
14 DEFINING VIEWS IN AN IMAGE

DATABASE SYSTEM *
Vincent Oria, M. Tamer Ozsu, Duane Szafron and Paul J. Iglinski

Department of Computing Science - University of Alberta

Edmonton, Alberta, Canada T6G 2Hl

{oria, ozsu, duane, iglinski}Clcs.ualberta.ca

Abstract: A view mechanism can help handle the complex semantics in emerg
ing application areas such as image databases. This paper presents the view
mechanism we defuted for the DISIMA image database system. Since DISIMA is
being developed on top of an object-oriented database system, we first propose
a powerful object-oriented view mechanism based on the separation between
types (interface functions) and classes that manage objects of the same type.
The image view mechanism uses our object-oriented view mechanism to allow
us to give different semantics to the same image. The solution is based on the
distinction between physical salient objects which are interesting objects in an
image and logical salient objects which are the meanings of these objects.

14.1 INTRODUCTION

Views have been widely used in relational database management systems to ex
tend modeling capabilities and to provide data independence. Basically, views
in a relational database can be seen as formulae defining virtual relations that
are not produced until the formulae are applied to real relations (view materi
alization is an implementation/optimization technique). View mechanisms are
useful in other newly emerging application areas of database technology. In this
paper, we discuss a view mechanism for one of those areas, image databases.

This work is conducted within the context of the DISIMA (DIStributed Image

database MAnagement system) prototype which is under development at the

·This research is supported by a strategic grant from the Natural Science and Engineering
Research Council (NSERC) of Canada.

231

http://dx.doi.org/10.1007/978-0-387-35561-0_25

232 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

University of Alberta. Since DISIMA uses object-oriented technology, we deal
with object-oriented views.

Despite several research efforts in the object-oriented community [4, 1, 14,
16], the objective of a view mechanism, as defined for the relational model, has
not yet been achieved. The problem is more complex and may be too general
in the object-oriented environment. Assume that a virtual class is defined from
an existing schema. Will each virtual object in this virtual class get a new OlD
each time the view is activated? This violates object-oriented principles. Can
this virtual class be considered as a normal class? In this case, what is its place
in the class hierarchy?

Due to the volume and the complexity of image data, image databases are
commonly built on top of object or object-relational database systems. im

age databases, in particular, can benefit from a view mechanism. Specifically,
an image can have several interpretations that a view mechanism can help to
model. The DISIMA system [11] defines a model that is capable of handling
an image and all the meta-data associated with it, including syntactic charac
terization (shape, color and texture) of salient objects contained in the image.
The level at which the syntactic features are organized and stored is called the
physical salient object level. Each physical salient object can then be given a
meaning at the logical salient object level. How do we get this information?
In general, salient object detection and annotation is a semi-automatic or a
manual process.

Given the fact that we can manually or automatically extract meta-data
information from images, how do we organize this information so that an image
can be interpreted with regard to a context? That is, if the context of an image
changes, the understanding of the image may change as well. Consider an
electronic commerce system with a catalog containing photographs of people
modeling clothes and shoes. From the customer's point of view, interesting
objects in this catalog are shirts, shorts, dresses, etc. But the company may
want to keep track of the models as well as clothes and shoes. Assume the
models come from different modeling agencies. Each of the agencies may be
interested in finding only pictures in which their models appear. All these
users of the same database (i.e. the catalog) have different interpretations of
the content of the same set of images.

Defining an image content with regard to a context helps capture more
semantics, enhances image modeling capabilities, and allows the sharing of im
ages among several user groups. Our mechanism of image views, currently
being implemented in the DISIMA system, allows users to virtually create an
image interpretation context that includes salient object semantics and repre
sentations.

Our class derivation mechanism is general enough to be applied to any
object-oriented application and is presented in Section 14.2. Section 14.3 de
scribes the DISIMA model and extends it to support views on images, Section
14.4 presents the image view definition language and describes the current im-

DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 233

plementation of the image views, Section 14.5 discusses the related work and
Section 14.6 concludes.

14.2 DERIVED CLASSES

We separate the definition of object characteristics (a type) from the mechanism
for maintaining instances of a particular type (a class) for several well known
reasons [9]. A type defines behaviors (or properties) and encapsulates hidden
behavioral implementations (including state) for objects created using the type
as template. We use the term behaviors (or properties) to include both public
interface functions (methods) and public state (public instance variables). The
behaviors defined by a type describe the interface for the objects of that class.
A class ties together the notion of type and object instances. The entire group
of objects of a particular type, including its subtypes is known as the extent

of the type and is managed by its class. We refer to this as deep extent and
introduce shallow extent to refer only to those objects created directly from the
given type without considerating its subtypes. For consistency reasons all the
type names used in this paper start with T_.

