
ARTICLE

Received 10 Feb 2015 | Accepted 24 Jul 2015 | Published 8 Sep 2015

Defining the relationship between infection
prevalence and clinical incidence of Plasmodium
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In many countries health system data remain too weak to accurately enumerate Plasmodium

falciparum malaria cases. In response, cartographic approaches have been developed that link

maps of infection prevalence with mathematical relationships to predict the incidence rate of

clinical malaria. Microsimulation (or ‘agent-based’) models represent a powerful new

paradigm for defining such relationships; however, differences in model structure and

calibration data mean that no consensus yet exists on the optimal form for use in

disease-burden estimation. Here we develop a Bayesian statistical procedure combining

functional regression-based model emulation with Markov Chain Monte Carlo sampling to

calibrate three selected microsimulation models against a purpose-built data set of

age-structured prevalence and incidence counts. This allows the generation of ensemble

forecasts of the prevalence–incidence relationship stratified by age, transmission seasonality,

treatment level and exposure history, from which we predict accelerating returns on

investments in large-scale intervention campaigns as transmission and prevalence are

progressively reduced.
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D
espite encouraging recent progress, Plasmodium
falciparum continues to impose an enormous burden of
disease and death across sub-Saharan Africa1. In many

countries with the most intense transmission, disease-reporting
infrastructures are weak and precise enumeration of the
burden on human health arising from malaria is challenging.
This, in turn, limits evidence-based disease-control planning,
implementation and evaluation. In response, cartographic
approaches have been developed that use maps of infection
prevalence (termed the P. falciparum parasite rate, PfPR)2,3 or
other transmission metrics4 as a basis for estimating the incidence
rate of clinical disease in different locations1,5. While maps of
PfPR are becoming increasingly robust, in part because of the
proliferation of high-quality data on infection prevalence from
nation-wide household surveys, the relationship between PfPR
and clinical incidence remains relatively poorly understood and
informed by a much smaller and less standardized empirical
evidence base.

Recent efforts to construct a suitable PfPR–incidence relation-
ship for P. falciparum burden estimation include purely data-
driven fits of varying degrees of sophistication from first-order
stratification by endemicity class to hierarchical Gaussian process
regression6,7, and projections based on the calibration of a steady-
state compartmental transmission model8. Over the past decade,
a number of sophisticated microsimulation models have been
developed that aim to capture all important components of the
malaria transmission system, providing a platform to investigate
many aspects on the basic epidemiology of the disease and the
likely effect of different control strategies8–10. Such models
simulate infections at the level of distinct individuals within a
population, each having experienced a unique history of past
exposure and treatment11,12, and therefore allow inference of the
community-level PfPR–incidence relationship. However, conflicts
in their predictions arising from differences in the conceptual
structures of these models cannot yet be distinguished from those
simply because of differences in the data sets used in their
calibration, nor indeed from any potential spatiotemporal or
ethnic heterogeneity in the underlying relationship. Hence,
no consensus yet exists on an appropriate form of the
PfPR–incidence curve for use in disease-burden estimation and
for addressing other important public-health questions.

The unique potential of microsimulation models for perform-
ing detailed epidemiological modelling under realistic condi-
tions13 comes at the price of a much greater computational
demand than for steady-state models. As a result, the calibration
of microsimulation models against empirical data sets has proven
a persistent difficulty for applications of these methods across the
health sciences14, and in particular for malariology15,16: the
common experience being that sophisticated statistical algorithms
are required to achieve computational tractability whether the
goal is maximum likelihood estimation of model parameters or
full posterior inference. To overcome this challenge in the present
study we introduce a novel model-emulation procedure on the
basis of the technique of functional regression17,18—in which
kernel-weighting methods are used to generate a map from the
input space of entomological inoculation rate (EIR) seasonality
profile plus model parameter vector to the output space of age-
incidence curve plus age-PfPR curve on the basis of a pre-
compiled library of noisy, small runtime simulation outputs. The
emulator of each model allows fast approximate likelihood
evaluations, thereby facilitating thorough posterior sampling
under a Markov Chain Monte Carlo (MCMC) algorithm.

In this article we aim to apply the emulator approach to three
P. falciparum microsimulation modelling frameworks and a
standardized calibration data set to define an ensemble model for
the PfPR–incidence relationship that incorporates both empirical

uncertainty (driven by a limited and noisy calibration data set)
and conceptual uncertainty (driven by structural differences
between the models). These three frameworks were selected from
among the wider family of contemporary mechanistic models on
the basis of four criteria: (i) outputs are generated through
microsimulation or stochastic transitions through a compart-
mental structure; (ii) immunity to clinical illness is explicitly
modelled; (iii) either software was readily available or the
algorithm was sufficiently transparent to replicate the model
independently; and (iv) the modelling framework has been
extensively documented in peer-reviewed publications. A number
of models were identified as satisfying the first criterion with
reference to the systematic review of Reiner et al.19 but were
ultimately rejected on the second13,20, while the third and fourth
criteria exclude a minority of codes in development or restricted
to proprietary use (for example, the in-house GlaxoSmithKline
model for roll-out of the RTS,S vaccine candidate). With the
resulting ensemble model we are able to account during
calibration for (i) the ‘observer effect’ (or ‘Hawthorne effect’)
arising from ethical study designs in which the monitoring
campaign itself introduces a treatment rate higher than that
previously typical of the target community and (ii) site-to-site
differences in the seasonality of malaria transmission. We then
further account on prediction for (iii) age-, treatment- and
seasonality dependence in the PfPR–incidence relationship and
(iv) for the effects of recent declines from historically high levels
of transmission (and hence exposure-based immunity). From an
analysis of these end points, we predict accelerating returns on
investments in large-scale intervention campaigns as transmission
and prevalence are progressively reduced.

