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Solid tumors are characterized by an abnormal stroma that contributes to the develop-

ment of biomechanical abnormalities in the tumor microenvironment. In particular, these 

abnormalities include an increase in matrix stiffness and an accumulation of solid stress 

in the tumor interior. So far, it is not clearly de�ned whether matrix stiffness and solid 

stress are strongly related to each other or they have distinct roles in tumor progression. 

Moreover, while the effects of stiffness on tumor progression are extensively studied 

compared to the contribution of solid stress, it is important to ascertain the biological 

outcomes of both abnormalities in tumorigenesis and metastasis. In this review, we 

discuss how each of these parameters is evolved during tumor growth and how these 

parameters are in�uenced by each other. We further review the effects of matrix stiffness 

and solid stress on the proliferative and metastatic potential of cancer and stromal cells 

and summarize the in vitro experimental setups that have been designed to study the 

individual contribution of these parameters.
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UNRAVELING THE TUMOR MICROENVIRONMENT

Tumor stroma and biomechanical abnormalities developed during tumor growth comprise 
dominant regulators of cancer progression (1–3). �e tumor stroma is composed of an extracellular 
matrix (ECM), which consists of immune cells, �broblasts, capillaries, and �brillar proteins, such 
as collagen I, elastin, and �bronectin, as well as hyaluronan and other sulfated glycosaminogly-
cans (4). Fibroblasts are key regulators of ECM composition and organization and physiologically  
remain in the quiescent state with negligible metabolic and transcriptomic activities (5, 6). In res-
ponse to tissue damage, �broblasts become activated and are characterized by the expression of 
alpha-smooth muscle actin (α-SMA). In this activated state, �broblasts overproduce ECM proteins, 
mainly collagen I and �bronectin, secrete cytokines and growth factors, and exert contractile forces 
modifying tissue architecture (5, 6).

In tumors, �broblasts tend to acquire a constantly activated phenotype as a response to several 
growth factors secreted from the highly proliferative cancer cells, including transforming growth 
factor-β (TGFβ), epidermal growth factors (EGFs), and bone morphogenetic proteins (BMPs) (5, 
6). Activated �broblasts, which are commonly known as cancer-associated �broblasts (CAFs), start 
a chronic wound healing-like response toward cancer cells, leading to an excessive accumulation 
of �brillar ECM proteins, a condition known as desmoplasia (5). Under this desmoplastic reac-
tion, CAFs continuously produce and remodel the tumor ECM increasing tumor sti�ness (1, 5). 
Desmoplasia and ECM sti�ening characterize many tumor types, especially breast and pancreatic 
cancers, and it usually promotes tumor progression (1, 7, 8).
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FIGURE 1 | Solid stress and stiffness are two distinct biomechanical abnormalities present in the tumor microenvironment. (A) According to the simple analogy of a 

spring that obeys Hooke’s law σ ε= ⋅E , when a tumor grows and pushes the surrounding host tissue of elastic modulus E’, it results in a deformation ε1 and a 

stress, σ1. As a consequence, the host tissue returns an equal and opposite stress σ1′, which is de�ned as externally applied solid stress (σ1 = σ1′). This externally 

applied stress, in combination with the growth-induced stress (σg), generated from mechanical interactions within the tumor, constitutes the total solid stress 

transmitted in the tumor interior. (B) In the case that the tumor stiffens so that E2 is greater than E1 (E2 > E1), the tumor can increase in size and the deformation ε2 is 

greater than ε1 (ε2 > ε1). The externally applied stress (σ2′) and �nally the total solid stress accumulated in the tumor interior are greater than that in (A) without any 

change in the growth-induced stress. (C) The growth-induced solid stress, however, increases during growth, while tumor stiffening might remain the same (16).  

In this case, the externally applied solid stress σ3′ can be equal to σ1′, but total solid stress increases. Therefore, the resultant stress transmitted in the tumor interior 

is greater than that in (A) without any change in tumor stiffness.
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As the density of cancer cells, stromal cells, and ECM constitu-
ents increase within the restricted environment of the host tissue, 
it leads to the development of mechanical stress (i.e., force per 
unit area) within the tumor (1, 3, 9–11). �is stress, derived from 
the structural components of a tumor, is known as solid stress 
and can be divided into two parts. A part of it, known as growth-
induced (or residual) stress, is accumulated during tumor growth 
by microscopic interactions among structural components of the 
tumor microenvironment, and it remains within the tumor even 
if the tumor is removed (3). �ese interactions might include 
collagen stretching by cancer cells and CAFs, and hyaluronan 
and cancer cell swelling to resist compression (12–15). Moreover, 
as tumors grow and exert forces on the adjacent host tissue, a 
reciprocal compressive stress is applied from the host tissue to 
the tumor, to resist tumor expansion (1). �is stress is known as 
externally applied stress, and it diminishes a�er tumor excision 
(1). �e total solid stress in a tumor interior is compressive (i.e., 
tends to reduce the size of an object), while near the interface 
between the tumor and normal tissue, the stress is tensile (i.e., 
tends to increase the size of an object) (16, 17).