Let C be the set of class names. IT C is a class name, T(C) gives the type
of C and r(C) denotes the extent of the class C. We denote by I, the graph
representing the type hierarchy. We consider two types of derived classes:
simple derived classes (derived from a single class called the parent class) and
composed derived classes (derived from two or more parent classes). We will
use the term root class to refer to a non-derived class. In the same way, a
root object refers to an object of a root class. The derivation relationship
is different from the specialization/generalization one in the sence that the
objects and properties introduced are obtained from data previously stored in
the database.

14.2.1 Simple Derived Class

A simple derived class is a virtual class derived from a single parent class.

Definition 1 A derived class Cd is defined by '1') where:

• C is the parent class

• , the filter, is a formula that selects the valid objects from C for the

extent of Cd

• '1', the interface junction, defines the type of Cd by combining the junc

tions A: Augment and H: Hide such that '1' = A 0 H, where A maps a set

of objects of a particular type to a set of corresponding objects in a type

with some addtional properties. Similarily H hides some properties.

• r(Cd) =
As defined, '1', A and H have to be applied to sets of objects of a certain type
to return sets of objects of another type. To avoid introducing news terms, we
will extend their applications to types.

234 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

H cr, (3, 'Y, 0 are properties defined in T _C, H(T _C, {cr, (3}) will create a new

type (let us call it T ..restricted_C) in which only the properties 'Y, 0 are defined.
Hence T ..restricted_C is a supertype of T _C.

A(T _C, {(I' : It), (v : h)}) will create a type (T ..augmented_C) with the

additional properties I' and v, where It and h are functions that implement
them. T ..augmented_C is a subtype of T _C.

A(H(T_C,{cr,(3}),{(I': It),(v: h)}) defines the type T_Cd for a class Cd
derived from a class C with the properties cr, (3 of T _C hidden and 1', v as new
properties.

In general, the type T(Cd) of a class Cd derived from the class C, is a sibling
of T(C). However, if no properties are hidden, T(Cd) $ T(C), where $ stands
for a subtyping relationship and for a supertyping relationship. Alternatively,

if no properties are added, T(Cd) T(C). The notion of sibling generalizes
the notion of subtyping and supertyping. The most general case where some

properties are removed and new ones are added is illustrated by Figure 14.1.

In this example, we assume that the following properties are defined for the
different types:

• T..Person(SIN: int, LastName: string, FirstName: string, Sex: char, Da
teOffiirth: date)

• T..Restricted..Person(SIN: int, LastName: string, FirstName: string, Sex:
char)

• T..Augmented..Restricted..Person(SIN: int, LastName: string, FirstName:
string, Sex: char, Age: int)

T_Augmente(CRestricte(CPerson

(haoype)

Augmented_Restricted_Person Person

o type D class

Figure 14.1: An Example of a Derived Class and its Type

DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 235

In Figure 14.1, the extent of Augmented..RestrictecLPerson is a subset of the
extent of Person with a different interface defined by the type T_Augmented_

RestrictecLPerson.

14.2.2 Composed Derived Class

Assume that the type T ..Person has two subtypes T_Student and T ..Faculty.

Some of the students teach and some faculty do only research. The Type
T ..student has the properties (Year: int) and (Teach: boolean) while the proper

ties (HiringDate: date) and (Teach: boolean) are defined for Faculty. We would
like to derive a class Teacher of all the persons who teach with the property
(TimeSenJed: int) obtained either from HiringDate or from Year depending on
the type of the root object. The class Teacher cannot be directly derived from
the class Person since the useful properties are not defined in T_Person. In the
following, we propose a way (composed derived class) to solve this problem.

Definition 2 Let (C1 , C2) E C2 be a pair 0/ classes. Then:

• Cd = C1 * C2 with a filter 4> and an interface W is a composed derived

class with r(Cd) = w(4)(f(C1) n f(C2»

• Cd = C1 + C2 with a filter 4> and an inter/ace W is a composed derived

class with r(Cd) = w(4)(f(Cd U r(C2»

• Cd = c1 - C2 with a filter 4> and an interface W is a composed derived

class with r(Cd) = w(4)(f(Cd - f(C2»

with T(Cd) a sibling 0/ Anc(T(C1),T(C2» where Anc(T(C1),T(C2» is afunc

tion that returns the first common ancestor 0/(T(C1),T(C2» in the type hier

archy r.