Results
Data. The data against which we calibrate each of the three
transmission models explored in this study represent a subset of
the compilation prepared by Battle et al.21 in their exhaustive
literature review of studies reporting direct measurements of
incidence for both P. falciparum and P. vivax malaria. Here we
restricted our focus to those sub-Saharan African P. falciparum
surveys with active case detection (ACD, where malaria cases are
detected in the community) conducted no less frequently than
monthly. In a number of these studies, passive case detection
(where cases are detected after seeking care at health facilities)
was additionally deployed to alleviate missingness from a fraction
of febrile episodes occurring entirely between ACD visits. A
further constraint imposed was that the incidence observations
are available as raw counts with matched person–year observed
tallies in at least four distinct age bins. Where incidence
observations were presented under multiple case definitions, we
select that with a parasite-density threshold, and where multiple
thresholds are reported we select that closest to 5,000 parasites
per ml. For continuity with previous work8 we also included a
single passive case detection-only study22 that was not otherwise
identified by the above criteria. Our final data set is thus
composed of measurements from 24 separate studies reporting
data for a total of 30 unique sites observed between 1981
and 2011 (Table 1). Contemporaneous, age-structured parasite
prevalence data were extracted from the literature to supplement
the incidence data for 28 of these sites. Eight of these studies
report incidence under a case definition of fever with any
detectable parasitaemia (that is, without application of a higher
parasite-density threshold designed to improve specificity). In
addition, worth noting is that 11 of the 24 studies included in our
final data set were not utilized in the previous calibration of the
Griffin et al. model8 (adding 10 unique sites to the 20 used
previously).
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Transmission models. The three contemporary transmission
platforms employed in this study were OpenMalaria9,23–25 (run
in a single baseline configuration, rather than as full ensemble
itself), the EMOD DTK v1.6 (ref. 10,12,26–28) and the
Griffin et al. model8. Here we employ the publicly available
microsimulation codes for the former two and, for the latter, a
bespoke code based on the compartmental model described
therein (we will refer to this implementation as ‘the Griffin IS’,
that is, Individual Simulation). Each model was run with a 5-day
time step under a forced EIR configuration, whereby a pre-
determined transmission intensity is imposed as a direct model
input, in contrast to ‘full vector’ mode simulations in which the
EIR is only indirectly controllable through adjustment of ancillary
climate and mosquito model parameters. The use of forced EIR
here thus is a pragmatic decision to facilitate model fitting at the
expense of our ability to capture the dynamic response between
host and vector populations (most important at low EIRs) with
these simulations. The case management system in each model
was configured to yield a 35% probability of effective treatment
per febrile episode (formally, per 2-week period with illness in the
case of OpenMalaria) during a 90-year period of warm-up
simulation time to establish equilibrium levels of immunity under
realistic conditions. Here we use the term ‘probability of effective
treatment’ to mean the direct probability of parasite clearance
through drug-based intervention over the course of an illness:
that is, the product of a series of steps in the health-care seeking
and treatment chain not necessarily modelled explicitly in each
code. A year of baseline observations was then sampled before

reconfiguration to an 85% probability of effective treatment to
simulate the potential ‘observer effect’ of an ethical study design
at this near-maximal treatment level. The simulation observables
here are annual counts of clinical fevers, parasite positives and
population size in age bins with end points spaced as {0, 1, 2, 3, 4,
5, 7.5, 10, 15, 25, 35, 45, 60 and 90 years old (y/o)}. Simulations
with EIR declining after the warm-up period were effected by
direct control, where allowed, by the EMOD DTK and Griffin IS,
and through a generic intervention module providing a
proportional reduction in the force of infection in the case of
OpenMalaria.

Age dependence of the PfPR2–10–incidence relationship.
Although fitted against a common data set, our posterior cali-
brations of the three microsimulation models exhibited a number
of subtle differences in their predictions for the PfPR2–10–
incidence relationship stratified by age. Figure 1 presents a direct
comparison of their posterior envelopes from simulations under a
low seasonality profile (here constant EIR) for three key age
groups chosen for consistency with the reporting conventions
(and prevalence/incidence-to-mortality modelling methodolo-
gies) of the Global Burden of Disease project29 and the World
Malaria Report1: ‘infants and young children’ (0–5 y/o exclusive:
that is, up to the fifth birthday), ‘older children’ (5–15 y/o) and
‘adults’ (15þ y/o). Important to note when interpreting these
plots is that the prevalence baseline is that for the 2–10 y/o age
group (PfPR2–10) targeted by the spatiotemporal prevalence maps,

Table 1 | Overview of the prevalence–incidence data set used for model calibration.

Study Site, Country Year (s) PfPR2–10 Treat. sACD* Threshold

Ba et al.54w Ndiop, Senegal 1993 0.26 0.639 1 43,600 pml� 1

Bloland et al.55w Asembo Bay, Kenya 1992 0.79 0.870 14 Age specific
Bonnet et al.37 Koundou, Cameroon 1997–1998 0.72 0.807 1 41,000 pml� 1

Ebolakouno, Cameroon 1997–1998 0.66 0.807 1 41,000 pml� 1

Bougouma et al.56,57w Saponé, Burkina Faso 2007 0.67 0.770 3 42,500 p ml� 1

Coulibaly et al.58w Bandiagara, Mali 1999 0.29 0.944 7 Any patent
Diallo et al.59,60 Dakar, Senegal 1996–1997 0.014 0.495 7 Any patent

S. Dakar, 1994 0.003 0.495 7 Any patent
Dicko et al.61 Donéguébougou, Mali 1999–2000 0.403 0.944 7 Any patent

Sotuba, Mali 1999–2000 0.086 0.944 7 Any patent
Fillol et al.62w Niakhar, Senegal 2003 0.22 0.820 7 43,000 pml� 1

Greenwood et al.63w Farafenni, The Gambia 1981–1982 0.32 0.682 30 Age specific
Guinovart et al.22 Manhiça, Mozambique 2003–2005 0.20 0.820 � Any patent
Henry et al.64 Katiola, Côte d’Ivoire 1997–1998 0.91 0.686 1 Age specific

Korhogo, Côte d’Ivoire 1997–1998 0.88 0.686 1 Age specific
Korhogo, Côte d’Ivoire 1997–1998 0.83 0.686 1 Age specific