THE DEFINITION OF ECM STIFFNESS 

AND SOLID STRESS

It is not clearly de�ned in the pertinent literature whether matrix 
sti�ness and solid stress refer to the same term or they are two 
distinct biomechanical abnormalities of a tumor that are related 
to each other. By de�nition, sti�ness is a material property, which 

describes the extent to which a material resists deformation in 
response to an applied force, while solid stress is a force per 
unit area, which can cause either compaction (compression) or 
expansion (tension) of a material. In solid tumors, the sti�ness is 
mainly determined by ECM composition and organization, while 
solid stress arises by the sum of the physical forces exerted during 
tumor growth. �ese forces can be generated in the subcellular 
level by cytoskeletal �laments that control cellular processes such 
as �lopodia formation and extension. At the cellular level, forces 
are exerted by cell contractions (such as in CAFs) and cell–ECM 
interactions during migration of cancer and stromal cells, while 
at the tissue level, forces are exerted between the tumor and the 
host tissue (18–21).

�e relationship between tumor sti�ness and solid stress can  
be described using the analogy of a spring of speci�c elastic 
modulus (E) that obeys Hooke’s law (Figure 1). According to the 
equation of Hooke’s law for linear elastic materials, σ ε= ⋅E , when 
a tumor of elastic modulus E grows and pushes the surrounding 
host tissue of elastic modulus E′, it causes a deformation ε1 and 
a subsequent stress σ1. As a consequence, the host tissue returns 
an equal and opposite stress σ1′, the so-called externally applied 
solid stress. At the same time, growth-induced solid stress is 
accumulated in the tumor interior owing to interactions among 
tumor components (Figure 1A). �us, the total solid stress accu-
mulated intratumorally is the sum of the externally applied and 
the growth-induced solid stress. In the case that the sti�ness of 
the tumor E2 is greater than E1, then the tumor can displace the 
host tissue with a greater deformation and the externally applied 
solid stress σ2 can be greater than σ1 (Figure 1B). �erefore, in 
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this case, a solid tumor creates a sti�er matrix to push against the 
normal tissue and grow in size. Indeed, it has been demonstrated 
using mathematical modeling that the sti�ness of a solid tumor 
should be at least 1.5 times greater than that of the host tissue, in 
order for the tumor to displace the tissue and grow (14).

As for the growth-induced solid stress, it increases during 
tumor growth, while the matrix sti�ness might stop changing (16, 
17). In this case, the further increase in total solid stress accumu-
lated intratumorally can become less depended on matrix sti�ness 
(Figure 1C). �is hypothesis was con�rmed by an elegant study by 
Nia et al. (16), showing that the total solid stress transmitted into 
the cells can depend only in part on tumor sti�ness, and thus, the 
two terms should not be used without a distinction. Speci�cally, 
Nia et al. found that primary pancreatic tumors exhibited larger 
stresses compared to those in metastatic sites, while the opposite 
e�ect was observed for colon tumors (16). Interestingly, tumor 
sti�ness was similar in the primary and metastatic tumor for both 
the pancreatic and colon cancer models, showing that tumor sti�-
ness and solid stress are not necessarily coupled to each other. In 
addition, they found that solid stress increased in breast tumors of 
larger size despite the fact that sti�ness did not change with tumor 
size. In line with our analysis, these observations can be explained 
by the fact that growth-induced solid stress generated owing to 
microscopic interactions among structural components in the 
tumor interior contributes to the accumulation of an additional to 
the externally applied solid stress. �erefore, the e�ects of matrix 
sti�ness and solid stress on tumorigenesis and metastasis should 
be studied separately (22). Following, we provide a summary of 
these e�ects on cancer and stromal cell behavior, elaborating on 
the less studied contribution of solid stress and the pertinent  
experimental setups.