The semantics of the constructive operations {*, +, -} are respectively based on
the basic set operations n, U and -. As defined, {*, +, -} are binary operations
but the formulae obtained can be seen as terms and be combined for more
complex ones. Note that C1 and C2 can be derived classes as previously defined.
The ancestor function Anc works fine when 7 is rooted. When this is not the
case, a common supertype T_C is created for T(C1),T(C2). In the worst case,
T _C will not have any properties in it.

The problem of deriving a class Teacher can be solved by defining a simple
derived class StudenLTeacher whose extent is a subset of all the students. In the
same way, we derive the class Faculty_ Teacher from Faculty. Teacher is then de
fined as Teacher = Student-Teacher + Faculty.Teacher. The type T_Teacher

is a subtype of T ..Person which is the common ancestor (Figure 14.2).

14.2.3 Identifying and Updating a derived object

A derived object is always derived from one and only one root object although
its properties can be totally different from the properties of the root object.

236 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

Student Teacher

Studenc Teacher

o type

D class

Faculty

Faculty_Teacher

.._.-

-
has_type

derived_from

subtype_of

Figure 14.2: An Example of a Composed Derived Class and its

Type.

DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 237

This happens when all the properties of the root class are hidden and new ones
are defined for the derived class. Hence, a derived object can be seen as a root
object viewed from another angle (the interface function of the derived class).
Both the derived object and its corresponding root object can be identified by
the OlD of the root object (ROOT_OlD). IT we redefine the notion of OlD
as follows: OID= < class..name,ROOT_OID > then the root object can be
differentiated from the derived one. This OlD defines a logical idenfier for any
object including the derived ones independently from any view implementation
technique. In the case of view materialization with incremental maintenance,
an active research area [3, 6, 12, 2], the derived object OlD is a key candidate
and can be directly used as identifier.

A derived object knows its root object. Therefore, updating a property in
herited from the root type can easily be propagated to the root object. Creating
new objects for a derived class should first create the objects in the root class
with some possible unknown property values.

14.3 DEFINING IMAGE VIEWS IN DISIMA

The mechanism of image views presented in this paper is based on the DISIMA
image DBMS, which is a research project for developing a distributed interop
erable DBMS for image and spatial applications. The DISIMA model aims at
organizing the image and associated meta-data to allow content-based queries.

14.3.1 The DISIMA Model: Overview

The model provides efficient representation of images and related data to sup
port a wide range of queries. The DISIMA model, as depicted in Figure 14.3,
is composed of two main blocks: the image block and the salient object block.
We define a block as a group of semantically related entities.

14.3.1.1 The Image Block. The image block is made up of two layers:
the image layer and the image representation layer. We distinguish an image
from its representations to maintain an independence between them, referred
to as representation independence.

At the image layer, the user defines an image type classification. Figure 14.4
depicts a type hierarchy for an electronic commerce application that represents
the catalogs as classes. The general T_Catalog type is derived from the root
type T Jmage, the root image type provided by DISIMA. The type T_Catalog

is specialized by two types: T_ClothingCatalog, and T_ShoesCatalog.

14.3.1.2 The Salient Object Block. The salient object block is designed
to handle salient object organization. A simple example of a salient object
hierarchy, corresponding to the image hierarchy defined in Figure 14.4, is given
in Figure 14.5.

DISIMA distinguishes two kinds of salient objects: physical and logical
salient objects. A logical salient object is an abstraction of a salient object

238 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

, \
... ... (correspond_to)
, ,

...... =v (co "!i",J .•..••. -' '" s,r .. ,o,'l"
/-'=="..-:/::::::::: :::::: y./

" : '.(represented)
:' : \ - (represented_by)

Image ,': '.

Represe&!J?Y

Image Block Salient Object Block

• category (class) _ belongs to - inheritance

• instance ------.. other relationships

Figure 14.3: The DISIMA Model Overview.

Figure 14.4: An Example of an Image Hierarchy.

Figure 14.5: An Example of Logical Salient Object Hierarchy.

DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 239

that is relevant to some application. For example, an object may be created
as an instance of type Politician to represent President Clinton. The object
"Clinton" is created and exists even if there is yet no image in the database in
which President Clinton appears. This is called a logical salient object; it main
tains the image independent generic information that might be stored about
this object ofinterest (e.g., name, position, spouse). Particular instances ofthis
object (called physical salient objects) may appear in specific images. There is
a set of information (data and relationships) linked to the fact that "Clinton
appears in an image". The data can be the colors of his clothes, his localization,
or his shape in this image.

We now give a formal definition of the content of an image, using physical
and logical salient objects.

Definition 3 A physical salient object (PSO) is a region of an image, that

is, a geometric object (without any semantics) in a space (defined by an image)

with the following properties: shape, color, and texture.