Loha et al.65w Chano Mille, Ethiopia 2009–2011 0.044 0.812 7 Any patent
Lusingu et al.66 Mgome, Tanzania 2001 0.91 0.850 30 Age specific

Ubiri, Tanzania 2001 0.27 0.850 30 Age specific
Magamba, Tanzania 2001 0.067 0.850 30 Age specific

Molez et al.67w Barkedji, Senegal 1994–1995 0.098 0.443 10 Age specific
Mwangi et al.68,69 Ngerenya, Kenya 1999–2001 0.25 0.870 7 42,500 p ml� 1

Chonyi, Kenya 1999–2001 0.41 0.870 7 42,500 p ml� 1

Nebie et al.70w Balonghin, Burkina Faso 2003 0.63 0.722 1 45,000 p ml� 1

Owusu-Agyei et al.71 Kintampo, Ghana 2004 0.72 0.922 2.33 45,000 p ml� 1

Rogier et al.72 Dielmo, Senegal 1990 0.89 0.639 1 Sharp increase
Saute et al.73 Manhiça, Mozambique 1996–1999 0.26 0.384 7 Any patient
Schellenberg et al.47 Ifakara, Tanzania 2000–2001 0.19 0.850 7 Any patient
Thompson et al.74 Matola, Mozambique 1992–1995 0.38 0.526 1 Age specific
Trape et al.75w Linzolo, Republic of Congo 1983–1984 0.79 0.788 1 p/leu. 42
Trape et al.40 Dielmo, Senegal 2007–2008 0.20 0.950 2.33 p/leu. 43.5
Velema et al.76w Pahou, Benin 1989 0.51 0.661 30 41,000 pml� 1

ACD, active case detection; PfPR, P. falciparum parasite rate.
*Here tACD denotes the period of ACD in days for each study. Note also that in the Threshold column pml� 1 stands for parasites per microlitre, and p/leu. the ratio of parasites to leucocytes.
wHighlights studies not included in the previous Griffin et al.8 model calibration.
�Symbol denotes the one study here that did not conduct ACD, but was included here for consistency with the previous analysis of Griffin et al.
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to which these curves may be applied for burden estimation3.
Moreover, the modelled relationships between prevalence and the
force of infection are highly nonlinear, so neither should be
interpreted naively as a proxy for the other. This is reflected by
the convexity in the PfPR2–10–incidence curve for infants and
young children in the Griffin IS: at low transmission, incidence
scales linearly with both EIR and prevalence as each infected
individual is unlikely to face an infectious challenge while
currently infected; however, as transmission intensity increases,
prevalence saturates, whereas super-infection can lead to episodes
of clinical disease, hence, the appearance of a faster-than-linear
scaling at 20–40% PfPR2–10. (This effect is also seen in the original
Griffin et al. model8 fits as highlighted in Supplementary Fig. 9 of
our Supplementary Information File.)

As each model implements a similar function for age
dependence of the biting rate, the drivers of between-model
differences observed here lie primarily in differences between
exposure and the development of clinical immunity in each
model8,24,27,30. In particular, the observation that neither
OpenMalaria nor the EMOD DTK exhibits the above-noted
convexity in their PfPR2–10–incidence curves for infants and
young children can be traced to the operation of parts of their
exposure-based immunity models on timescales much shorter
than those of the Griffin IS. In the latter, the decay timescales of
pre-erythrocytic and clinical disease immunity are fixed a priori
to 10 and 30 years, respectively, which limits the fitting flexibility
of these components since reductions to the predicted incidence
at young ages are coupled strongly to reductions at older ages. In
OpenMalaria, however, the dynamic parasite-density threshold
model for clinical illness23 has a half-life of just 0.33 years, which
enables it to regulate increases in the incidence in infants and

young children without forcing the incidence in adults to zero. A
similar effect is achieved in the EMOD DTK via the explicit
mechanistic simulation of antigenic variation as a modulator of
exposure-based immunity.

Despite these subtle differences in the PfPR2–10–incidence
relations predicted by each model at fixed age, there is a strong
agreement as to the overall strength of exposure-based immunity
in shaping the age dependence of clinical illness from
P. falciparum malaria: namely, that at low transmission levels
corresponding to PfPR2–10 levels below 10% the greatest burden is
among the adult population, but at higher transmission levels the
balance of morbidity quickly shifts towards children (cf. refs
8,23). It is this general agreement we hope to capture in our
ensemble predictions, which we produce from a weighted pool of
each model’s posterior predictive envelopes with weights chosen
algorithmically (as described in the Methods under Ensemble
Model) to favour two- and three-way agreements. Figure 2
presents our ensemble predictions for the age-structured
PfPR2-–10–incidence relationships under low seasonality trans-
mission (as shown separately for each model in Fig. 1), as well as
for high seasonality transmission and one characterized by a
recent decline in transmission intensity.

Effects of seasonality and a decline in transmission. A com-
parison between the age-structured PfPR2–10–incidence relation-
ships of our ensemble model under conditions of low and high
transmission seasonality (the left and middle columns of Fig. 2,
respectively) reveals only a modest dependence; most notable is
the re-emergence of convexity in the high seasonality curve for
infants and young children not seen in the ensemble version at
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Figure 1 | Calibrated posterior predictions of the P. falciparum prevalence–incidence relationship under conditions of low historical treatment and

low transmission seasonality from the three microsimulation models comprising our ensemble, stratified by age. (a,d,g) OpenMalaria; (b,e,h) EMOD

