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Defining the TRiC/CCT interactome links chaperonin function to 
stabilization of newly-made proteins with complex topologies

Alice Y. Yam1,5, Yu Xia2,4, Hen-Tzu Jill Lin3, Alma Burlingame3, Mark Gerstein2, and Judith 
Frydman1

1Department of Biology and BioX Program, Stanford University, CA 94043

2Department of Molecular Biophysics & Biochemistry, Yale University, CT 06520

3Department of Pharmaceutical Chemistry, UCSF, CA 94143

Abstract

Folding within the crowded cellular milieu often requires assistance from molecular chaperones 

that prevent inappropriate interactions leading to aggregation and toxicity. The contribution of 

individual chaperones to folding the proteome remains elusive. We here demonstrate that the 

eukaryotic chaperonin TRiC/CCT (TCP1-Ring Complex or Chaperonin Containing TCP1) has 

broad binding specificity in vitro similar to the prokaryotic chaperonin GroEL. However, in vivo 

TRiC substrate selection is not based solely on intrinsic determinants; instead, specificity is 

dictated by factors present during protein biogenesis. The identification of cellular substrates 

revealed that TRiC interacts with folding intermediates of a subset of structurally and functionally 

diverse polypeptides. Bioinformatics analysis revealed an enrichment in multidomain proteins and 

regions of beta strand propensity that are predicted to be slow-folding and aggregation-prone. 

Thus, TRiC may have evolved to protect complex protein topologies within its central cavity 

during biosynthesis and folding.

Introduction

Eukaryotic cells contain several distinct chaperone families that together promote protein 

folding 1,2. Misregulation of this process leads to misfolding and aggregation events linked 

to multiple pathological disorders 3,4. It is thought that proteins differ widely in their 

chaperone requirements 2. It is unclear, however, what features of a folding polypeptide, if 

any, determine its interaction with specific chaperones. Determining whether different 

chaperones evolved to meet the folding requirements of specific classes of substrates is 

central to understanding the logic of cellular protein folding and assembly. Addressing this 

possibility requires a better understanding of which types of proteins require a given 
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chaperone. However, the cellular substrates of most eukaryotic chaperones have not yet 

been defined.

The essential chaperonin TRiC/CCT (for TCP1 Ring Complex; or Chaperonin Containing 

TCP1) is distinguished from other chaperones by its unique ring-shaped architecture, which 

gives rise to a central cavity that serves as a folding chamber for substrate polypeptides 5,6. 

It is not known why some proteins require the ring-shaped TRiC to fold while others can 

reach their native states with the assistance of simpler chaperone systems. Indeed, the 

cellular function of TRiC remains ill-defined and controversial. TRiC was originally 

proposed to be highly specialized to recognize a few cytoskeletal proteins through specific 

sequence elements 7. However, the recent identification of additional TRiC substrates have 

called into question this original idea 8–12. Here we determine the principles of substrate 

selection by TRiC and define the subset of cellular proteins that interact with this chaperonin 

in eukaryotic cells using a combination of experimental and computational analyses.

Results

Principles of TRiC substrate selection

TRiC is part of a chaperone network linked to protein synthesis 13 and has been shown to 

facilitate folding of newly translated proteins in vivo 9,14. Previous studies established that 

TRiC interacts transiently with a subset of cellular proteins during biogenesis 14. We thus 

examined the flux of newly translated proteins through TRiC in mammalian cells using a 

previously established pulse-chase analyses, whereby newly-made proteins are specifically 

labeled by a brief pulse and folding and maturation occurs during the chase 14. Newly 

synthesized polypeptides interacting with TRiC were isolated by immunoprecipitation with 

antibodies against TRiC subunits β and ε (Supplementary Fig. 1; Fig. 1A). Two-dimensional 

PAGE analysis showed that soon after translation a large number of newly made proteins 

associated with TRiC. Following a period of chase, these proteins were dissociated, as 

expected for chaperone substrates which should be released upon completion of folding 

(Fig. 1A, left and center panel). Chaperonin complex assembly was also observed during the 

time course of the chase, whereby the β and ε subunits associated with the remaining TRiC 

subunits (Fig. 1A, center, see also ref.14). Mass spectrometry analysis of TRiC interacting 

proteins only identified highly abundant substrates, namely the WD-repeat containing 

translation initiation factor 3β and GAPDH, in addition to the known TRiC substrates actin 

and tubulin (Supplementary Table 1). Thus, identification of low abundance cellular 

substrates of TRiC required alternate genome-wide approaches.

To better define the principles that govern TRiC substrate specificity, we next examined 

what determines association of cellular proteins with TRiC. In principle, chaperonin-

substrate interactions may be solely determined by the presence of specific TRiC-binding 

motifs in the substrates, such as sequence elements, that distinguish them from the rest of the 

proteome. A prediction of this model is that the in vitro substrate specificity of TRiC 

towards denatured cytosolic proteins will mirror that observed in vivo. Accordingly, we 

compared the subset of cellular proteins that bind TRiC upon translation in vivo (Fig. 1B, 

left) with those proteins binding TRiC when the same 35S-labeled extract is denatured and 

presented to the chaperonin in vitro (Fig. 1B, center). The sets of eukaryotic proteins 
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interacting with TRiC in vivo and in vitro were strikingly different. While actin and tubulin 

were prominently bound in either condition, examination of the merged gels revealed less 

than 10% overlap between the proteins selected by TRiC in vitro and in vivo (Fig. 1B, right). 

