
Definition and Analysis
of Hardware- and

Software-Fault-Tolerant
Architectures

Jean-Claude Laprie, Jean Arlat, Christian Bbounes,

and Karama Kanoun

LAAS-CNRS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0th experimental and real-life
safety-related systems have begun
to use design diversity to tolerate

software faults.’ Such systems focus
strongly on design faults, where the term
“design” encompasses everything from
system requirements to realization during
both initial production and future modifi-
cations. Design faults are a source of
common-mode failures, which defeat

replication (that cope with physical faults)
and generally have catastrophic conse-
quences.

Precomputer safety-related systems
minimized common-mode failures hardware and railways’ interlocking system).’

To confine computer failures, a system
must automatically check execution re-
sults for the errors that could lead to fail-
ure. There are two main approaches to de-
tecting errors caused by design faults:

Systems in which one

piece of hardware

B
(1) Acceptance tests of the results via

executable assertions. These asser-
tions are generalized, formalized
versions of likelihood checks used
in process control.

(2) Diversified design, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the re-
sults of two software variants can be
compared (as in the Airbus A-300
and A-3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 airliners and the Swedish

software are subject to

fault-tolerance strategies based on strict Software failures and

require architectures

that tolerate both

through diversified design, that is, two or
more systems delivering the same service
through separate designs and realizations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A typical example is a hardwired elec-
tronic channel backed by an electro-
mechanic or electropneumatic channel. In
addition, system architecture was based on
the federation of equipment, where each
piece of equipment implemented one or
more subfunctions of the system rather
than the entire system. Such partitioning
confined equipment failures to subfunc-
tions, allowing the system’s global func-
tion to continue, although possibly in a
degraded mode.

software faults.

Computer-based safety-related systems
generally retain the federation approach.
Each subfunction is implemented by a
“complete” computer comprising hard-
ware and executive and application soft-
ware. Examples of this approach include
airplane flight-control systems (such as in
the Boeing 757/767 airliner) and nuclear-
plant monitors (such as Merlin-GCrin’s
Systtme de Protection IntCgrC NumCrique).

The federation approach generally re-
quires far more processing elements than
are needed for computing power alone; for
instance, the Boeing757/767 flight-control
system comprises 80 distinct functional
microprocessors, 300 when we account for
redundancy.

We could use computers better in such
systems if the same hardware supported
software for several subfunctions. Such an
approach, called integration, is subject to
software failures, which are due to design
faults only. Thus, integration requires soft-
ware-fault tolerance. Moreover, some
safety-related systems (such as those in the

39 0018-9162/90/0700-0039$01.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 1990 IEEE July 1990

Table 1. Main characteristics of the software-fault-tolerance strategies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Method Error-Processing Judgment on Variant-Execution Consistency of Suspension of No. Variants

Acceptability During Error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf Sequential
Technique Result Scheme Input Data Service Delivery to Tolerate

Processing Faults

Recovery Error detection by
Blocks acceptance tests
(RBI and backward

recovery

Absolute,
with respect
to specification

Sequential Implicit, from Yes, duration f+ 1
back ward necessary for
recovery executing one
principle or more variants

N Self-checking Error detection
Programming and result
(NSCP) switching

Detection by
acceptance tests

Detection by
comparison

N-Version Vote
Programming
(N W

Absolute,
with respect
to specification

Relative, on
variant results

Relative, on
variant results

f+ 1 Parallel Explicit, by Yes, duration
dedicated necessary for
mechanisms result switching

Parallel Explicit, by Yes, duration 2Cf+l)
dedicated necessary for
mechanisms result switching

Parallel Explicit, by No f+2
dedicated
mechanisms

NASA Space Shuttle and the Airbus A-320
airliner) are moving toward limiting or
eliminating manual or noncomputer
backup systems. This is an additional in-
centive for software-fault tolerance, since
safe system behavior becomes entirely
dependent on reliable software behavior.

This article elaborates on previous work
to present a structured definition of hard-
ware- and software-fault-tolerant architec-
tures.2 We have tried to be as general as
possible, dealing with specific classes of
faults or techniques only when necessary.
(More specific definitions extending the
recovery block approach3 and N-version
programming4 have appeared elsewhere.)
After discussing software-fault-tolerance
methods, we present a set of hardware- and
software-fault-tolerant architectures and
analyze and evaluate three of them. A side-
bar addresses the cost issues related to soft-
ware-fault tolerance.

conditions and inputs. The common speci-
fication must explicitly address the deci-
sion points, that is, it must state when to
make decisions and what data to base them
on (the data processed by the decider).