DTK; (c,f,i) Griffin IS. In each panel the coloured curve and shaded zones illustrate the (pointwise) median and surrounding 68 and 95% credible intervals

for incidence detectable with daily ACD supposing no change to treatment, while the dashed black lines illustrate the median prediction corresponding to a

study year intervention increasing the effective treatment rate from 35 to 85% (that is, the ‘observer effect’ of ethical study designs).
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low seasonality. The same trend is observed in the high season-
ality simulations presented in Griffin et al.8 and can be
understood as a consequence of the definition of PfPR2–10

prevalence used here (and in Griffin et al.8) as the annualized
average: with few parasite-positive cases expected during the long
dry season, the relationship between prevalence and transmission
intensity is steeper than for the benchmark low seasonality case.
Nevertheless, the overall age dependence of the PfPR2–10–
incidence relationship (that is, the shifting age burden with
increasing intensity) is little affected by differences in the
seasonality profile. However, in the case that EIR has declined
from a historically higher level (illustrated in the right column of
Fig. 2 for the scenario of a 90% decline over the past 5 years), the
age dependence is notably exaggerated, such that infants and
young children bear the majority of the burden at all ages. This
effect was readily anticipated, given the presence of a long-lived
component (410 year decay timescale) to exposure-based
immunity in all three models. Its quantification here is clearly
important for an accurate assessment of burden in the context of
recent declines in transmission intensity across much of the
African continent3.

Discussion
Through a novel emulator-based approach we have been able to
calibrate three contemporary microsimulation models against a
common, purpose-built data set of age-structured prevalence and
incidence counts across 30 unique sites in sub-Saharan Africa.
These calibrations reveal subtle morphological differences
between the age-structured PfPR–incidence relationships pre-
dicted by each model, but also a general agreement in the age

dependence of the burden of clinical illness due to P. falciparum
malaria at varying levels of transmission. As an ensemble, the
combined predictive power of these three models allows the
construction of consensus forecasts for the responses of these
PfPR–incidence relationships to variations in the seasonality of
transmission intensity and the effects of a recent decline in overall
EIR. These curves represent a powerful new tool for improving
the estimation of malaria disease burden and understanding the
implications of changing transmission.

Important to note is that, despite the broad consensus with
regard to the expected age distribution of incidence revealed in
these ensemble predictions, a substantial degree of uncertainty
remains in the overall normalization of the PfPR–incidence
relationship owing to the great dispersion observed in total counts
between field incidence surveys at different sites with comparable
transmission levels. For policy makers considering cartographic
burden estimates produced from these curves, it should therefore
be emphasized that, although the resulting 95% credible intervals
will typically indicate a margin of error of order 33% in the total
number of incident cases, corresponding estimates of the
proportional change in incidence relative to a given starting year
can be made to higher precision, being largely robust against this
normalization error. As such, the relative change may allow a
more faithful assessment of progress towards elimination than
absolute case tallies alone.

The form of the ensemble PfPR–incidence curves presented
here also provides a simple insight with profoundly important
implications for global malaria elimination and eradication
efforts. Figure 3 shows the changes in clinical incidence that
our ensemble model predicts for a given fixed reduction in
transmission and how this varies depending on the pre-reduction
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Figure 2 | Ensemble model predictions of the P. falciparum prevalence–incidence relationship, stratified by age. Predictions are given under

conditions of low historical treatment and low transmission seasonality (a,d,g), high seasonality (b,e,h) and low seasonality after a 90% decline in

EIR over the past 5 years (c,f,i). In each panel the coloured curve and shaded zones illustrate the (pointwise) median and surrounding 68 and 95% credible

intervals for incidence detectable with daily ACD. These ensemble predictions represent a weighted average of the calibrated posteriors from each

transmission model with weights assigned by the median of subset posteriors algorithm.
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prevalence level. Using the example of a 90% reduction in EIR
over a 5-year period, we demonstrate how the proportional
reductions in morbidity accelerate as the transmission reduction
is applied to progressively lower prevalence settings. In practical
terms, this means that a control programme beginning to
successfully reduce PfPR in a highly endemic area may initially
see only modest improvements in case incidence. However, as
intervention coverage continues to scale up and new control
measures are introduced, each successive drop in PfPR will yield
progressively larger proportional reductions in cases. The origin
of this effect lies in the importance of exposure-based immunity
for P. falciparum malaria, as captured in the microsimulation
models explored here, which in turn aim to reproduce the
complex relationship between transmission intensity and the age
dependence of clinical illness observed in field studies31,32. While
purpose-built microsimulation studies remain essential to
estimate the impacts of specific interventions with uncertain
efficiency profiles15,33, our ensemble model demonstrates that for
those interventions successful in effecting a general reduction in
transmission intensity ever greater pay-offs can be expected as
prevalence is brought down progressively across the African
continent. This should serve as a rallying call to continue to
intensify control efforts that have already yielded substantial
declines in infection prevalence and now stand to make
increasing impacts on disease burden.

Methods
Model emulation. To build a fast emulator for each of the three microsimulation
transmission models comprising our ensemble, we adapted a technique from the
field of functional data analysis known as functional regression. In this framework
we aim to predict the noise-free age-prevalence, PfPR(a), and age-incidence curves,
I(a), that would be returned by long runtime (that is, large population) simulations
with each model for a given list of input parameters (including the effective
treatment rate), h, and annual EIR time series curve, E(t), using only the noisy
age-prevalence and age-incidence curves returned by a reference library of short
runtime (small population) simulations. That is, we sought a regression operator,

R fh; EðtÞg½ �ðaÞ ¼ fPf PRðaÞ; IðaÞg j fh;EðtÞgh iðaÞ

where h � | � i denotes conditional expectation with respect to the (hidden) stochastic
process assumed to generate zero-mean noise in the short runtime output. The
nonparametric functional regression solution to this problem17 is to construct a
kernel-based estimator for R in which the output is a (pointwise) mean of functions
from the reference library weighted by the ‘distance’, d( � , � ), of their inputs from
those of the target,

R̂ h; EðtÞ½ �ðaÞ ¼
Pn

i¼1 fPf PRðaÞ; IðaÞgK d fh; EðtÞgi; fh;EðtÞgð Þ=hð ÞPn
i¼1 K d fh; EðtÞgi; fh; EðtÞgð Þ=hð Þ ;

for kernel, K( � ), and bandwidth parameter, h. The intuition here is that the
long-run model output for a given target input can be estimated as a weighted
mean of the ‘noisy’ outputs, with greatest weight given to those of the latter
simulated under inputs close to our target.