We conclude that TRiC does not select its substrates based solely on the presence of specific 

sequence motifs, as was proposed from in vitro studies 15,16. Instead, TRiC-substrate 

selection in the cell is strongly dependent on the context of translation, where both 

cotranslational folding events and cooperating chaperone systems may affect the 

conformation of de novo folding intermediates 11,17,18.

TRiC was proposed to be a highly specific chaperone, in contrast to the broader specificity 

prokaryotic chaperonin GroEL 7. To further define the substrate-recognition principles of 

TRiC, we next determined whether TRiC recognizes a more restricted range of proteins 

when compared to GroEL 19. To compare the cellular proteins recognized directly by TRiC 

and GroEL we presented denatured 35S-labeled cytosolic proteins to purified GroEL or 

TRiC, followed by immunoprecipitation of chaperonin substrate complexes (Supplementary 

Fig. 2 and Fig. 1C). A large fraction of cellular proteins, including actin and tubulin, was 

recognized by both chaperonins. Comparison of the GroEL and TRiC-bound protein spectra 

revealed that the recognition specificities of these chaperonins were strikingly similar, with 

over 80% overlap between the protein sets recognized by either chaperonin (Fig. 1C, right). 

Given the well-established affinity of GroEL for hydrophobic substrate determinants, this 

result indicates that hydrophobicity is a strong component of TRiC substrate recognition, 

consistent with previous findings 8,9,20,21. Importantly, the similar binding specificity of 

both chaperonins suggests that TRiC sustains the capacity to recognize a wide breadth of 

proteins and is not intrinsically a highly specific chaperonin. We conclude that TRiC 

possesses broad recognition specificities, yet in the cell it only interacts with a defined set of 

substrates.

Genomic screen for TRiC substrates during biosynthesis

Our finding that TRiC substrate selection in the cell is determined in the context of protein 

biosynthesis raises the question of what features distinguish proteins recognized by TRiC 

during biogenesis from the wide spectrum of potential interactors. Accordingly, we adapted 

a genome-wide approach that allowed identification of physiologically relevant TRiC 

substrates by detecting chaperone interactions in the context of translation.

We employed a screening approach that monitored which proteins interact with TRiC during 

translation of cDNA expression pools in a cell-free mammalian translation system 22. This 

approach, termed small pool expression cloning, or SPEC, allowed detection of TRiC-

substrate interactions in a physiologically relevant context (Fig. 2A). Importantly, SPEC 

presents several unique advantages for the identification of physiological chaperone 

substrates. First, these translation lysates contain the full complement of chaperones and 

translation components required to fold most cytosolic proteins to an active state 23. TRiC-

substrate interactions are thus examined in the context of protein biosynthesis, whereby 

cotranslational folding can occur in the presence of physiological levels of upstream 

chaperones and folding cofactors. Second, proteins are translated at very low levels, in the 

picomolar range, and thus interactions with the chaperonin are observed without 
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overexpression of the substrates 24. Furthermore, the lack of bias toward detection of 

abundant proteins in the SPEC approach permits the identification of chaperone interactions 

for rare, low-abundance proteins, unlike large-scale immunoprecipitation reactions.

A high-throughput screen was performed using single mouse cDNAs arrayed in a 96-well 

plate format. Orthogonal cDNA pools were made along rows and columns for each plate and 

analyzed by in vitro translation in rabbit reticulocyte lysate in the presence of 35S-

methionine (Fig. 2A). The presence of TRiC substrates encoded by cDNAs in the pools was 

detected by co-immunoprecipitation with the chaperonin followed by SDS-PAGE and 

phosphorimaging analysis (Fig. 2B). cDNAs encoding candidate substrates expressed in two 

overlapping pools were isolated and their interaction with TRiC confirmed before their 

identification by DNA sequencing (Fig. 2C). To simplify the screen, abundant housekeeping 

mRNAs were subtracted from the cDNA library, thus increasing the proportion of lower 

abundance transcripts surveyed 25. Of note, the identification of alpha-tubulin among the 

TRiC interacting substrates demonstrated that housekeeping proteins were still represented 

in the library, thus providing a good representation of transcripts in the cell (Supplementary 

Table 1). In all, 2600 clones were surveyed and more than one hundred TRiC-interacting 

proteins were isolated. The screen was not conducted to saturation but was concluded upon 

the repeated identification of several clones. From these data, 6–7% of all cytosolic proteins 

are anticipated to interact with TRiC. Importantly, this analysis is in agreement with 

previous estimates from pulse-chase analysis 14 and proteomics studies 26. Because only 

high affinity interactions are detected by immunoprecipitation, the predicted number of 

TRiC-interacting proteins might be underestimated. Assuming that the eukaryotic cytosol 

contains approximately 4500 proteins, based on estimates from the yeast Saccharomyces 

cerevisiae, our analysis predicts that on the order of 300 cytosolic proteins interact with 

TRiC in vivo.