EFFECTS OF MATRIX STIFFNESS  

ON CANCER AND STROMAL CELLS

�e e�ect of ECM sti�ness on cancer and stromal cells has been 
studied using in vitro two-dimensional substrates (2D) and three-
dimensional tumor analogs (3D). In 2D models, cells are seeded on 
coating substrates such as collagen or �bronectin (23–26), while 
the 3D models include single cells or tumor spheroids embedded 
in gels composed of collagen or matrigel (27–34) (Figure 2A).  
In both cases, sti�ness is increased by changing the protein 
density or the degree of crosslinking of the matrix to study 
the e�ects of ECM-originating mechanical cues on cancer and 
stromal cells.

Matrix sti�ness can activate intracellular signaling pathways 
to regulate cellular behavior. Cancer cells recognize the increase 
in ECM sti�ness and respond by generating increased traction 
forces on their surroundings through actomyosin and cytoskel-
eton contractility (9, 35, 36). Moreover, the changes in matrix 
rigidity are sensed and transmitted intracellularly through 
mechanosensors such as p130 CRK-associated proteins, growth 
factor receptors, or integrin-ECM adhesion plaques (9, 10, 23, 
35, 37–40). �ese mechanosensors can recruit focal adhesion 
molecules such as FAK, SRC, paxillin, RAC, RHO/RAS GTPases, 
and Rho-associated kinase to trigger signaling cascades and 
cytoskeleton organization (9, 10, 35, 36, 39, 41–44). �ese 

cascades �nally regulate gene expression and induce quanti�able 
changes in cell shape, survival, migration, and invasion (9, 35,  
39, 42). For example, it has been shown that tissue sti�ness 
activates the nuclear translocation of the transcription factor 
TWIST1 in breast cancer cells, which inhibits the expression of 
E-cadherin and promotes cell invasion (35, 45). Furthermore, 
in a 3D model consisting of breast tumor spheroids growing 
in collagen matrix, the Ras suppressor-1 (RSU-1), a cell-ECM 
adhesion protein, was shown to be upregulated as a response to 
increasing sti�ness. Interestingly, tumor spheroids knockdown 
for RSU-1 or actin polymerization regulator (VASP) lost their 
invasiveness through the 3D matrix (46, 47). Matrix sti�ening 
is also shown to induce �broblast activation and migration, 
which leads to a �brotic response setting a positive feedback 
to matrix sti�ness (13, 15, 35, 48, 49). However, in these stud-
ies, it cannot be distinguished explicitly whether the observed 
e�ects are emerged by increased cell-ECM adhesion sites owing 
to increased ECM density or by sti�ness-induced solid stress 
generation.

EFFECTS OF SOLID STRESS ON CANCER 

AND STROMAL CELLS

While the role of ECM sti�ness in cancer and stromal cells is 
actively studied, data regarding the e�ect of solid stress on tumor 
progression are elusive. �ere are several experimental setups 
mimicking the solid stress developed in the tumor microenviron-
ment. �ese setups include models consisting of tumor spheroids 
growing in a con�ned environment that causes the development 
of solid stress (50–57) and models employing a transmembrane 
pressure device that applies a mechanical compression on a cell 
monolayer or on single cells embedded in a matrix (51, 58–60) 
(Figure 2B).

Regarding the �rst method, cancer cells are grown as spheroids 
in a polymer gel (e.g., agarose), which leads to the development 
of solid stress that resists to spheroid expansion (Figure 2B, i). 
Helmlinger et al. (55) using spheroids of colon adenocarcinoma 
cells estimated that the accumulated solid stress was in the range 
of 45–120 mmHg (6–16 kPa), depending on the concentration 
of the agarose gel and the size of the spheroid. In an analogous 
study, Cheng et al. (51) estimated the solid stress to be ~28 mmHg 
(~3.73  kPa) when mammary carcinoma cell spheroids were 
growing in a 0.5% agarose matrix. Recent in vivo measurements 
of breast, colon, pancreatic, and brain tumors estimated that 
the growth-induced stress is in the range of 1.56–142.4 mmHg 
(0.21–20  kPa) (3, 11, 16, 54). Di�erences in the magnitude 
of solid stress among in vitro studies and between in vitro and  
in  vivo methods should depend on the tumor model and the 
experimental procedure used in each study. However, the con-
clusion that increasing compressive stress inhibits tumor growth 
is common (51, 52, 55, 57), while this e�ect was reversed when 
loads were removed (51, 55). It was also observed that solid 
stress can regulate tumor morphology since mechanical loads 
can induce apoptotic cell death in regions with high compressive 
stress and allow proliferation in low-stress regions of the tumor 
spheroid, suggesting that anisotropic loads result in anisotropic 
tumor growth (51).
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FIGURE 2 | Experimental methods employed to analyze the effects of stiffness and solid stress on cancer and stromal cells in vitro. (A) Experimental setups 

studying the effect of ECM stiffness on cancer and stromal cells. There are two-dimensional models (2D) consisting of (i) a cell monolayer seeded on coating 

substrates (e.g., collagen type I or �bronectin) and three-dimensional models (3D) consisting of (ii) tumor spheroids or (iii) single cells embedded in a matrix  