Following ref. 18 we chose a locally adaptive kth nearest neighbours bandwidth,
whereby for each input {h, E(t)} the corresponding h was identified such that the
distance of the kth nearest reference library member was scaled to unity and K( � )
was set to have unit interval support (here we used the truncated standard
Normal). Our distance metric was formed from a weighted combination of two
separate metrics: one on the function space of EIR time series and the other on the
p-dimensional space of input model parameters,

d fh; EðtÞga; fh;EðtÞgb

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wd1 EðtÞa; EðtÞb

� �2 þð 1�wð ÞÞd2 ha; hbð Þ2
q

:

For d1( � , � ) we chose the logarithmic L2 distance and for d2( � , � ) the Mahalanobis
distance with diagonal covariance matrix, X, after h was prior integral mass
transformed to the unit hypercube. The optimal k,w and X for each emulator were
identified via a downhill gradient search through the space {2i, [0, 1], [1, m]mI}
(where I denotes the identity matrix and m the dimension of the input parameter
vector) for the combination maximizing mean predictive accuracy against a
training sample of long runtime simulations.

Almost every choice made in the implementation of a functional regression
procedure (or, more generally, a kernel-based regression) can potentially have an
impact on its predictive performance: (i) the choice of kernel and bandwidth
selection procedure34, (ii) the choice of distance metric imposed on the input
space17 and (where relevant, as present) (iii) the design of the reference library.
As described above, our approach to the former was to fix the kernel to Normal
(Gaussian) and the bandwidth selection to an adaptive k nearest-neighbour strategy
a priori, and to impose a strict form for the distance metric with just a handful of
free parameters that we choose iteratively so as to optimize the predictive accuracy
of the emulator against a library of long runtime benchmark simulations. However,
this procedure can only operate after construction of the reference library of ‘noisy’
short runtime simulation output, the design of which we describe next.

Reference library. The fundamental trade-off in construction of the reference
library is between the accuracy of the simulations on which it is built (determined
by the simulated population size) and the coverage of input parameter space
(determined by the total number of simulations conducted). As a rule of thumb,
given that each code is substantially different in its computational overheads: with
each microsimulation model requiring up to 90 years of ‘warm-up’ time to ensure
equilibrium levels of acquired immunity, even simulations with a population of just
200 people can have runtimes in the tens of seconds, while runs with 10,000 people
typically take minutes, and runs with 100,000 people tend towards hours. Hence,
although larger populations give more stable outputs, it is clearly infeasible to
thoroughly populate a library at such runtimes with inputs drawn from a
413-dimensional parameter space. However, indeed, since unbiased estimation is
impossible with Nadaraya–Watson-type estimators in the noise-free limit, the
reduction of simulation noise to zero would remain undesirable for the purposes of
our model emulation, were the computational burdens any less. Through a process
of trial and error we eventually settled on population sizes of 5,000 as a suitable
basis for building our microsimulation emulators as with this choice it was
possible to build libraries of 100,000 realizations spanning densely the input
parameter space of each model. For bandwidth optimization and validation
(see Supplementary Fig. 1) we produced a further 100-long runtime simulations
with a population size of 100,000.

Transmission code details for openmalaria and EMOD DTK. Numerous aspects
of the computational implementation and model structure in both the Open-
Malaria and EMOD DTK v1.6 codes have been made extensively customizable to
facilitate their application across a diverse range of modelling goals. To ensure the
reproducibility of our analysis, we describe here the precise settings used in
construction of the reference libraries of simulated age-prevalence and
age-incidence curves serving as the reference library in our model emulator.

Our model settings for OpenMalaria (schema version 32) were chosen
to follow closely the specification of the ‘base model’ described in ref. 15: namely,
no decay of immunity (that is, both the ‘IMMUNE_EFFECTOR_DECAY’ and
‘ASEXUAL_IMMUNITY_DECAY’ parameters set to zero), no mass action effect35

of EIR heterogeneity (that is, ‘LOGNORMAL_MASS_ACTION’ set to ‘false’), no
heterogeneity in treatment seeking or comorbidities and fixed parameters for the
age dependence of the biting rate (SN¼ 0.049 and E*¼ 0.032). As an exploratory
analysis we ran OpenMalaria over a range of EIR levels with zero seasonality for
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each of the 14 model variants in the best-fit parameterizations described in ref. 15
to trace out approximate PfPR–incidence relationships for each. As only four of
these variants (those with the fastest fixed immune decay) exhibited any
appreciable difference in this regard, we would broadly expect the results presented
herein to be robust against our decision to proceed with the ‘base model’ only.
To improve the flexibility of the model in representing the diversity of observed
age-incidence and age-prevalence counts, we allow the threshold for microscopy-
based parasite detection to vary between 20 and 200 parasites per ml in building the
reference library.

Where relevant, our model settings for EMOD DTK were then largely chosen in
sympathy with those described above for OpenMalaria. In particular, transmission
heterogeneity is confirmed zero for MALARIA_SIM mode and we select
‘SURFACE_AREA_DEPENDENT’ for the ‘Age_Dependent_Biting_Risk_Type’ as
the functional form described for this risk profile matches that used in ref. 16.
Other key EMOD DTK control option choices here were ‘Enable_Disesase_
Mortality’ set to zero, ‘Enable_Maternal_Transmission’ set to one and
‘Enable_Superinfection’ set to one. Again, the parameter controlling the threshold
of microscopy-based diagnosis (‘Parasite_Smear_Sensitivity’) was allowed to vary
over a range equivalent to 20–200 parasites per ml.