Distinct in vivo kinetics of substrate flux through TRiC

Our screen revealed that a wide range of proteins interact with TRiC upon translation, most 

of which are conserved across eukaryotes (Supplementary Table 1). Accordingly, we used S. 

cerevisiae to validate the TRiC-interactions in vivo taking advantage of the extensive 

annotation of the yeast genome. Initially, candidates carrying an N-terminal GST-tag 27 

were affinity isolated, and association with TRiC assessed by immunoblot analysis. 

Remarkably, all of the yeast homologues of SPEC-derived candidates surveyed bound to 

TRiC in vivo but neither GST alone nor GST-tagged to Ypt6, a control GTP-binding protein, 

associated with the chaperonin (Fig. 3A). This supports the idea that the screen identified 

bona fide TRiC substrates and that the interaction with TRiC is evolutionarily conserved 

across eukaryotic organisms.

One hallmark of chaperones that facilitate de novo folding is that they associate transiently 

with newly made proteins and dissociate during the course of polypeptide folding and 

maturation. As such, we examined the in vivo flux of SPEC-derived TRiC substrates through 

the chaperonin in yeast cells. Pulse-chase analysis followed by anti-TRiC 

immunoprecipitation indicated that, as in mammalian cells, a range of yeast proteins 

transiently associate with TRiC early in their biogenesis, and dissociate during the chase, 
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consistent with release upon folding (Fig. 3B, 15 min). To observe the flux of single 

substrates through the chaperonin, TRiC immunoprecipitations were subjected to a second 

round of immunoprecipitation against a unique tag in the substrates (Fig. 3C, 3D). Transient 

association kinetics were observed for SPEC-identified substrates, indicating these proteins 

transit through the chaperonin during their biogenesis (Fig. 3D). Notably, two types of 

association kinetics were observed among TRiC substrates. One class of proteins, including 

actin and the small purine nucleoside phosphorylase (PNP1), bound early to TRiC and 

rapidly dissociated (Fig. 3D, 3E). Elongation factor 2 (EFT2) also bound rapidly to TRiC, 

but dissociated very slowly from the chaperonin (Fig. 3D, 3E). Another set of substrates 

exhibited much slower kinetics of association with TRiC. For instance, the mRNA export 

factor MEX67, the homotetrameric citrate synthase CIT2, the multidomain protein arginyl 

tRNA synthetase RRS1 (or ArgRS), as well as the WD40 Gβ-protein STE4 did not bind to 

TRiC at the earliest chase times but instead their binding seemed to peak later in the time-

course (Fig 3D, 3E). Notably, the TRiC association kinetics was independent of substrate 

size, since the larger EFT2 associated rapidly with TRiC while the smaller STE4 did not. It 

is tempting to speculate that the slower TRiC-binding kinetics arises from the action of 

cooperating upstream chaperones delaying binding to TRiC during translation 13,18. 

Intriguingly, all the slower binding proteins share the common property of belonging to 

larger protein complexes, raising the possibility that these substrates accumulate on TRiC, 

before their release into oligomeric assemblies. In support of this idea, several WD40-

containing F-box proteins translated in a cell-free system accumulated on TRiC in the 

absence but not in the presence of their oligomeric partner protein Skp1 (Supplementary Fig 

3). We conclude that a genome-wide screen for the TRiC interactome identified bona fide 

TRiC substrates that flux through the chaperonin during biogenesis in vivo.

Physical and structural properties of the TRiC Interactome

We next sought to define what distinguishes the relatively small fraction of TRiC-interacting 

proteins from the cytosolic proteome at large. Having identified a large set of proteins that 

interact with TRiC in a physiologically relevant context (herein the TRiC Interactome, 

Suppl. Table 1) we applied a bioinformatics approach to identify common features among 

TRiC substrates that may underlie their physiological association with TRiC. Proteins from 

the Interactome spanned a breadth of cellular processes, most of which are conserved across 

eukaryotic organisms. Interestingly, 40% of the TRiC Interactome comprises essential 

genes, more than twice the proportion of essential genes in the yeast genome 28. Of note, the 

frequency of TRiC substrates belonging to oligomeric protein complexes was also enriched 

in the TRiC Interactome to 90% compared to less than 50% of all yeast proteins in the MIPS 

complex database29. These two observations may be linked since proteins that belong to 

oligomeric complexes are more highly connected in the protein network and, thus, 

disproportionately essential 30. We hypothesize that the eukaryotic chaperonin assists in 

folding proteins belonging to oligomeric assemblies and may serve as a reservoir to stabilize 

them against aggregation or degradation prior to complex formation.

Previous biochemical experiments using actin and tubulin, led to the proposal that TRiC 

selects its substrates by specific recognition of a set of polar sequence elements 15,16. 