A logical salient object (LSO) is the interpretation of a region. It is a

meaningful object that is used to give semantics to a physical salient object.

Definition 4 Let C be the set of all logical salient objects and P be the set of

all physical salient objects. The content of an image i is defined by a pair

Cont(i) =< pi,S> where:

- pi P is a set of physical salient objects,

- s : pi --t C maps each physical salient object to a logical salient object.

An image is a basic unit in the DISIMA model and is defined as follow:

Definition 5 An image i is defined by a triple <Rep(i}, Cont(i}, Desc(i}>

where:

- Rep(i) is a set of representations of the raw image in a format such as GIF,

JPEG, etcj

- Cont(i) is the content of the image ij

- Desc(i) is a set of descriptive alpha-numeric data associated with i.

Color and texture characterizing the whole image are part of the Desc(i} .

14.3.1.3 How to Recognize the Salient Objects of an Image. Despite
progress in the computer vision field, automatic detection of objects is "hard"
and application-dependent. The state of the art in computer vision does not
permit automatic recognition of an arbitrary scene [15].

Assume an object is detected by the image analysis software. In the general
case, this object is a syntactic object without any semantics. That is, it is a
region of an image with properties such as color, shape and texture. Another
challenge is to provide syntactic objects with semantics. Assume the object
detected is a person. How can a computer assign a name to this person? This

240 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

example explains why, in most cases, the image analysis is semi-automatic or
manual.

One component of the DISIMA project is in charge of image processing
and object detection. Our first concern was images with people. The image
processing software detects the faces contained in the image with a minimum
bounding rectangle (useful for spatial relationships) and a human-annotator
assigns a logical salient object to the face. In addition, an image has some
descriptive properties such as date and photographer that have to be provided.
In the remainder of the paper, we assume that the information at the two levels
of salient objects is provided.

The two levels of salient objects ensure the semantic independence and multi
representation of salient objects. The idea of image views is based on this
semantic independence and the class derivation mechanism presented in Section
14.2.

14.3.2 Extending the DISIMA Model to Support Image Views

A DISIMA schema is composed of two sub-schemas: the image type hierarchy
and the salient object type hierarchy. An image view can be defined by a
derived image class or by giving different semantics to the salient objects an
image contains using derived logical salient object classes.

Derived classes can be defined for both image and salient-object classes.
Derived salient object classes are illustrated by examples shown in Section 2.
The aim of a derived image class is to filter salient objects or to redefine their
semantics through derived logical salient object classes.

14.3.2.1 Defining Image Views Using Derived Image Classes. A
derived image class, in addition to defining a new type, converts some salient
objects of a parent image class into non-salient in a derived one.

Definition 6 A derived image class is a class derived from an image class

that specifies the valid logical salient objects for images in its extent. If id is an

image derived from an image i, then the set of physical salient objects contained

in id is a subset of the set contained in i. The physical salient objects in id are

those for which the corresponding logical salient objects belong to one of the

valid logical salient objects.

In addition to redefining the type, a derived image class redefines the content of
the images it contains. For example, from the ClothingCatalog class defined in
Figure 14.4, we can derive two different catalogs giving different interpretations
of the images in the Clothing Catalog image class: the customer catalog class
(CustomerCatalog) and the clothing company catalog (CompanyCatalog). The
customers are interested in finding clothing from the catalog. Therefore, the
valid logical salient object class is Clothing. In addition to the clothing, the
company may be interested in keeping some information about the models.

A composed derived image class can also be created. For example, from
ClothingCatalog we can derive the class FemaleClothingCatalog. We can also

DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 241

derive FemaleShoesCatalog from Shoes Catalog. FemaleClothingCatalog and Fe

maleShoesCatalog can be combined using the + operator to derive a class Fe

maleApparelCatalog. The common ancestor of FemaleClothingCatalog, and Fe

maleShoesCatalog is Catalog. Therefore the type of FemaleApparelCatalog has
to be a sibling of the type of Catalog (Figure 14.6) .

ShoesCata1og

FemaieShoesCata1og

o
D

type

class

•

i
i

i
i

i

emaleCJothingCata1og

haUY!lCStudent

derived_from

subtype_of

Figure 14.6: An Example of a Composed Derived Image Class

14.3.2.2 Defining Image Views Using Derived Logical Salient Ob

ject Classes. Definition 5 defines the content of an image i as a pair Cont(i) =<
pi, S > where pi represents the physical salient objects and the function s maps
each physical salient object to a logical salient object. An image id can be de
rived from i and Cont(id} =< pi, Sd >. Assume we derived a logical salient
object class L1 from the logical salient object class L and that all the physical
salient objects in pi are mapped to objects of L. H we note by j the interface
function that transforms an object of L to an Object of L1 , and we define
Sd = so j, then id is a derived image that contains L1 objects.