For both OpenMalaria and EMOD DTK, the health system settings were
simplified to represent administration of a generic antimalarial with the effective
treatment rate specified directly as the efficacy (compliance being set to 100%).
Simulation of the ‘observer effect’ of introducing an enhanced treatment level to a
site after years of historically low treatment was implemented via the ‘changeHS’
and ‘SimpleHealthTriggeredIntervention’ modules, respectively. Specification of
EIR seasonality in OpenMalaria was implemented via the ‘fourierSeries’
parameterization (discussed further below under Transmission Code Details for
EIR Time Series) with a later decline in the mean EIR affected in simulations via
the introduction of a generic pre-erythrocytic vaccine intervention (‘vaccineType’
set to ‘PEV’) blocking a certain fraction of infectious challenges, while in EMOD
DTK both these aspects of EIR were specified via the ‘Monthly_EIR’ intervention.
Finally, it is important to note that each code was run in ‘forced EIR’ mode in
which the dynamical feedback of transmission intensity between human and vector
hosts is turned off. Although potentially less ‘realistic’ (being unable to capture the
effects of stochastically driven feedback loops between vector and host disease
reservoirs), this mode of operation allows for much shorter simulation times, and
exploratory analyses with both codes revealed minimal differences in the outputs of
interest for EIRs above 0.1 bites per person per year.

Transmission code details for the Griffin IS. In contrast to the general
OpenMalaria and EMOD DTK malaria simulation frameworks, the compartmental
model described in ref. 8 features only a single structural form in which
(i) immunity decays (with a half-life of dClog(2)¼ 20.8 years for acquired
immunity), (ii) transmission is strictly heterogeneous but treatment seeking is not
and (iii) the age dependence of the biting rate takes a fixed form (parameters
r¼ 0.85 and a0¼ 8 years). In the ‘Griffin IS’ microsimulation code we developed
for this model, the disease states of individuals in a mock population are simulated
stochastically using a 5-day time step given the out-of-state transition matrix
defined by the equations of Griffin et al.8 conditioned by their age, past exposure
history, and transmission heterogeneity level. After every month of simulated time
the population balance is compared with the input template and bins exhibiting a
significant discrepancy are resampled and new births added as necessary to
maintain a stable demography despite ageing. EIR seasonality and long-term mean
declines are imposed directly at each 5-day time step in a manner equivalent to the
‘forced EIR’ modes of OpenMalaria and EMOD DTK. The structure of the Griffin
IS model so described was found to be well suited to the object-oriented
programming paradigm of the cþ þ language in which we chose to code it, and
satisfactory runtimes were easily achieved with help from the GNU scientific
library for simulation from parametric probability densities. Extensive comparisons
of the output from our microsimulation code against that of the steady-state
compartmental version under zero seasonality were performed to validate its
behaviour in at least this classical regime.

Transmission code details for EIR time series. Following the approach of
Stuckey et al.36 we model transmission seasonality as a sinusoidal time series in the
logarithm of daily EIR, that is,

log EðtÞ ¼ c0 þ c1 cos 2pt=365ð Þþ c2 cos 4pt=365ð Þ

where c1¼ c2¼ 0 corresponds to a constant EIR (no seasonality), c1a0, c2¼ 0 a
single peak of seasonal transmission and c1a0, c2a0a double-peaked profile with
half a year between peaks (as seen, for instance, in the monthly EIR time series for
Ebolakounou reported in ref. 37). By way of reference we note that for a single-
peak seasonal profile (that is, c2¼ 0) a value of c1¼ 1 concentrates roughly 75% of
transmission within a 6-month period, while a value of c1¼ 2.5 concentrates the
same percentage into just 3 months, equivalent to the definitions of high
seasonality previously advocated by Roca-Feltrer et al.38 and Cairns et al.39,
respectively. We therefore employ the latter (c1¼ 2.5) as our benchmark for high
seasonality posterior prediction and use c1¼ 0 as our low seasonality benchmark.

When fitting the age-incidence and (where available) age-prevalence data for
each site we treat the EIR and its seasonality profile as nuisance parameters, which

we integrate out (stochastically) via our MCMC algorithm. For this purpose we
suppose the following priors:

log10 EðtÞh i j c1; c2 � N 2; 1:4ð Þ
c2 j c1 � U 0; 2c1=3ð Þ; c1 � U 0; 3:5ð Þ

that is, we restrict c2 to be no more than two-thirds the value of c1, and given the
resulting seasonality profile we draw its mean EIR from a broad log-Normal
distribution centred on an EIR of 100.

An important question for the modelling of seasonality in this context is
whether or not the seasonal profile is indeed identifiable, given only age-structured
incidence counts as data and no site-specific prior information concerning the
annual EIR time series. An analysis of our posterior inferences for Ndiop and
Dielmo (1990–1993) suggests the affirmative as our estimates of EIR¼ 63 (15–120
(95% CrI)) and c1¼ 0.9 (0.2–2.6), and EIR¼ 313 (100–670) and c1¼ 0.5 (0–1.5),
respectively, are comparable to their contemporary estimates of EIR¼ 20, with
transmission restricted to the brief rainy season in Ndiop and EIR¼ 200 with
year-round transmission owing to the presence of a nearby river in Dielmo40,41. In
principle, one might also seek to allow for a diversity of long-term historic changes
in transmission during fitting; however, aside from identifiability concerns, the
computational requirements to build a well-sampled emulator in this case could
become excessive. It is also worth noting, as a caveat to our simulations of the
‘observer effect’ of treatment, that by running these microsimulation codes in
forced EIR mode we cannot capture any follow-on effect of treatment itself
reducing transmission (through reduced human infectiousness to mosquitoes).
This may lead to a slight overcompensation for the ‘observer effect’ in our fits;
however, we judged this preferable to neglect the issue.