The best-documented techniques for
tolerating software design faults are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
recovery block (RB) approach5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN -
version programming (NVP).6 In the first
approach, the variants are called alternates
and thedecider is an acceptance test, which
is applied sequentially to the alternates’
results. If the results of the primary alter-
nate do not satisfy the acceptance test, the
secondary alternate executes. In the sec-
ond approach, the variants are called ver-
sions, and the decider is a vote based on all
versions’ results.

We use the term “variant” rather than
“alternate” or “version” because “alter-
nate” reflects sequential execution, which
is a feature specific to the recovery block
approach, and “version” has another mean-
ing: successive versions of a system result-
ing from fault removal or functionality
evolution. During the life of a diversely
designed system, several versions of the

Software-fault-
tolerance methods

variants will be generated.
The hardware-fault-tolerant architec-

tures equivalent to RB and NVP are stand-
by sparing and N-modular redundancy,
respectively. A third approach to hard-
ware-fault tolerance, active dynamic re-
dundancy, is very popular (especially

In a diversified design, the different
systems produced from a common service
specification are called variants. A diver-
sified design has at least two variants plus
a decider, which monitors the results of
variant execution, given consistent initial

when based on self-checking components,
such as in the AT&T Electronic Switching
System and the Stratus system), but it
has not been described in the literature as
a generic technique for software-fault
tolerance. However, self-checking pro-
gramming has long been defined;’ a self-
checking program results from adding re-
dundancy to a program so that it can check
its own dynamic behavior during execu-
tion. A self-checking software component
consists of either a variant and an accep-
tance test or two variants and a comparison
algorithm.

Fault tolerance is provided by the paral-
lel execution of at least two self-checking
components. At each execution of such a
system, one component “acts” (that is, it
delivers service or results to the controlled
or monitored application), while the other
components remain “hot” spares. When
the acting component fails, a spare begins
delivering service. If a spare fails, the act-
ing component continues delivering ser-
vice. Error processing is thus performed
through error detection and possible
switching of results. We call this approach
N self-checking programming (NSCP).

It could be argued that NSCP is just a
parallel recovery block scheme, but the
latter’s backward recovery strategy pre-
vents it from being reduced to the associa-
tion of alternates together with an accep-
tance test. In NSCP, when a self-checking

40 COMPUTER

Table 2. Overheads for tolerance of one software fault. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Method Structural Overhead Operational Time Overhead

Diversified Mechanisms Systematic When Errors Occur
Software Layer Decider Variants Execution

Recovery One variant and Recovery cache
Blocks one acceptance test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N Self-checking
Programming

Error detection One variant and Result switching
by acceptance two acceptance
tests tests

Error detection Three variants Comparators and
by comparison result switching

N-Version Two variants Voters
Programming

Acceptance test Accesses to One variant and
execution recovery cache acceptance test execution

Acceptance test Input data consistency Possible result switching
execution and variants execution

synchronization

Comparison Input data consistency Possible result switching
execution and variants execution

synchronization

Vote execution Input data consistency Usually negligible
and variants execution
synchronization

software component is based on the asso-
ciation of two variants, only one variant
fulfills the expected functions, while the
other acts as an extended acceptance test.
Each self-checking component in NSCP is
responsible for determining whether a
delivered result is acceptable, whereas the
judgment of acceptability in NVP is co-
operative. Also, each acceptance test asso-
ciated with a variant, or each comparison
algorithm associated with a pair of vari-
ants, can be the same or can be specifically
derived from a common specification for
each variant or variant pair. As in N -
version programming, the components’
parallel execution necessitates a mecha-
nism to ensure input consistency.

Our aim in this article is to classify the
various approaches to software-fault toler-
ance, not to introduce a new approach. In
fact, most of the real-life systems men-
tioned in the introduction do not imple-
ment either a recovery block approach or
N-version programming, but rather are
based on self-checking software. For in-
stance, the Airbus A-300 and A-310 flight-
control systems and the Swedish railways’
interlocking system are based on the paral-
lel execution of two variants that stop
operation when a comparison of their re-
sults reveals an error. The Airbus A-320
flight-control system is based on two self-
checking components, each based in turn
on the parallel execution of two variants
whose results are compared. Tolerance of
a single fault in this system requires four
variants. (The two self-checking compo-

nents in this last scheme do not deliver
exactly the same service. Critical func-
tions are preserved when the system
switches from the acting component to the
spare, but noncritical functions are per-
formed in a degraded mode.)