For example, the classes FemaleClothing and FemaleShoes can be respec
tively derived from Clothing and Shoes (Figure 14.5). A composed derived
class FemaleApparel can be derived from the two previously derived classes

242 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

and the derived image class FemaleApparelCatalog can be defined as images
containing female apparels. Of course, T YemaleClothing and T YemaleShoes

can respectively be different from T_Clothing and T_Shoes. T YemaleApparel

is then, a sibling of T -Apparel.

Definition 7 An image view is defined by:

• a derived image class

• redefining the semantics of the physical salient objects an image contains

through derived logical salient object classes.

14.4 THE IMAGE VIEW DEFINITION LANGUAGE

The view definition language allows us to define derived classes. Queries in the
view definition are expressed in MOQL (Multimedia Object Query Language)
[10], the query language defined for DISIMA. MOQL extends the standard
object query language, OQL [5] with predicates and functions to capture tem
poral and spatial relationships. Most of the extensions have been introduced in
the where clause in the form of new predicates including the contain predicate
to check if a salient object belongs to an image. The convention used in the
language definition is: [] for optional, { } (different from {} which are part
of the language) for 0 to n times, and I for one and only one among different
possibilities. The view language allows us to create and delete derived classes.

• Create a derived class
derive { <derived class name> from <class definition>

}j

[augment {<virtual property name> as <query> I
<function name> j}]

[hide < property list>]
{cast < property> into <derived type> }
[content < valid salient object class list>]
extent <extent name> [as <query>]

<class definition> := <class name> I
(<class definition> union I intersect I minus <class definition>)

• Delete a derived class
delete <derived class name>

The derive clause is used to define a derived logical salient object class, as
well as derived image classes. The classes that the derived classes are derived
from can be ordinary or derived classes. The query in the extent clause defines
the derived class extent and must return a unique subset of the combination of
the parent class extents. The augment clause is used to define new properties.
A query can invoke an existing property. In this case, the keyword this is used
to refer to the current object. H (a : T(C» is a property and Cd is a class

DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 243

derived from C, then the clause cast can be used to cast the type of a into

T(Cd).
The content clause allows us to define the valid logical salient objects. This

clause is used only for derived image classes and does more than hide the
previous image content and redefine a new one. It implements the image views

using derived logical salient object classes. If the logical salient object class
mentioned is a derived class, then it changes the semantics of the physical
salient objects from parent to derived objects. Assume a salient object class Sd
is derived from class S and an image i (element of the image class J) contains
a salient object of type T(S) . If we derive an image class Id from I with the
clause content Sd, image id derived from i will contain a salient object of type
T(Sd) instead of T(S). For example, in the image view CustomerClothing that
follows, an image of CustomerCatalog contains elements of CustomerClothing,
rather than Clothing as salient objects.

14.4.1 Examples of Image Views

In the following, we give some examples of image views derived from the catalog

database. The corresponding schema expressed in the ODMG object model [5]
is given in the Appendix. The schema given in the Appendix can be seen as the

view of the company: each image contains models and clothes. The examples
correspond to the Customer View, the Female Clothing Catalog View, and the
Female Aparel Catalog view.

Image View 1 The Customer Catalog view
derive {CustomerClothing from Clothing

augment inStock as this.inStockOi
avgPriceForType as
avg(Select c.price
From Clothes c
Where c.type = this. type);

hide stock, lastOrderDate, lastArrivalDate, nextArrivalDate
extent Customer Clothes };

derive
hide
cast
extent
content

{Customer Catalog from ClothingCatalog
photographer, date, time, place

accessories into Set < Ref< Customer Catalogs> >
CustomerCatalogs
Customer Clothing} ;

The derived class CustomerClothes redefined Clothes for the customers' use.

Attributes stock, lastOrderDate, lastArritJalDate, nextArritJalDate are hidden
and the virtual attribute atJgPriceForType returns the average price for this
type of clothing.

The image view CustomerCatalog uses the image class Catalog renamed as
CustomerCatalog with CustomerCatalogs as its extent name. All the images are

244 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

available but their content will be limited to objects of type CustomerClothes

which redefines Clothing. Attributes photographer, date, time, place are hidden.
The attribute accessories was defined as a set of images from Catalog. Its type
has to be changed to set of CustomerCatalogs to ensure consistency.