Model calibration. With our model emulator able to provide rapidly a near
approximation to the long runtime limit {PfPR(a), I(a)} for each transmission
model belonging to any given {h, E(t)} pairing, the remaining requirements for
posterior exploration were specification of a likelihood function for the observed
data given the model, and specification of priors on the input parameters. For the
former we introduced a hierarchical Bayesian structure allowing for both site-level
random effects and overdispersion in the data, with these and the annual EIR time
series treated as nuisance parameters. With yijk denoting the observed incidence in
the kth incidence age bin of the jth site in the ith study, and pijm the observed
prevalence in the mth prevalence age bin of the same (where available; for all but
two sites),

yijk � NegBin mean ¼ rijkmijPYOijk; overdispersion ¼ qij

� �

pijm � Bin Pijmzij; Nijmzij
� �� �

frijk; Pijmg ¼ f
Z

age range of kth inc: bin

IðaÞ : R̂ hij;EðtÞij
h i

da;

Z

age range of mth prev: bin

Pf PRðaÞ : R̂ hij;EðtÞijda
h i

g

hij � NTð0;1Þ h;�ð Þ
h;�;EðtÞij;mij; qij; zij � p

where rijk represents the expected (long runtime) incidence rate in the given
incidence age bin, and Pijm the expected prevalence in the given prevalence age bin,
approximated via the emulator for the transmission model being fit. The likelihood
was completed through prior densities (represented here by the place holder, p) on
the expected model parameters and site-specific EIR time series, along with the
site-specific random effects, mij, and overdispersion terms, qij and zij, described
below under random effect and overdispersion priors.

Although an investigation of the posterior predictives for the age-incidence and
age-prevalence data on a site-by-site basis under each emulator confirms that the
adopted noise model is sufficiently flexible to account for the observational
variance here, visual inspection of the discrepancy between model and data in the
age-incidence (Supplementary Figs 3, 5 and 7) and age-prevalence (Supplementary
Figs 4, 6 and 8) plots for some of these sites (for example, Ngerenya and Kenya)
reveals a degree of ‘structural noise’ (that is, a limitation of the models to reproduce
the observed age dependencies). This issue, also noted in previous studies8,23, likely
follows primarily from discrepancies in the levels of heterogeneity in exposure and
case management between model and site42, although one might hypothesize that
unmodelled spatial variation in the underlying transmission dynamics (for
example, variation in vector species43 or parasite genetic diversity44) could also
play a role. Both issues warrant future investigation when further ACD-based
incidence studies increasing the coverage of countries in Central and Southern
Africa (currently under-represented in our data set) become available.

Rather than performing joint MCMC sampling of the complete space of this
statistical model—which is of dimensionality 4100 as it comprises the full set of
nuisance parameters for each study, location and year observed in addition to the
global model parameters of interest (h) and their site-specific random realizations
(hij)—we instead performed MCMC (with simulated tempering45 to improve
mixing) on each site separately and combined these to approximate the full
posterior with importance sample reweighting46. The feasibility of this approach is
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in part facilitated by the weakness of the parameter constraints imposed by the data
from each site individually, although en masse the full data set is ultimately strongly
informative with regard to particular parameters from each model. With the
magnitude of the observed incidence rate commonly held as a far less reliable
indicator of the ground truth than the shape of its age dependence47, and the
magnitude of the predicted incidence in each model similarly sensitive to
assumptions regarding the maximum duration of a single illness event, our prior
on the site-specific random effect allowing for incidence scaling, mij, was
deliberately made broad and minimally informative. As a result, a secondary phase
of normalization is required to achieve concordance between our model parameter
posteriors and the average magnitude of observed counts at each site, which we
implement via a linear regression of the expected-to-observed all-age incidence
ratios against the frequency of ACD for each draw from our full posterior
(as described further under Normalization and Calibration to Daily ACD). All
statistical computations were performed in the R environment48.

Parameter priors for transmission model parameters. Each of the three
microsimulation codes comprising our ensemble requires the user to specify values
for numerous controlling parameters. Previous studies with OpenMalaria15,23–25,30

and EMOD DTK10,12,27,28 have sought to constrain these in an essentially stepwise
manner through comparisons against disjoint data sets targeting specific segments
of each model, whereas the Griffin et al. model has been calibrated only in its
steady-state (non-microsimulation) form8 against a homogeneous age-incidence
data set including a significant fraction of the studies used here (Table 1). To allow
each model a comparable degree of flexibility in the present analysis, we adopt
deliberately broad priors on the parameters of all three codes with respect to the
constraints suggested by previous analyses. In the Supplementary Discussion (see
Supplementary Information) we examine the impact on the posterior predictive
PfPR2–10–incidence curves of returning to some of the previously fit or ‘default’
values of the key OpenMalaria and EMOD DTK parameters.

Our calibration of OpenMalaria includes 14 free parameters assigned priors of
the following forms typically matching the mean but at least doubling the 95% CI
ranges quoted in previous papers9,23–25,30: Simm (Beta), gp (log-Normal), X�p
(Gamma), X�h (log-Normal), X�y (Gamma), X�v (log-Normal), am (Beta), a�m
(Gamma), s2

0 (Normal), a (log-Normal), �o (log-Normal), Y�0 (log-Normal), Y�1
(log-Normal) and Y�2 (log-Normal). Our calibration of EMOD DTK includes
13 free parameters assigned priors to the following forms chosen primarily to
concentrate mass near the ‘default’ values suggested in the EMOD documentation:
‘Antigen_Switch_Rate’ (log-Normal), ‘Clinical_Fever_ Threshold_High’ (uniform),
‘Clinical_Fever_Threshold_Low’ (uniform), ‘Falciparum_MSP_Variants’
(Poisson), ‘Falciparum_PfEMP1_variants’ (Poisson), ‘Maternal_Antibody_
Protection’ (Beta), ‘Maternal_Antibody_Decay_Rate’ (log-Normal),
‘MSP1_Merozoite_Kill_Fraction’ (Beta), ‘MSP2_Merozoite_Kill_Fraction’ (Beta),
‘Pyrogenic_Threshold’ (log-Normal), ‘Falciparum_Nonspecific_Types’ (Poisson),
‘Max_Individual_Infections’ (Uniform) and ‘Nonspecific_Antigenicity_Factor’
(log-Uniform). Finally, our calibration of the Griffin IS includes 19 free parameters
assigned priors of the following forms, roughly matching the 95% prior credible
intervals of Griffin et al.8: dU (log-Normal), ID0 (log-Normal), kD (Normal), uD

(log-Normal), b0 (Beta), IB0 (log-Normal), kB (log-Normal), uB (log-Normal), f0

(Beta), f1 (Beta), IC0 (log-Normal), kC (log-Normal), uC (log-Normal), PM (Beta),
dM (log-Normal), d1 (Beta), fD0 (Beta), aD (log-Normal) and gD (log-Normal).