Table 1 summarizes the main character-
istics of the three strategies. In selecting a
strategy for a given application, pay par-
ticular attention to the method for judging
result acceptability and whether service
delivery is suspended when an error oc-
curs. Table 2 summarizes the main sources
of structural and operation-time overhead
for software-fault tolerance. The table does
not mention overhead imposed by tests
local to each variant, such as input range
checking and grossly wrong results, since
such tests are common to all approaches
(and are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- or should be -present in non-
fault-tolerant software systems, as well).

Fault classes. We classify faults ac-
cording to their independence and their
persistence.

Independence. Faults are either related
or independem6 Related faults result from
a specification fault common to all vari-
ants or from dependencies in the separate
designs and implementations. Independent
faults are simply those that are not related.
Related faults manifest themselves as
similar errors and lead to common-mode
failures, whereas independent faults usu-
ally cause distinct errors and separate fail-
ures. Figure 1 illustrates these definitions.

Pers is tence. Faults are classified as
solid or soft based on their persisrence.
Such a distinction is usual in hardware,
where a fault’s solidity or softness is im-
portant to fault tolerance. A component
affected by a solid fault must be made
passive after the fault is detected, whereas
a component affected by a soft fault can be
used after error recovery. In other words, a
solid fault necessitates error processing
and fault treatment, while a soft fault re-
quires only error processing. A permanent
fault is a typical solid fault, and a tempo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Independent Distinct Separate
faults wwl failures

Related Similar Common-mode
faults failures

I I
Figure 1. Classes of faults, errors, and failures.

July 1990 41

The cost of software-fault tolerance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fault tolerance introduces additional

costs; we estimate those costs here.
Since design diversity affects costs dif-
ferently according to the life-cycle
phases, we start with cost distribution
among the various life-cycle activities
for classical, non-fault-tolerant, soft-
ware. Our simplified life-cycle model‘
(see the first table) groups all activities
relating to verification and validation
(V&V) separately.

Three maintenance categories cover
the software’s entire operational life.’
Corrective maintenance concerns fault
removal and involves design, imple-
mentation, and V&V. Adaptive mainte-
nance adjusts software to environ-
mental changes and also involves
specification activity. Perfective mainte-
nance improves the software’s function;
thus, it actually concerns software evo-
lution, and so involves all development
activities, starting with modified require-
ments.

The cost breakdowns for the life-
cycle and maintenance’ do not address
a specific class of software. However,
since we are concerned with critical ap-
plications, we must incorporate some
multiplicative factors that depend on the
particular activity.* The last two col-
umns, which are derived from the data
in the other columns, give the life-cycle
cost distribution for development only
and for development and maintenance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Software cost elements for non-fault-tolerant software.

Life-Cycle Multipliers Cost Distribution
Activity Cost Breakdown’ for Critical Development Development

Applications2 and Maintenance

Development
Requirements 3% 1.3 8% 6 %
Specification 3 % 1.3 8% 7 %
Design 5% 1.3 13% 14%
Implementation 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYo 1.3 19% 19%

and Validation 1 5% 1.8 52% 54%
Verification

Maintenance. 67%

*Of this, 20% is for corrective maintenance, 25% is for adaptive maintenance, and 55% is for perfective
maintenance.’

From this table, it appears that main-
tenance does not significantly affect
cost distribution over the other life-cycle
activities (in fact, the discrepancy is
likely to be lower than indicated). Ac-
cordingly, let’s assume in the following

back-to-back testing, and V&V tools,
such as test harnesses. We cannot ac-
curately estimate such factors given the
current state of the art. We can, how-
ever, give reasonable ranges of vari-
ations.

example that the figures for develop-
ment only are general and cover the en-
tire life-cycle, since we are concerned
only with relative costs.

software, we must introduce factors to
account for the overheads associated
with the decision points and the decid-
ers and to account for the cost reduc-
tion in V&V caused by commonalties
among variants. These commonalties
include actual V&V activities, such as

To determine the cost of fault-tolerant

Consider the following factors: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* r is the multiplier associated with the

decision points, with 1 c r c 1.2.
*S is the multiplier associated with the

decider, with 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc s c 1.1 for NVP and
NSCP when error detection is per-
formed through comparison, and 1 < s
c 1.3 for RB and NSCP when error de-
tection is performed through accep-
tance tests. This difference reflects the
differences in the deciders, that is, the
fact that the deciders are specific when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

rary fault (either transient or intermittent)
is a typical soft fault.