Image View 2 The FemaleClothingCatalog view
derive {FemaleClothing from CustomerClothing
extent FemaleClothes as

derive
hide
cast

extent
content

Select c
From Customer Clothes c
Where c.sex = 'female' or c.sex = 'unisex'};

{FemaleClothingCatalog from ClothingCatalog
photographer, date, time, place
accessories into Set <Ref< CustomerCatalogs> >
FemaleClothingCatalogs
FemaleClothing} ;

Only images containing female items are selected from the clothing catalog.
The salient objects are restricted to female clothing.

Image View 3 The FemaleApparelCatalog view
derive {FemaleShoes from Shoes;
augment inStock as this.inStockO;

avgPriceForType as

avg(Select s.price
From Shoes s
Where s.type = this. type);

hide stock, lastOrderDate, lastArrivalDate, nextArrivalDate
extent FemaleShoesExtent as

derive
hide
extent
content

derive

extent

Select s
From ShoesExtent c
Where c.sex = 'female' };

{FemaleShoesCatalog from ShoesCatalog
photographer, date, time, place
FemaleShoesCatalogs
FemaleShoes} ;

{FemaleApparelCatalog from FemaleClothingCatalog union
FemaleShoesCatalog
FemaleApparelCatalogs} ;

The FemaleApparelCatalog combines the FemaleClothingCatalog and the Fe

maleShoesCatalog into a new derived catalog.

DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 245

14.4.2 Implementing Derived Classes in DISIMA

The distinction between types and classes is not supported by most object
oriented languages in current use. DISIMA is being implemented on top of
ObjectStore [8] using C++. DISIMA provides types for image and logical
salient objects that can be subtyped by the user. The implementation we
describe in this section simulates the idea using C++. We implement all our
types as C++ classes. We call these C++ classes type classes and their names
start with T_. For example T -Person will be a type class for the class Person.

Our classes are objects of the C++ class C_Class. C_Class has a subclass
D_Class for derived classes. The properties defined for C_Class are:

• Name: name of the class

• Type: type class name

• SuperclassList: list of the superclasses

• SubClassList: list of the subclasses

• ShallowExtent (virtual function): The shallow extent of the class

• DependentList: list of classes derived depending on this one

The properties defined for D_Class are:

• RootClassList: list of the classes it is derived from

• Filter: filter function

• ShallowExtent: redefined

• MaterializationFlag: set when the ShallowExtent is up-to-date

• Change: function used to unset the MaterializationFlag

The DependentList in the class C_Class contains all the classes derived from
that class and also all the derived classes for which an augmented property is
computed using objects of that class. Since the type of a derived class can be
different from the type of its root class we choose to materialize the derived
class extent. An object of C_Class represents a user's class and the extent (Shal

lowExtent) property returns objects of the type class (7)jpe). The SubClassList

can be used to recursively compute the deep extent. To simplify the material
ization process, we only store one level of root class. That is, the RootClassList

of a derived class contains only non-derived classes. A derived class extent is
materialized the first time the class is referred to and the materialization flag
is set. Each time new objects are created, modified or deleted in a root class, a
change message is sent to each of the classes in the DependentList to unset the
materialization flag. IT the materialization flag is unset when a derived class is
accessed, the derived class extent is recomputed and the materialization flag is
reset.

246 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

When the augmented properties of a derived object are computed from the
single root object without any aggregate, the management algorithm for in

cremental view maintenance can easily be implemented as follows. An object
of a derived class contains the OlD of the root object it is derived from. The

Change method passes the OlD of the changed root object (new, deleted or
updated) to the derived class object where it is kept in the ChangeList of the
derived class object. The ChangeList can then be visited to update or cre
ate the derived objects for modified or new root objects and to delete derived
objects corresponding to deleted root objects.

14.5 RELATED WORK

To the best of our knowledge, there is no other view mechanism defined for
image which can be compared to our solution. DISIMA, as well as most multi

media products and prototypes, is being developed on top of an object-oriented
database system. We defined an object-oriented view mechanism used in the
image view solution. This section will focus on two of the most representative
object-oriented view solutions: O2 View and Multiview.

14.5.1 O2 View

O2 View is the view mechanism defined for the O2 system. O2 View distinguishes
two kinds of derived classes: virtual and imaginary classes. The main ideas are
the following:

• A virtual class (1) selects through a query, objects existing in the root
database; (2) is connected to the root hierarchy; and (3) provides a name
for the extension of the virtual class. Its interface can be modified for
hiding an attribute or adding a virtual one.

• An imaginary class (1) selects and restructures through a query data
from the root database or the view, (2) turns them into objects, (3) is
not connected to the root hierarchy, and (4) provides an extension.

• A virtual attribute attaches (possibly restructured) data to an object in
the view, through a query on the root database or the view. It augments

the original interface of virtual objects.