(e.g., collagen type I, matrigel). Both models were aimed to investigate the effect of changes in extracellular rigidity on the transduction of mechanical signals into the 

cells as well as on the migration, invasion, proliferation and gene expression of cancer and stromal cells (B) Experimental setups studying the effect of solid stress 

on cancer and stromal cells. Setups include tumor spheroids that grow within (i) a polymer matrix, (ii) within elastic capsules, or (iii) in a con�ned polymer device. (iv,v) 

The setups are composed of cells seeded on the inner chamber of a transwell insert on the top of which an agarose cushion is placed or are embedded in a 

polymer matrix. A piston with adjustable weight applies a prede�ned and measurable compressive solid stress on the cells. These models provided useful 

information about the direct effect of solid stress on tumor growth and morphology as well as on cancer cell proliferation, migration, and gene expression.  

(C) A summary of in vitro and in vivo studies for the effect of solid stress in tumor progression.
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More recent studies developed novel techniques to mimic solid 
stress during tumor growth in the absence of a matrix. Alessandri 
et al. (50) employed a micro�uidic method based on the encap-
sulation and growth of cells inside permeable, elastic, and hollow 
microspheres (Figure 2B, ii). �is approach o�ered the ability to 
produce size-controlled multicellular spheroids growing in con-
�ned conditions. �ey found that the con�ned spheroids exhib-
ited a necrotic core compared with the uncon�ned spheroids. In 
contrast, peripheral cells were more proliferative and migratory, 
suggesting that mechanical cues from the surrounding microen-
vironment may trigger cell invasion from a growing tumor (50). 
Desmaison et  al. (53) designed polymer polydimethylsiloxane 
microdevices to restrict the growth of spheroids and subsequently 
to induce the development of mechanical stress (Figure 2B, iii). 
�ey showed that the mitosis of mechanically con�ned spheroids 
was suppressed compared to spheroids grown in suspension 
(53). Furthermore, it was demonstrated that a population of cells 

within the con�ned tumor spheroids was arrested at mitosis, 
which was due to the inhibition of bipolar spindle assembly (53). 
Later, Fernández-Sánchez et  al. (54) developed a method that 
allows the delivery of a de�ned mechanical pressure in vivo by 
subcutaneously inserting a magnet close to the mouse colon. �e 
implanted magnet generates a magnetic force on ultramagnetic 
liposomes stabilized in the mesenchymal cells of the connective 
tissue surrounding colonic crypts a�er intravenous injection (54). 
�e induced pressure was similar in magnitude to the endogenous 
stress (54), in the order of 9.0 mmHg (1.2 kPa), without a�ecting 
tissue sti�ness, as monitored by ultrasound strain imaging and 
shear wave elastography (54). �e magnetic pressure stimulated 
Ret activation and the subsequent β-catenin phosphorylation, 
impairing its interaction with E-cadherin in adherens junctions 
(54). �ese data suggested that tumor progression could be driven 
by signaling pathways that are directly activated by mechanical 
pressure.
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To study the effect of a predefined solid stress on cancer 
cells, the transmembrane pressure device has been introduced 
(Figure 2B, iv). Setups employed consist of a transwell insert 
that fits in a well of a 6-well culture plate. The insert is sepa-
rated in the lower chamber containing culture medium and 
the upper chamber containing the cell monolayer. A piston 
of a preferable weight is applied on the cell monolayer, while 
water, nutrients, and oxygen from the culture media are dif-
fused through the pores of the transmembrane. This device 
provides a tool to mimic solid stress in a predefined manner 
according to the stress magnitudes measured in native tumor 
tissues.