Let’s now consider software faults in
operational programs. Once a program has
been thoroughly debugged, problems are
more likely to arise from subtle fault con-
ditions (such as limit conditions, race
conditions, or strange underlying hard-
ware conditions) than from easily identifi-
able faults. Just a slight change in the
execution context could keep fault condi-
tions from occurring again, thus keeping
the software from failing again. Since the
likelihood of such an error occurring again
is negligible, we can extend the notion of a
soft fault to software.8

Another important consideration for
error recovery is the notion of local and
global variables for the components. Let’s
call the program between two decision
points a diversity unit. Generally, error
recovery requires that the diversity units
be procedures (so their activation and
behavior do not depend on any internal

state). In other words, all data needed by a
diversity unit must be global data. The
data’s global nature can result from the
nature of the application itself. One ex-
ample is physical-process monitoring
(such as nuclear-plant protection), where
tasks begin based on sensor data and do not
use data from previous processing. The
data’s global nature can also result from
transforming local data into global data.
This incurs overhead and could decrease
diversity (since the decision-point specifi-
cation must be more precise). A simplified
example is a filtering function that consti-
tutes a diversity unit. In this example, past
samples should be part of the global data.

Although these classifications apply to
all software-fault-tolerance methods, we
can alter the general rules somewhat in
specific, application-dependent cases. For
example, there is an alternate solution for
NSCP and NVP when the overhead cannot
be afforded or when transforming local
data into global data will decrease diver-

sity too much. This solution involves fault
treatment, that is, i t eliminates failed vari-
ants from further processing.

Let’s summarize the preceding discus-
sion by adopting the following definitions
for soft and solid faults: A soft software
fault has a negligible likelihood of recur-
rence and is recoverable, while a solid
software fault is recurrent under normal
operation or cannot be recovered.

Defining hardware-
and software-fault-
tolerant architectures

Our discussion of architectures that tol-
erate both hardware and software faults
emphasizes the dependencies among the
software- and hardware-fault-tolerance
methods and the effects of solid and soft
software faults on the architecture defini-
tion. We investigate two levels of fault-

42 COMPUTER

Cost of fault-tolerant software versus non-fault-tolerant software. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Faults Fault-Tolerance N (C,,/C,Jmin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C,,/C,,)max (C, /CN,,)av (C,, /NC,,,)av
Tolerated Method

Recovery blocks 2 1.33

N self-checking
programming
Acceptance test 2 1.33
Comparison 4 2.24

N-version 3 1.78
programming

Recovery blocks 3 1.78

N self-checking
programming
Acceptance test 3 1.78
Comparison 6 3.71

N-version 4 2.24
programming

2.17

2.17
3.77

2.71

2.96

2.96
5.54

3.77

1.75

1.75
3.01

2.25

2.37

2.37
4.63

3.01

~

.88 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.88

.75

.75

.79

.79

.77

.75 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
they decide by acceptance test and ge-
neric when they decide by comparison
or vote.

U is the proportion of testing per-
formed once for all variants (such as
provision for test environments and har-
nesses), with 0.2 < U < 0.5.

vis the proportion of testing, per-
formed for each variant, that takes ad-
vantage of the existence of several vari-
ants (such as back-to-back testing),
with 0.3 < v < 0.6.

w is the cost-reduction factor for

testing performed in common for sev-
eral variants, with 0.2 < w < 0.8.

The following expression then gives
the cost of fault-tolerant software (Cm)
with respect to the cost of non-fault-
tolerant software (C,,):

‘FTl‘NFT = P R q + ” P S p +

[Nr + (s-1)I (Pms + P,J + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rIus + (1 4 N [v w + (1-411 P”&

and PReq’ PSWl PD& P,,,S and P,, are
where N is the number of variants,

the cost distribution percentages for re-
quirements, specification, design, im-
plementation, and V&V, respectively.

the ratio C,,/C,,, as well as the aver-
age values and the average values per
variant. In this table, we do not distin-
guish between RB and NSCP with error
detection by acceptance test, since our
abstract cost model is likely to mask
their differences.