Random effect and overdispersion priors. To complete our hierarchical
Bayesian model for the observed data set of age-structured incidence and
prevalence counts described above (under Model Calibration), we must add priors
for the distributions of site-specific random effects and overdispersions to those on
the EIR time series parameters given earlier. Inspection of the fits presented in
previous work8 to calibrate the steady-state version of their transmission model
led us to expect both marked variations in normalizations of the observed
age-incidence and age-prevalence relations at a similar EIR (that is, a potentially
large random effects term) and (occasionally) marked structural departures from
the model (that is, potentially large overdispersion terms). Hence, we allowed broad
priors on each of the form:

mij � Gammað2; 2Þ; qij � Betað10; 1Þ; zij � Betað1; 1Þ

where the Gamma distribution takes the shape–rate parameterization. These
specifications give an expectation of one for the random effect term in a given
survey (corresponding to no rescaling of incidence) and a weak overdispersion of
0.91 (close to the Poissonian limit of one) in the case of incidence, but both allow
wide variation about these means if the data so demands; the overdispersion term
acting on the observed prevalence, zij, is given greater freedom as the sample sizes
of prevalence surveys are typically much larger than those of incidence, increasing
the potential for structural conflict between the model and data. Finally, to ensure
that our posterior inferences regarding the mean parameterization, h, are not
unnecessarily weakened by the assumed variance on the site-specific realizations,
hij, unless the data strongly favour this outcome for a certain parameter, we place
an Exponential prior on S of mean 0.01. Important to note is that we have not at
this stage adopted a specific model for the influence of ACD frequency on the
observed incidence counts. Instead, we allow any contribution of this form to be

absorbed into our fitted random effect terms, only re-calibrating our predictions to
daily ACD during our subsequent normalization step (as described below).

Normalization and calibration to daily ACD. To facilitate exploration of the
parameter posterior for each model we specified above only a weak prior on the
random effects term, mij, scaling the overall incidence of each site, nor do we
explicitly include a covariate representing the frequency of ACD in our likelihood
function, although one might expect this to be an important contributor to
between-study variance. Hence, we instead perform a further stage of analysis to
normalize our emulator posterior the prediction of incidence observable via daily
ACD. We implement this calibration through a simple regression model to infer
the mean ratio between total incidence observed and model predicted at daily ACD
via a simple linear regression against the logarithm of ACD period for those studies
applying a parasite threshold in their case definition (assumed to improve
specificity). This normalization is performed on each posterior draw; a useful
illustration is that shown in Supplementary Fig. 2: for each model we have
extracted the mean and s.d. of mij at each site and performed a joint linear
regression against the logarithm of ACD period in which the slope is shared across
models, while the intercept is not. The resulting plot highlights the relatively small
fraction of the observational variance explained by differences in the ACD period,
although (as expected) there is a general trend towards surveys conducted at longer
ACD follow-up periods to yield lower incidence estimates (by a factor of order 2).

Posterior prediction. By drawing from the MCMC output representing the
parameter posterior for each transmission model, and re-running our model
emulator across a range of mean EIR levels, we are able to construct the posterior
predictive curves for the PfPR–incidence relationship in each age group under a
given seasonality profile and treatment history. We therefore chose a representative
template for low seasonality (constant EIR) and high seasonality (sinusoidal in log
EIR with a factor of 7.3 variation between maximum and minimum; cf. ref. 38) and
generated posterior predictive curves for each seasonality and treatment history.
A further library of posterior predictive curves was then generated using the
emulator approach with an additional set of noisy input simulations from each
transmission model under the scenario of a 90% decline in the mean EIR over the
past 5 years. This accounts for immunity acquired at historically higher
transmission levels when forecasting incidence at sites with recent success in
scaling up interventions.

Ensemble model. The canonical Bayesian approach to ensemble prediction under
multiple competing models in the Bayesian paradigm is that of model averaging49,
in which a weighted average of the posterior predictives is formed with weights
proportional to the marginal likelihoods of the models under consideration.
However, although attractive for their perceived ‘Occam’s Razor’-like penalization
of model complexity, marginal likelihoods are potentially highly sensitive to the
parameter priors assigned to each model46,50, and in this case we have limited prior
information to inform our choices (as discussed above under Parameter Priors).
As such, we did not attempt Bayesian model averaging in this case. Nevertheless,
rather than defaulting simply to an equal weighting for each model, we would
prefer to reward consistency between the predictions of these competing models
(following the paradigm of ‘weighting by agreement’ identified in a recent
review51), such that where two agree with similar credible intervals but the third
does not, we up-weight the former two relative to the latter. To achieve this effect
with a quantitative, reproducible algorithm we adopted the ‘M-posteriors’
routine52; although originally described for combining posterior samples under
equal partitions of a single observed data set fit with a single model, the version
described therein of Weiszfeld’s algorithm for constructing a median of point
measures with kernel-based discrepancy distance provides exactly the functionality
we required here. Worth noting is that in this setting (that is, location of the
empirical posterior median distribution) the problem is one of convex optimization
to which the Weiszfeld algorithm ensures a stable solution53. A caveat to
this general scheme for ensemble construction is that one may over-reward
‘group-think’ where model structures have not been arrived at completely
independently—although we note that substantial differences are evident in both
the conceptualization and actualization of each microsimulation model considered
in this study. Unlike in Bayesian model averaging, the weights assigned to each
model here are different for each separate set of posterior predictive curves
(low/high seasonality, low/high treatment and so on). Testament to the overall
consistency of these three models, it is to be noted that no model is ever assigned
less than an 18% contribution to the ensemble by the M-posteriors algorithm.
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