Accordingly, we analyzed the TRiC Interactome to search for the presence of specific 
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sequence motifs that may confer TRiC binding. Sequence analysis of the TRiC Interactome 

failed to reveal statistically significant consensus sequences, or an enrichment in previously 

proposed TRiC-binding sequence elements 15,16. This is consistent with the finding that 

TRiC is not a highly sequence-specific chaperonin (Fig. 1C).

In principle, physical and/or structural properties could influence the folding characteristics 

and contribute to chaperonin binding. A comparison of the size distribution of TRiC-

interacting proteins to the naturally occurring distribution of cytosolic proteins in the S. 

cerevisiae proteome (Fig. 4A) or the murine proteome (Supplementary Fig. 4) demonstrated 

a statistically significant enrichment for proteins ranging between 40–75 kDa in size, in 

good agreement with results obtained using pulse-chase approaches, 14 (Fig. 1 & 4A). Of 

note, the chaperonin chamber is predicted to accommodate polypeptides in this size range 

31. Since a single folding domain is approximately 25–30 kDa 1, this finding suggests that 

the TRiC-interactome consists mostly of multidomain proteins. Interestingly, a number of 

larger substrates were also identified in our screen, raising the possibility that some 

substrates are not completely encapsulated during folding. In support of this idea, the 100 

kDa protein myosin is an known to be an obligate substrate of TRiC 32. Furthermore, the 

bacterial chaperonin GroEL similarly supports the folding of several large proteins 33.

The proteins in the TRiC Interactome exhibited an enrichment in hydrophobic sequences 

(Fig. 4B). This finding could be explained by substrate size, as larger proteins retain 

correspondingly larger hydrophobic cores. Alternatively, hydrophobic inter-domain contacts 

within substrate proteins could contribute to the higher proportion of hydrophobic 

sequences. Inappropriate interactions among these hydrophobic surfaces, for instance in 

domain swapping, could complicate the folding of multidomain proteins 34. Previous 

observations that TRiC can recognize hydrophobic determinants 8,9,20,21 (see also Fig. 1C) 

suggests the chaperonin may prevent these inappropriate interactions.

Analysis of the structural propensities of the TRiC Interactome revealed the most striking 

shared property among TRiC substrates. While no specific protein fold was enriched in the 

TRiC interactome, we observed that proteins of high beta sheet propensity and/or low alpha 

helical content were highly enriched among TRiC substrates (Fig. 4C & 4D). Additional 

scanning window analysis demonstrated that a high proportion of TRiC-interacting proteins 

contain long continuous stretches of beta sheet propensity, with a particular bias toward 

stretches of 35–45 amino acids (Fig. 4E). Thus, analysis of secondary structure propensity 

identifies a clear commonality among proteins in the TRiC interactome. Importantly, the 

enrichment in beta-rich proteins suggests that TRiC substrates have complex topologies that 

are predicted to be slow-folding and aggregation-prone.

Discussion

Here we combine genomic and proteomic approaches to identify the interactome of the 

eukaryotic chaperonin TRiC/CCT. Contrary to initial proposals that TRiC is specialized for 

the folding of only a small subset of eukaryotic proteins, we find that the chaperonin 

interacts with a broad range of polypeptides that function in many cellular processes (Table 

1). TRiC specificity is strongly influenced by the cellular context of translation and a wide 
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range of structural conformations are recognized by the chaperonin, indicating that TRiC 

functions to facilitate the folding of many structural protein families. A bioinformatics 

analysis of the TRiC substrates demonstrated that the TRiC-interactome is enriched in large, 

hydrophobic polypeptides with complex topologies predicted to be slow-folding and 

aggregation-prone. Strikingly, the analysis also suggests that TRiC assists in folding 

subunits belonging to oligomeric protein complexes. These findings allow us to propose a 

model for TRiC function in the stabilization of slow-folding proteins susceptible to the 

formation of kinetically-trapped intermediates and in the subsequent coordination of 

substrates into protein assemblies.

Cellular Principles of TRiC substrate selection

Our studies resolve a long-standing controversy over TRiC substrate recognition and 

specificity. The data presented do not support the idea that TRiC selects its substrates in the 

cell based solely on intrinsic determinants, such as specific sequence elements. Instead, 

TRiC recognition is strongly influenced by the context of protein biogenesis and may 

involve structural and physical features of the biosynthetic intermediates as well as 

cooperating chaperone systems (Fig. 5).

In vitro experiments comparing TRiC with the broad spectrum chaperonin GroEL indicate 

that TRiC is not a highly specific chaperone. Since these in vitro substrates differ 

substantially from the substrates binding to TRiC in vivo, this result implies that TRiC 

substrate interaction is dictated by the folding properties of the polypeptide in the context of 

translation. The substantial differences between the spectrum of cellular proteins that bind to 

TRiC during biosynthesis and those that TRiC selects when the same labeled proteins are 

presented in a denatured form highlights the importance of examining chaperone substrates 

in a physiologically relevant context. Furthermore, the similarities between the proteins 

bound by TRiC and GroEL in vitro suggest that the specificity of the eukaryotic chaperonin 

stems from the particular combination of folding kinetics and exposed recognition motifs in 

the co- or post-translationally-generated intermediates of its cellular substrates. The lack of 

sequence specificity in the TRiC substrate interaction is reinforced by the absence of 

sequence motifs in the in vivo subset that might confer TRiC binding propensity. Future 

studies should uncover the molecular determinants and the possible role of upstream 

cofactors in TRiC recognition.