• An attribute hiding restricts the original interface of root objects. It hides
the attributes of a virtual object not to be visible to the end-user

14.5.2 Multiview

Multiview [7] is a research prototype developed at the University of Michigan
on top of the GemStone system. Multiview provides updatable materialized
object-oriented database views. The main features of the system are:

• Integration of both virtual and base classes into a unified global schema.
This is done through a classification algorithm [13] that restructures the

DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 247

whole class hierarchy. Hence, virtual classes participate in the inheritance
hierarchy and can be used in the same way base classes are used.

• Generation of schemata composed of user-selected bases and virtual classes.

• Includes incremental view maintenance algorithm for view materializa
tion.

O2 Views [14], makes the distinction between virtual classes that select through
queries existing objects in the database and imaginary classes for which the se
lected objects are restructured and turned into objects. Virtual classes are
connected to the generalization hierarchy by a maybe relationship whereas
imaginary classes are not. Multiview [7] integrates the derived classes into
the global class hierarchy using a complex classification algorithm [13]. Our
solution is simpler and yet more powerful. A virtual class can be derived from
one or several classes with its type integrated into the type hierarchy without
any modification of the user-defined root classes. In addition to having the
object-oriented views features, an image view should provide a semantic inde
pendence. That is, the content of the same image can be different from one
view to another.

14.6 CONCLUSION

Several object view mechanisms have been proposed since the early 90s [4, 1, 14,
16, 7]. In general, the main problems with these views are [16] (i) expressive
power (restrictions on queries defining views), (ii) reusability and modeling
accuracy (insertion of the views into the generalization hierarchy), and (iii)
consistency (stability in OlD generation).

Problems (i) and (ii) are somewhat related. For example, using the view
mechanism in [14], if the user wants the view class to be linked to the general
ization hierarchy, the query that generates the view class has to be restricted.
In addition, the problem (ii) raises a typing problem (how is the type of the
virtual class related to the type hierarchy?) and a classification problem (how
is the extent of a virtual class related to the existing ones?). Finding an an
swer to these two questions in an environment where the only relationship is
the is-a relationship can lead to contradictions. The distinction between the
derivation hierarchy and the generalization hierarchy in our proposal, based on
the distinction between type and class, provides an elegant solution to prob
lems (i) and (ii). In addition, the object-oriented view mechanism presented in
this paper allows us to derive classes from several existing ones. Problem (iii)
is also solved by the fact that a derived object is seen as a root object with a
different interface function. A derived object and its root class share the same
OlD but are uniquely identified by the pair < classJI,ame, OlD> which is
invariant even if the derived object is recomputed.

The DISIMA model separates the objects contained in an image (physical

salient objects) from their semantics (logical salient objects). Using our object
view mechanism, we proposed an image view mechanism that allows us to give

248 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

different semantics to the same image. For example, a derived image class can
be defined by deriving new logical salient object classes that give new semantics
to the objects contained in an image or by hiding some of the objects by directly
defining a derived image class.

The main contributions of this paper are the proposal of a powerful object
oriented view mechanism based on the distinction between class and type, a
proposal of an image view mechanism based on image semantics and the image
view implementation using a language that does not intrinsically support the
distinction between class and type.

References

[1] S. Abiteboul and A. Bonner. Objects and views. In Proceedings of ACM

SIGMOD International Conference on Management of Data, pages 238-
247, Denver, Colorado, May 1991.

[2] B. Adelberg, H. Garcia-Molina, and J . Widom. The STRlP rule system for
efficiently maintaining derived data. In Proceedings of ACM SIGMOD In

ternational Conference on Management of Data, pages 147-158, Tucson,
Arizona, May 1997.

[3] D. Agrawal, A. EI Abbadi, A. Singh, and T. Yurek. Efficient view mainte
nance at data warehouse. In Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 417-427, Thcson, Arizona,
May 1997.

[4] E. Bertino. A view mechanism for object-oriented databases. In Pro

ceedings of International Conference on Extending Data Base Technology,

pages 136-151, Viena, Austria, March 1991.

[5] R. G. G. Cattell, D. Barry, D. Bartels, M. Berler, J . Eastman, S. Gamer
man, D. Jordan, A. Springer, H. Strickland, and D. Wade, editors. The

Object Database Standard: ODMG 2.0. Morgan Kaufmann, San Francisco,
CA,1997.

[6] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Munick, and K. A. Ross.
Supporting multiple view maintenance policies. In Proceedings of ACM

SIGMOD International Conference on Management of Data, pages 405-
416, Tucson, Arizona, May 1997.