Cheng et al. (51) used this device to study the e�ect of solid 
stress on murine mammary carcinoma cells. In this study, they 
applied a stress ranging from 0 to 60 mmHg (0–8 kPa), and they 
observed increased apoptosis with increased stress levels. In a 
following study, they used the same experimental setup to study 
the migration of cancer cells using a scratch wound assay (60). 
�ey applied a stress of 5.8  mmHg (0.77  kPa), and concluded 
that in these levels of compression, cancer cells stopped pro-
liferating and started to create a leader cell formation, which 
allowed them to move toward the scratch having an invasive 
phenotype. Mitsui et  al. (59) used a similar device for bone 
osteosarcoma cells to identify the e�ect of compressive stress on 
the expression of matrix metalloproteinases and plasminogen 
activators. �ey observed enhanced protein and mRNA levels 
of these molecules under low mechanical compression of bone 
cells (0–2.20 mmHg/0–0.29 kPa) (59). Recently, Chen et al. (61) 
observed increased migration and mesenchymal-like phenotype 
of renal carcinoma cells that were compressed by 0–5.0 mmHg 
(0–0.66 kPa), while Kalli et al. (62) found that normal �broblasts 
become activated as a response to solid stress to promote pancre-
atic cancer cell migration.

Another device that was developed to study the e�ect of solid 
stress in a more realistic way involved the use of single cancer 
cells growing in an agarose matrix (Figure 2B, v). �is device was 
composed of two custom-made parts, the well pressor and the 
optic pressor (58). Both devices consisted of a chamber contain-
ing a 3D gel with single cells embedded, a screw and a nut for 
pressure application, and their housing support. Speci�cally, the 
well pressor applied a strain that compressed the cell-contained 
agarose gels to 50% of their original volume. �is stress was 
estimated to be ~0.37  mmHg (~0.05  kPa), much smaller than 
loads measured by other studies (3, 51, 55, 58). However, this 
stress was su�cient to cause di�erential expression pro�les of 
metastasis-associated genes in glioblastoma and breast cancer 
cells. In addition, the optic pressor provided quanti�able changes 
in cell circularity and orientation with respect to the direction of 
the applied force (58).

Collectively, these in  vitro studies suggest that mechanical 
forces can regulate tumor morphology, tumor growth, and meta-
static potential of cancer cells in the absence of matrix sti�ness. 
However, as indicated in Figure 2C, there is a discrepancy among 
the levels of solid stress applied or estimated in the pertinent stud-
ies due to the variability of the experimental procedures and the 

cancer models used. �erefore, it should be given special atten-
tion when performing experiments to study the e�ect of solid 
stress on tumor progression, taking into account the estimations 
derived from in vivo studies.

CONCLUSION AND FUTURE 

PERSPECTIVES

In light of recent studies showing that increased matrix sti�ness 
and elevated solid stress are two distinct tumor abnormalities, 
and given the fact that most pertinent studies are focused on the 
e�ects of sti�ness, it becomes clear that scienti�c e�orts need to 
focus on the implications of solid stress in tumor progression and 
metastasis (16, 22).

Regarding the implications of tumor sti�ness in tumor pro-
gression, most pertinent in vitro models include only cancer cells 
and ECM matrix. However, tumor sti�ness might also depend 
on the presence of stromal CAFs that continuously interact with 
the �brillar proteins. CAFs-ECM interactions remodel the ECM 
organization and �bers orientation for cancer cells to migrate and 
invade into the matrix (1, 63, 64). Regarding the e�ects of solid 
stress on tumor progression, further studies are required to shed 
light upon the mechanisms by which solid stress is transmitted 
and guides cellular behavior of both cancer cells and CAFs. 
Moreover, CAFs exert contractile forces that contribute to the 
accumulation of solid stress in the tumor interior. �erefore, it is 
necessary to include both cell types when solid stress and ECM 
sti�ness are being studied.

It has been also shown that CAFs dynamically interact with 
cancer cells to promote tumor progression (62, 64). In fact, CAFs 
mediate the invasiveness of colon, pancreatic, and breast cancer 
cells when co-injected into mice (64–68), while breast and prostate 
tumors containing CAFs grew faster than tumors injected with 
normal �broblasts (69, 70). Nevertheless, there is no pertinent 
study taking into account the e�ect of ECM sti�ness and solid 
stress on the interaction of cancer cells and CAFs and vice versa 
the implication of tumor-stromal interactions in ECM sti�ening 
and solid stress accumulation.

Concerning the complexity of the tumor microenvironment, 
new experimental setups consisting of cancer cells, CAFs, and 
changes in matrix sti�ness and solid stress, in combination or 
separately, should be introduced to broaden our knowledge about 
the role of each component in the evolution and malignancy of 
cancer.
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