Properties of TRiC substrates

We find that approximately 7% of the proteins we screened by genomic approaches 

associated with TRiC upon translation. This is consistent with our pulse-chase analysis, 

which indicates that approximately 5–10% of cytoplasmic proteins flux through the 

chaperonin. Analysis of the shared features of the Interactome identified some common 

properties in these substrates that may illuminate the principles of substrate selection by 

TRiC. In particular, the enrichment of beta-rich proteins among TRiC substrates provides a 

link between chaperonin interaction and one of the major challenges faced by the 

biosynthetic machinery that must facilitate cellular folding. Indeed, regions with high beta-

strand propensity are inherently aggregation-prone and difficult to fold, such that 

evolutionary pressures have introduced elements of natural design to protect exposed beta-
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edges in native protein structures 35. Importantly, these design elements would not be in 

place until completion of folding. Thus, folding intermediates with regions of high beta-

sheet propensity are especially vulnerable to misfolding and aggregation. It is tempting to 

speculate that the chaperonin TRiC functions to stabilize these exposed beta edges against 

aggregation until loops or helices in the folded protein architecture emerge to protect the 

beta strand in the native state.

It is also possible that the enrichment in beta-sheet propensity emerges from a more 

overarching characteristic of TRiC substrates. The observation that beta-sheet propensity 

correlates with slow-folding kinetics provides another intriguing link between our analysis 

of the TRiC interactome and folding in the cell. Emerging studies find that complex protein 

topology, such as that found in beta-rich proteins, is a major contributor to slow folding rates 

in vitro 36–38. Of note, the TRiC Interactome also contains all-helical proteins such as 

citrate synthase, raising the possibility that the enrichment in beta sheet content is diagnostic 

of a more general property recognized by TRiC, such as complex topology or slow-folding 

kinetics. These features can lead to accumulation of toxic aggregates which have been 

linked to a number of amyloid diseases 4. The idea that TRiC may play a role in preventing 

aggregation of amyloidogenic folding intermediates resonates with the recent identification 

of this chaperonin as a potent suppressor of huntingtin amyloid formation, a polyglutamine 

protein that is highly aggregation-prone 39–41.

Contribution of TRiC to the Cellular Folding Network

Our data provides a clue on how the cell solves the problem of folding proteins with 

complex topologies, such as those with beta-rich domains. During synthesis, these proteins 

are in a precarious position as they need to bring together many discontinuous regions to 

reach the native state, and thus are susceptible to aggregation with neighboring proteins. 

Binding to the ring-shaped chaperonin TRiC would solve several problems posed by this 

process: first, the polyvalent binding of multiple substrate regions (e.g. hydrophobic beta-

strands) to different subunits in a ring would sequester several aggregation-prone sequences 

during translation; secondly, the allosteric communication between subunits in one ring 42 

would provide a mechanism for concerted release of all folding elements to the central 

chaperonin chamber; and finally, this chamber would provide a sequestered environment to 

protect slow-folding proteins until they reach the native state. Taken together, the 

combination of proteomic and bioinformatics analyses reveal TRiC substrates have complex 

topologies that are slow-folding and aggregation-prone, and provide a compelling rationale 

for the function of this oligomeric ring shaped chaperonin in assisting cellular folding.

The additional finding that TRiC substrates are enriched in proteins belonging to oligomeric 

assemblies suggests that TRiC also functions to facilitate complex assembly. We envision 

two possible mechanisms for this role. In principle, the processes of TRiC-mediated folding 

and assembly could be directly coupled. Alternatively, TRiC could fold monomeric subunits 

and maintain them in an assembly-competent state until association with oligomeric 

partners. Thus, TRiC may contribute to the regulation of complex cellular processes such as 

signaling or cell cycle regulation by maintaining a pool of assembly-competent but inactive 
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protein molecules. Indeed, other chaperones such as Hsp90 have also been implicated in the 

regulation of signaling cascades by a similar mechanism 43.

While our data highlights the contribution of TRiC to cellular folding, it will be interesting 

to examine how TRiC cooperates with other components of the cellular folding machinery. 

While the few TRiC substrates characterized to date, such as actin, tubulin, Cdc20 and Cdh1 

9,44,45, exhibit an obligate requirement for the chaperonin, it is possible that other TRiC-

interacting proteins can be folded by alternative chaperone pathways. Indeed, an in vitro 

analysis of GroEL interacting proteins revealed that only a small proportion have an 

absolute requirement for GroEL to fold, while most GroEL substrates can fold 

spontaneously or use alternate chaperones 46. It is likely that TRiC substrates fall into 

similar categories. Future studies should determine whether some TRiC substrates can fold 

via alternate chaperone systems. However, even for the well-studied chaperonin GroEL, 

comparison of in vitro and in vivo analyses illustrates the complexity of chaperone pathways 

in the cell. Thus, several GroEL-interacting proteins that can fold spontaneously in vitro 

nonetheless aggregate in vivo upon GroEL impairment 33,46. Clearly, much remains to be 

learned about the function of chaperonins and how they cooperate with other chaperone 

machinery to facilitate folding in the cell.