[7] H. A. Kuno and E. A. Rundensteiner. The MultiView OODB view system:
Design and implementation. Journal of Theory and Practice of Object

Systems (TAPOS), 2{3}:202-225, 1996.

[8] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The objectstore
database system. Communications of ACM, 34{1O}:19-20, 1991.

[9] Y. Leontiev, M. T. Ozsu, and D. Szafron. On separation between inter
face, implementation and representation in object DBMSs. In Proceedings

of Technology of Object-Oriented Languages and Systems 26th Interna

tional Conference (TOOLS USA98), pages 155-167, Santa Barbara, Au
gust 1998.

DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 249

[10] J. Z. Li, M. T. Ozsu, D. Szafron, and V. Oria. MOQL: A multimedia ob
ject query language. In Proceedings of the 3rd International Workshop on

Multimedia Information Systems, pages 19-28, Como, Italy, September
1997.

[11] V. Oria, M. T. Ozsu, X. Li, L. Liu, J. Li, Y. Niu, and P. J. Iglinski. Mod
eling images for content-based queries: The DISIMA approach. In Pro

ceedings of 2nd International Conference of Visual Information Systems,

pages 339-346, San Diego, California, December 1997.

[12] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view mainte
nance and integrity constraint checking: Trading space for time. In Pro

ceedings of ACM SIGMOD International Conference on Management of

Data, pages 507-518, Montreal, Canada, June 1996.

[13] E. A. Rundensteiner. A classification algorithm for supporting object
oriented views. In Proceedings of International Conference on Information

and Knowledge Management, pages 18--25, June 1994.

[14] Casio Santos, Claude Delobel, and Serge Abiteboul. Virtual schema and
bases. In Proceedings of International Conference of extending Data Base

Technology, pages 81-94, Cambridge,UK, March 1994.

[15] A. W. M. Smeulders, M. L. Kersten, and T. Gevers. Crossing the divide
between computer vision and data bases in search of image databases.
In Proceedings of 4th IFIP 2.6 Working Conference on Visual Database

Systems - VDB 4, pages 223-239, L'Aquila, Italy, May 1998.

[16] X. Ye, C. Parent, and S. Spaccapietra. Derived objects and classes in
DOOD system. In 4th International Conference on Deductive and Object

Oriented Databases, DOOD 95, pages 539-556, Singapore, December
1995.

250 SEMANTIC ISSUES IN MULTIMEDIA SYSTEMS

Appendix: Sample Schema

class Image{
Set <Ref<Representation> > representationsj
Set<Ref<PhysicalSalientObject> > physicalSalientObjects

inverse imagej

/ / Methods
displayOj}

class Catalog: Image{
Person photographerj Date datej Time timej String placej }

class LogicalSalientObject{
Set<Ref<PhysicalSalientObject> > physicalSalientObjects

inverse logicalSalientObjectj

/ /Methods
Region region(Image m)j / / salient object's region in image m
Color color(Image m)j / / salient object's color in image m
Texture texture(Image m)j / / salient object's texture in image m }

class Person: LogicalSalientObject{
String namej String occupationj Address addressj }

class Model: Person {
String : agencyj }

class Apparel: LogicalSalientObject{
String namej String typej Real pricej Set <Real> sizej
Manufacturer manufacturerj Integer stockj String colorsj
Date lastOrderDatej Date lastArrivalDatej Date nextArrivalDatej
/ /Methods
Boolean inStockOj f f true if the the clothing is in stock}

class Clothing: Apparel {
Set < Ref< Catalog> > accessoriesj/ / images of items that match with the cloth}

class Shoes: Apparel {
String solejString upperj }

class PhysicalSalientObject{
Ref<LogicalSalientObject> logicalSalientObject

inverse physicalSalientObjectsj

Ref<Image> image
inverse physicalSalientObjectsj

Region regionj Color colorj Texture texture }
Set <Ref<SalientObject > > SalientObjectsj f / all salient objects
Set < Ref< Person > > Personsj / fsalient objects of type Person
Set<Ref<Model» Modelsj f fsalient objects of type Model
Set<Ref<Clothing» Clothesj f fsalient objects of type Clothing
Set<Ref<Shoes» ShoesExtentj / fsalient objects of type shoes
Set<Ref<Image» Imagesj / fall images

	14 DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM *
	14.1 INTRODUCTION
	14.2 DERIVED CLASSES
	14.3 DEFINING IMAGE VIEWS IN DISIMA
	14.4 THE IMAGE VIEW DEFINITION LANGUAGE
	14.5 RELATED WORK
	14.6 CONCLUSION
	References
	Appendix: Sample Schema

