

as precursor of coenzyme A (CoA) biosynthesis, which is

essential for a functional TCA cycle, as well as fatty acid

and cholesterol biosynthesis. Degradation of purine nucle-

otides via an L-aspartate-alpha-decarboxylase (PanD) re-

sults in production of β-alanine and PanD was identified

as the predominant pathway of β-alanine synthesis in the

closely related C. glutamicum, where a panD mutant ex-

hibited β-alanine auxotrophy [31]. However, expression of

panD was strongly downregulated in M. smegmatis under

nitrogen limitation. Valine degradation via the intermedi-

ates 3-methyl-2-oxobutanoate and 2-dehydropantoate to

(R)-pantoate was repressed the same time, suggesting the

demand to prevent unnecessary consumption of amino

acids for CoA biosynthesis (Fig. 3).

A second pathway of L-aspartate (Asp) catabolism was

differentially expressed in M. smegmatis under nitrogen

limitation, which is linked to the concomitant biosynthesis

of lysine. This pathway is a nine-step reaction including

important metabolites such as L-aspartate semialdehyde

(homoserine biosynthesis) and meso-2,6-diaminopimelate

(constituent of bacterial cell walls). Interestingly, the initial

steps of aspartate catabolism were repressed, while the

degradation of meso-2,6-diaminopimelate to lysine was

upregulated (Fig. 3). Lysine can act as donor of an

amino group by transferring an ammonium group to 2-

oxoglutarate to form glutamate under nitrogen excess,

however, this pathway of lysine catabolism via a lysine

aminotransferase is downregulated 7.5-fold (FDR <

1 %), indicating an intracellular accumulation of aspar-

tate and lysine and suggesting a secondary function of

these amino acids [32, 33]. Previous studies discussed

the importance of intracellular lysine to control growth

rate in mycobacteria and suggested a link between lysine

accumulation and fatty acid metabolism [34]. Proline has

been shown to serve as mechanism for methylglyoxal de-

toxification, when anabolic and catabolic processes were

imbalanced and we show that proline degradation was re-

pressed under nitrogen depletion.

A large number of transcriptional regulatory systems are

differentially expressed in response to nitrogen limitation

We identified 26 differentially expressed transcriptional

regulators that are either directly or indirectly responding

to nitrogen limitation in M. smegmatis (Table 3). Only a

handful of these regulators have been characterized, in-

cluding the nitrogen regulatory protein PII (msmeg_2426)

and the PII adenylyl transferase (msmeg_2427). The myco-

bacterial copy of the PII protein is not required for the

regulation of the glutamine synthetase activity and does

not act as regulator of the transcriptional response to ni-

trogen limitation [35]. This is in contrast to C. glutami-

cum, where the PII protein was identified as the sole signal

transduction protein, binding to AmtR and releasing this

repressor from its target DNA, in order to allow transcrip-

tion of genes involved in nitrogen uptake, assimilation and

metabolism [12].

Another well-described transcriptional regulator is the

OmpR-type response regulator GlnR, which has been

identified as a mediator of the transcriptomic response

to nitrogen limitation in M. smegmatis [20]. Determin-

ation of the GlnR regulon, by combining expression pro-

filing of M. smegmatis wild type and a ∆glnR deletion

mutant under nitrogen-starvation conditions in batch

culture revealed a total of 103 genes directly controlled

by GlnR [20]. A large portion of these genes (72 %) were

also differentially expressed under nitrogen limitation in

our continuous culture model, however, GlnR itself was

not among them, indicating a posttranslational regula-

tory mechanism for GlnR like in S. coelicolor [13]. Com-

parison of the differentially expressed transcriptional

regulatory proteins in batch culture versus continuous

culture showed an overlap of six genes with four of these

under control of GlnR (Table 3). We further observed 16

transcriptional regulatory proteins that were differen-

tially expressed in continuous culture (Table 3). The

TetR-like transcriptional regulator AmtR showed a 1.7-

fold upregulation under nitrogen replete conditions and

was therefore outside the selected cut-off. However, in

our RNA-seq analysis we identified 127-fold downregu-

lation of an antisense transcript (asRNA) of almost the

entire msmeg_4300 gene under nitrogen-depleted condi-

tions (Additional file 6, Figure S3). These data suggest a

mechanism of post-transcriptional regulation by an

asRNA where transcription of msmeg_4300 is enhanced

upon nitrogen excess and modulates the translation effi-

ciency of the AmtR encoding gene.
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We identified several other cases of potential non-coding

small RNAs that might regulate expression of genes in-

volved in fatty acid and central carbon metabolism under

nitrogen limitation (Additional file 7, Table S4). In our

RNA-seq analysis, we observed a 102-fold downregulation

of an asRNA of msmeg_4299 gene under nitrogen deple-

tion, while msmeg_4299 showed a 2.7-fold upregulation

under nitrogen limitation (Additional file 6, Figure S3).