Methods

Tissue Culture and Pulse-Chase Analysis of Mammalian Proteins

Human fibroblast TSA-201 cells used for pulse-chase analysis were cultured in complete 

medium at 37°C (DMEM with 10% (v/v) FBS, 100 U ml−1 penicillin, 100 µg ml−1 

streptomycin, and 2 mM L-glutamine). Cells were starved for 15 minutes in starvation 

media (DMEM - methionine and cysteine, supplemented with 5% (v/v) dialyzed FBS to 

remove amino acids: Sigma, 10 kDa MWCO), before they were labeled with 0.8 mCi 

ml−1 35S-methionine for 5 minute, and then chased for 30 minutes in chase media (complete 

medium supplemented with 0.4% (w/v) cysteine and methionine). Then cells were harvested 

in ATP depletion buffer (ice-cold PBS with 1 mM azide, 5 mM EDTA, and 2 mM 

deoxyglucose), lysed by dounce homogenization in buffer A (20 mM HEPES pH 7.4, 100 

mM NaCl, 5 mM EDTA, 5% (v/v) glycerol), and clarified by centrifugation. Equivalent 

amounts of protein were then immunoprecipitated with 2 µl anti-TCP1 β antibodies as 

described 14. Briefly, lysates were incubated with antibodies for 40 minutes, rotated with 10 

µl Protein G Sepharose for another 40 minute, and immunoprecipitates were washed in TBS 

+ Tween20 buffer as described 14.

2D Gel Analysis and Mass Spectrometry

TSA-201 cells were briefly labeled with 35S-methionine for 5 minutes, followed by a 0 or 30 

minute chase in chase media as described above. Cells lysates were immunoprecipitated 

with anti-TCP1 β antibodies, and immunoprecipitates were resuspended in 250 µl IEF 

rehydration buffer (8M urea, 2% (w/v) CHAPS, 2% (v/v) IPG buffer pH 4–7, 2.8 mg ml−1 

DTT, trace bromophenol blue) with 400 µg unlabelled lysate (~15 mg ml−1), before being 

separated on 13 cm Immobiline DryStrips pH 4–7 (Pharmacia Biotech), according to 

manufacturer’s instructions. The proteins were separated in the second dimension by 10% 
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SDS-PAGE, and gels were silver-stained and analyzed by phosphorimaging. Superposition 

of silver-stained and radiolabelled gel images identified proteins to be further analyzed by 

mass spectrometry. Protein spots were excised from a keratin-free gel run in a parallel 

sample and digested with 12.5 ng µl−1 trypsin at 37°C for 4 hr - overnight, and identified by 

LC/MS as described 47. Data analysis was performed with the algorithm Protein Prospector.

Specificity of in vivo vs. in vitro binding

TSA-201 cells were labeled overnight with 10 µCi ml−1 35S-methionine in starvation 

medium supplemented with 1% (v/v) complete medium. To generate a cytosolic protein 

extract, the cells were harvested, lysed, and then denatured with 6 M guanidinium chloride. 

In vitro binding to the chaperonin was assessed by diluting the denatured extract (~5 mg 

ml−1) by 100 times into 200 µl buffer B (25 mM HEPES pH 7.4, 100 mM KCl, 5 mM 

EDTA, 1 mM 2-deoxyglucose, 1mM NaN3) containing either the chaperonin GroEL (0.1 

µM) or TRiC (0.25 µM). Samples were incubated for 20 minutes at 30°C, followed by 20 

minutes on ice, and then clarified by ultracentrifugation for 25 minutes at 20,000xg. Bound 

proteins were then coimmunoprecipitated with anti-chaperonin antibodies (5 µl rabbit anti-

GroEL or 2 µl rabbit anti-TCP1 β antibodies), separated simultaneously by 2D gel, and then 

visualized by autoradiography.

To compare proteins bound to GroEL and TRiC, gel images were differentially colorized in 

Adobe Photoshop and overlayed. Minor rescaling of images was performed using actin and 

tubulin spots as points of reference.

Small Pool Expression Cloning

TRiC-interacting proteins were identified by screening for TRiC coimmunoprecipitation of 

expressed cDNAs from a substracted murine library. The cDNA library was generated from 

mRNAs differentially expressed in G1/S and G2/M C2C12 cells as described 25. cDNAs 

were inserted into the pCS+ vector behind the SP6 promoter and transformed into bacteria. 

Bacterial cDNA clones were grown in a 16×12 array and then pooled by rows and columns 

from which plasmid DNA were purified (Qiagen miniprep). cDNA pools (~250 ng) were 

expressed in vitro in a rabbit reticulocyte lysate coupled transcription-translation system (8 

µl, Promega TNT Quick Coupled Transcription/Translation Systems) in the presence of 35S-

methionine (0.75 µCi µl−1) at 30°C for 45 minutes. Translations were stopped by incubation 

with 10 mM EDTA, 50 µg ml−1 RNase A, and 5 mg ml−1 methionine for 10 minutes on ice 

before they were immmunoprecipitated with anti-TCP1 β antibodies. TRiC-substrate 

complexes were separated by 12% SDS-PAGE and analyzed by phosphorimaging. Proteins 

of similar size present in two orthogonal pools were selected as candidate clones. Then the 

interactions of individual expressed cDNAs were confirmed by in vitro expression, followed 

by anti-TRiC immunoprecipitation. Confirmed clones were finally identified by SP6-primed 

sequencing and BLAST analysis. In total, 2600 clones were screened, from which 

approximately 1500 clones were estimated to have an insert generating a detectable 

translation product.
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In vivo Validation of Substrates

Interaction of GST-fusion proteins—Amino-terminal GST-fusion proteins were 

expressed in yeast (strain Y258) behind a galactose-inducible promoter from the pEGH 

expression vector as described 27. Cells were grown to log phase in –URA raffinose 

synthetic media before protein expression was induced with 2% (w/v) galactose for 3 hours. 

Cells were harvested and lysed by bead beating for 10 minutes at 4°C in buffer C (25 mM 

HEPES pH 7.4, 100 mM KCl, 5 mM MgCl2, 10% (v/v) glycerol, 0.1% (v/v) TritonX-100) 

with 20 mM EDTA. Extracts were clarified and equivalent protein amounts were incubated 

with glutathione sepharose for one hour before washing four times with TBS 0.1% (v/v) 

Tween20. Purified complexes were separated by 12% SDS-PAGE and immunoblotted with 

anti-GST mAb (Covance, clone 4C10) or rabbit affinity-purified CCT antibodies raised 

against the apical domains of yeast CCT3, 5, 6, and 8.

Yeast pulse-chase analysis—Wild type cells (strain BY4743) expressing plasmid-

borne copies of HA-tagged substrates were grown to log phase, induced via a copper-

inducible promoter with 200 µM CuSO4 for 30 minutes, and starved for 30 minutes in CSM 

without methionine. The cells were then labeled with 100 µCi ml−1 35S-methionine for 2.5 

minutes and chased with 20 mM cold methionine. At the indicated time points, aliquots 

were quickly chilled and harvested in 250 mM cold azide to deplete of ATP and 0.5 mg 

ml−1 cycloheximide to stop protein synthesis. Lysates prepared in buffer C were clarified 

and TRiC-substrate complexes isolated by immunoprecipitation using 4 µl CCT-specific 

antibodies. CCT-interacting proteins were eluted with 1% (w/v) SDS and 5 mM DTT for 15 

minutes at 30°C, and then diluted to the final concentration of RIPA buffer (50 mM Tris pH 

8.0, 150 mM NaCl, 1% (v/v) NP40, 0.1% (w/v) DOCA, 0.1% (w/v) SDS). HA-tagged 

substrates were re-immunoprecipitated from the eluate with 2 µl anti- HA antibodies (clone 

HA.11, Babco), separated by 12% SDS-PAGE, and analyzed by phosphorimaging. Isolated 

protein substrates were quantitated with ImageQuant software (v. 5.2, Amersham 

Biosciences) and plotted over the time course of the chase. All substrates were amino-

terminally HA-tagged and cloned into the pCu426 vector under the control of a copper-

inducible promoter 48, with the exception of EFT2, which was carboxy-terminally HIS-

tagged. Protein structures were retrieved from the Protein Data Bank, or modeled against 

homologous structures by multiple sequence alignment via SWISS-MODEL 49.

Bioinformatic Characterization of the TRiC Interactome

A comprehensive list of TRiC-interacting proteins was compiled, including proteins 

identified in this study as well as other reports 9,11,12,19,32,44,45,50–54. TRiC-interacting 

proteins identified in largescale proteomics studies were also included if they bound to three 

or more TRiC subunits 26. Trends found among the TRiC-Interacting proteins were 

compared with the distribution of cytosolic proteins occurring in the yeast proteome (Figure 

4) or the murine proteome (Suppl. Fig. 3). The cytosolic protein class was estimated by 

removing proteins with one or more transmembrane helices from the proteome, using the 

prediction server TMHMM 55, resulting in a reduction of the proteome by approximately 

25%, in agreement with predictions by Wolf and colleagues 56.
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Physical and structural properties of proteins were predicted by computer algorithms: the 

Kyte-Doolittle scale was used to measure hydrophobicity 57 and PSIPRED was used to 

determine secondary structure 58. Scanning window analysis determined the maximal 

number of hydrophobic (or beta strand) residues within a 60 residue window for each 

protein. P-values were calculated by chi-squared analysis. P-values calculated using the 

unequal variance t-test 59 also confirmed significant differences in the means of the 

distributions. Functional properties of proteins such as essentiality and complex formation 

were also determined. Data on protein essentiality was downloaded from the Saccharomyces 