The intergenic region msmeg_3131-msmeg_3132 com-

prises the promotor regions of the genes msmeg_3131

(long-chain acyl-CoA synthetase) and msmeg_3132 (DNA-

binding protein) and revealed a 4.7-fold increase in

transcription under nitrogen excess (Additional file 6,

Figure S3). Interactions between sRNAs and the 5’UTR of

mRNAs affect translation efficiency, while an interaction

with the 3’UTR of mRNAs usually do not affect

translation, but mRNA stability [36]. These findings are

supported by a strong upregulation of genes involved in

the degradation of fatty acids as well as the downregula-

tion of genes involved in the TCA cycle as both metabolic

pathways are CoA-dependent (Additional file 2, Table S1).

Interestingly, three regulatory proteins (one putative

two-component system and two putative orphan re-

sponse regulators) showed a different expression profile

in continuous culture compared to batch culture. The

operon msmeg_6236-msmeg_6238 encodes for a two-

component system with unknown function and the gene

msmeg_3297 encodes for a CadC-like transcriptional

regulator that has been linked to pH homeostasis in E.

coli [37]. No change in external pH was observed in our

experiments, suggesting the CadC-like protein in M.

smegmatis was performing a different function.

Table 3 Genes involved in regulatory mechanisms in response to nitrogen limitation in M. smegmatis mc2155

mc2155 locusa Expression ratiob FDRc Description

msmeg_1082 7.04 1.06E-08 two-component regulator HTH luxR-type DNA binding domain

msmeg_3997 3.46 4.55E-15 regulatory protein

msmeg_5731 3.44 1.87E-07 GntR family transcriptional regulator

msmeg_1597 3.29 1.59E-14 transcription factor WhiB

msmeg_6236 3.27 1.32E-12 two-component system - regulatory protein

msmeg_6238 2.80 2.81E-10 two-component system - sensor kinase

msmeg_2427 3.19 2.01E-14 PII uridylyl-transferase

msmeg_2426 2.18 5.48E-07 nitrogen regulatory protein PII

msmeg_4006 3.11 1.56E-08 CdaR family transcriptional regulator

msmeg_4368 3.11 1.49E-13 regulatory protein - FmdB family

msmeg_3297 2.78 1.21E-05 CadC family transcriptional regulator

msmeg_3298 2.36 4.75E-03 response regulator receiver domain-containing protein

msmeg_6198 2.41 1.85E-05 DNA-binding protein

msmeg_6824 2.16 1.03E-02 MarR family transcriptional regulator

msmeg_0778 2.11 1.33E-02 transcriptional regulator

msmeg_1420 2.07 1.46E-02 transcriptional regulatory protein

msmeg_5673 0.49 9.39E-05 transcriptional regulator

msmeg_3177 0.49 4.19E-02 transcriptional regulatory protein

msmeg_4394 0.48 5.57E-04 LysR family transcriptional regulator

msmeg_6789 0.45 2.14E-02 GntR family transcriptional regulator

msmeg_0473 0.38 2.21E-04 LuxR family transcriptional regulator

msmeg_5987 0.35 9.99E-03 two-component regulator

msmeg_6555 0.33 6.11E-07 TetR family transcriptional regulator

msmeg_0051 0.31 1.59E-05 transcription factor WhiB family protein

msmeg_1953 0.27 1.77E-06 transcription factor WhiB

msmeg_0622 0.19 4.57E-08 DNA-binding protein

Bold: within GlnR regulon; Italic: differentially expressed in the same direction in batch culture versus continuous culture; Underlined: inversed expression in batch

culture versus continuous culture
aLocus number of gene in M. smegmatis mc2155
bMean gene expression ratio of three biological replicates
cP-values of gene expression ratio from three biological replicates were corrected for multiple testing using the Benjamini and Hochberg False Discovery Rate (FDR)
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Conclusions
Herein we report the transcriptomic response of M. smeg-

matis to nitrogen limitation in a continuous culture model

at a defined growth rate (Fig. 4). We show that amino acid

metabolism plays an important role in the adaptation of

M. smegmatis to nitrogen depletion and identified 16

novel transcriptional regulators that were either directly

or indirectly involved in the global transcriptomic re-

sponse of M. smegmatis to nitrogen limitation. Several

non-coding RNAs were differentially expressed suggesting

transcriptional or post-transcriptional regulation of gene

expression and we propose a regulatory mechanism in-

volving a trans-acting asRNA for the AmtR protein in M.

smegmatis. Comparison of our chemostat data to the glo-

bal transcriptomic response in batch culture nitrogen run

out experiments revealed that only 17 % of the previously

described nitrogen-regulated genes overlapped between

batch and continuous culture. Our data highlight the

versatile metabolic capability of M. smegmatis and provide

a molecular framework for understanding how environ-

mental mycobacteria respond to nitrogen-depleted

environments.