Genome Database (SGD) 60. A list of yeast complexes containing at least two non-TRiC 

protein members was obtained from the MIPS database 29.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Principles of TRiC substrate selection in the eukaryotic cytosol
(A–B) Human fibroblast cells (TSA-201) were pulse-labeled with 35S-methionine for 5 min, 

followed by a 0 or 30 min chase. Total soluble protein was immunoprecipitated with anti-

TRiC antibodies or a nonimmune antibody control and separated on 2D gels. (B) TRiC 

recognizes different proteins in vitro and in vivo. 2D gels of in vitro (green) and in vivo 

(fuschia) TRiC-bound proteins were compared. The two gels were merged with overlapping 

spots circled and illustrated in blue (B, right panel). (C) A denatured 35S-labelled cytosolic 

extract was diluted into buffer containing either GroEL or TRiC. Bound proteins were 

assessed by immunoprecipitation with anti-chaperonin (cpn) antibodies (EL or TRiC), and 

separated by 2D gel. 2D gel images of GroEL-bound (red) and TRiC-bound (green) proteins 

were merged with overlapping spots circled and illustrated in blue (C, right panel).
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Figure 2. Screening for the TRiC interactome in the context of translation
(A) Small pool expression cloning screen: bacterial cDNA clones were cultured in 96-well 

plates and pooled in rows and columns from which plasmid DNA was purified. The 

orthogonal cDNA pools were expressed in rabbit reticulocyte lysate (RRL) in the presence 

of 35S-methionine and immunoprecipitated with anti-TRiC antibodies. (B) Total expressed 

cDNA pools in RRL (Total) and TRiC-bound proteins (anti-TRiC IP) were analysed by 

SDS-PAGE and phosphorimaging. Immunoprecipitations with nonimmune antibodies 

demonstrated the specificity of the TRiC immunoprecipitations (Control). Actin expression 

and TRiC-binding served as a positive control throughout. (B and C) Red and blue astericks 

indicate TRiC-interacting candidate clones present in orthogonal pools. (C) Interactions 

were confirmed by expression of single candidate clones B3 and D2 in RRL, followed by 

anti-TRiC immunoprecipitation. cDNAs were identified by sequencing from upstream 

promoter sequences.
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Figure 3. In vivo analysis of the TRiC interactome reveals distinct kinetics of substrate flux 
through the chaperonin
(A) GST-fusion proteins were expressed in S. cerevisiae behind a galactose-inducible 

promoter and affinity-purified with glutathione sepharose. Purified proteins were separated 

by SDS-PAGE and subject to western blot analysis with anti-TRiC or anti-GST antibodies. 

(B–C) The flux of newly synthesized proteins binding to TRiC was assessed by pulse-chase 

analysis in wild-type yeast. 35S-labelled cells were harvested at the indicated timepoints, 

lysed and immunoprecipitated with anti-TRiC antibodies. (C–E) The flux of individual 

proteins through TRiC was assessed by pulse-chase analysis of wild type yeast expressing 

tagged-substrates. TRiC-bound proteins from the pulse-chase analysis were eluted with SDS 

and subjected to a second immunoprecipitation with either nonimmune (NI) antibodies or 

antibodies recognizing tagged substrates (I). Structural models for each of the substrates 

were generated by multiple sequence alignment with homologous proteins using SWISS-

MODEL 49. (E) TRiC-bound substrates isolated in the pulse-chase were quantitated with 

ImageQuant software (v. 5.2, Amersham Biosciences) and the kinetics of their association 

plotted over time.

Yam et al. Page 18

Nat Struct Mol Biol. Author manuscript; available in PMC 2009 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Physical and structural properties of the TRiC/CCT Interactome
Prevalence of physical and structural properties of TRiC/CCT-interacting proteins was 

compared to their natural occurrence in the yeast cytosolic proteome. Protein size (number 

of residues) (A), maximal number of hydrophobic residues in a 60 amino acid window (B), 

percent helical content (C), percent beta sheet content (D), and maximal number of beta 

sheet residues in a 60 amino acid window (E) were considered. All differences between the 

TRiC/CCT Interactome and the yeast cytosolic proteome were statistically significant with 

p-value ≤ 10−4, except for protein size which had a p-value of < 0.05.
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Figure 5. Function of TRiC during de novo protein folding
TRiC (type II) has a broad substrate binding specificity in vitro similar to the type I 

chaperonin GroEL. However, in vivo TRiC substrate selection is not based solely on 

intrinsic determinants, but rather specificity is dictated by factors present during protein 

biogenesis, such as cotranslational folding or upstream chaperone systems. TRiC binds to a 

subset of newly synthesized polypeptides to stabilize exposed sequences during folding and 

prevent aggregation. The TRiC substrate set is preferentially enriched in proteins with slow-

folding kinetics and aggregation propensity, such as beta-domain containing proteins. 

Folded substrates are finally released either in their monomeric state or in the context of 

oligomeric protein assemblies.
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