Methods

Bacterial strains, media and growth conditions

M. smegmatis mc2155 was grown in LBT or adapted

HdB minimal medium supplemented with 0.2 % (w/v)

glycerol (unless otherwise stated) as sole carbon source,

NH4Cl in various concentrations as sole nitrogen source,

11.74 mM K2SO4 as sulphur source and 0.05 % (w/v)

Tyloxapol at 37 °C with agitation (200 rpm). Aerobic

starter cultures were inoculated to an initial optical dens-

ity (OD600) of 0.05 and grown with agitation (200 rpm) at

37 °C. Chemostat bioreactors were prepared as previously

described [23]. Samples to measure residual glycerol

concentration and ammonium concentration were

Fig. 4 Overview of affected nitrogen uptake systems and metabolic pathways during nitrogen limitation in M. smegmatis. Shown are selected
upregulated (cyan) and downregulated (purple) genes that are directly involved in nitrogen uptake, metabolism and ammonium assimilation.
Fold change in gene expression and predicted directionality of reaction are indicated by numbers and arrows. 2-DHpantoate: 2-dehydropantoate;
2-OG: 2-oxoglutarate; 3-methyl-ob: 3-methyl-2-oxo-butanoate; 4-OH-THPP: 4-hydroxy-2,3,4,5-tetrahydrodipicolinate; AA: amino acid; meso-2,6-DAP:
meso-2,6-diaminopimelate; NH4

+: ammonium; NO2
−: nitrite
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taken in intervals of four to six hours. Glycerol con-

centration was measured according to Garland and

Randle [38] and ammonium concentration was mea-

sured according to Weatherburn [39]. After entering

steady-state, the chemostat was left running for at

least three volume changes before cell harvest.

RNA extraction and Reverse transcriptase PCR

Cells were lysed by four cycles at 4800 rpm for 30s in a

mini-Beadbeater (Biospec Products), with 30s on ice be-

tween each of the cycles. Total RNA was extracted using

TRIzol® reagent (Ambion) according to the manufac-

turers instructions. DNA was removed by treatment

with 3 U RNase-free DNase using the TURBO DNA-

free kit (Ambion) according to the manufacturers in-

structions. The quality of the RNA was checked with

the Bioanalyzer (RIN >9) and the concentration was deter-

mined using a NanoDrop ND-100 spectrophotometer.

Next, depletion of ribosomal RNA and strand-specific li-

brary preparation were performed, using the EpiCentre

ScriptSEq™ Complete Kit for Bacteria according to manu-

facturers instructions. Quantification of nucleic acids was

performed using a Qubit® Fluorometer to ensure DNA

contamination of the samples was less than 10 % and li-

braries were created. Prepared libraries have undergone a

quality control using an Agilent 2100 Bioanalyzer: DNA

1000 Labchip, Quant-iT dSDNA HS Assay for quantifica-

tion and Quant-iT RNA Assay and Quant-iT Protein

Assay for percentage contamination check, using an

Invitrogen Qubit® Fluorometer. Libraries were run on

a Illumina MiSeq 300 cycle Kit_v2 with a paired-end

(PE) read length of 2x150 and a PhiX control library

was also loaded and used as control for the run.

Analysis of RNA sequencing data

Adapter sequences were removed from raw fastq files

using Flexbar [40] and reads shorter than 50 bp were

discarded. Sequences were then mapped against the

M. smegmatis genome (GenBank NC_008596.1) using

Bowtie2 with the”very sensitive” option. Counts for

each gene, intergenic regions and counts on reverse

strand were calculated with featureCounts [41], taking

into account the reads’ strand-specificity. Statistical

analysis and principal component analysis were per-

formed using DESeq (Additional file 8, Figure S4 and

Additional file 9, Figure S5) [42]. We considered dif-

ferentially expressed genes based on their fold-change

values as well as p values adjusted for multiple testing with

the Benjamini-Hochberg procedure, which controls false

discovery rate (FDR, referred to as padj in DESeq results).

Venn diagrams were generated using the BioVenn pro-

gram [43]. Gene functions were assigned using public da-

tabases (NCBI [44], UniProt [45], KEGG [46], Biocyc

Database Collection [47]).

Supporting data

All RNA-sequencing data have been deposited in

ArrayExpress and can be accessed through the accession

number E-MTAB-3918. All other supporting data are in-

cluded as additional files.
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replete conditions. (PDF 264 kb)
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