The second table’s results let us
quantify the qualitative statement that
N-variant software is less costly than N
times a non-fault-tolerant software. Also
note that previously published figures3
fall within the ranges displayed here;
that an experiment at the University of
Newcastle upon Tyne estimated RB’s
overhead for two variants at 60 per-
cent and that the Project on Diverse
Software estimated the cost of NVP for
three variants at 2.26 times the cost of
a one-variant ~ r o g r a m . ~

References

The second table gives the ranges for

1. C.V. Ramamoorthy et al., “Software En-
gineering: Problems and Perspectives,”
Computer, Vol. 17. No. 10, Oct. 1984,

2. B.W. Boehm, Sofbvare Engineering Eco-
nomics, Prentice Hall, Englewood Cliffs,
N.J., 1981.

3. U. Voges, ed., “Application of Design Di.
versity in Computerized Control Sys-
tems,” Proc. /NP Workshop on Design
Diversity in Action, Springer-Verlag, Vi-
enna, 1986.

pp. 191-209.

tolerance: architectures tolerating a single
fault and architectures tolerating two con-
secutive faults. (We can relate these re-
quirements, respectively, to the classical
Fail OpFail Safe and Fail Op/Fail OpFai l
Safe requirements used in the aerospace
community for hardware-fault tolerance.)

Due to the article’s scope, our discussion
is highly abstract. We do not discuss such
distinguishing features as the overhead
imposed by intercomponent communica-
tion for synchronization, decision-making,
data consistency, etc., or the differences in
memory space for each architecture.

Implementing design diversity. Of the
many issues involved in design diversity,6
two related issues are especially impor-
tant: the number of variants and the level at
which fault tolerance is applied.

Number of variants. Aside from eco-
nomic considerations (see the sidebar), the
number of variants for a given software-

fault-tolerance method is directly related
to the number of faults to be tolerated (see
Table 2). The soft or solid nature of the
software faults significantly affects the
architecture only when it must tolerate
more than one fault. Also note that an
architecture tolerating a solid fault can also
tolerate a (theoretically) infinite sequence
of soft faults, provided there are no fault
coincidences.

The relation between the likelihood of
such fault sandthe numberofvariantsisnot
simple. Whether increasing the number of
variants increases or decreases the number
of related faults depends on several fac-
tors, some of which affect the others ad-
v e r ~ e l y . ~ . ~ However, there is good reason to
increase the number of variants in NVP: in
a three-version scheme, two similar errors
can outvote agood result; while they would
be detected in a four-version scheme.

Level offault-toleranceapplication. The
level of application involves twoquestions:

How much should the system be decom-
posed into components to be diversified?
and Which layers (application software,
executive, hardware) must be diversified?

The answer to the first question involves
a trade-off between two opposing consid-
erations: smaller components allow a bet-
ter mastering of the decision algorithms,
but larger components aid diversity. In
addition, the decision points are “non-
diversity” points (and synchronization
points for NSCP and NVP); as such, they
must be limited. Decision points are neces-
sary only for interactions with the environ-
ment (sensor data acquisition, delivering
orders to actuators, operator interaction,
etc.). However, performance considera-
tions could prompt additional compro-
mises.

Concerning the second question, the
methods for tolerating design faults can
apply to any layer of either the application
or the executive software. They can also
apply to the hardware layers.’ With respect

July 1990 43

f- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
’F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E!

NVP/1/1

Hardware error-
confinement area

Software error-
confinement area

Idle variant

NSCP/l/l/rn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2. Architectures tolerating a single fault. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to the computation process, the states of
distinct variants are different. Thus, in
NSCP and NVP, when the variants execute
in parallel on distinct (redundant) hard-
ware, agiven layer’sdiversity yields differ-
ent states in its underlying layers, even if
they are not diversified (except, of course,
at the decision points). The decision to
diversify layers underlying the application
software involves additional considera-
tions, such as determining the influence of
those portions of the hardware and execu-
tive software specifically designed for the
application, and determining how much
confidence to place on experience valida-
tion for off-the-shelf components.

Structuring principles for architec-

ture definition. Structuring is a prerequi-
site to mastering complexity, especially
when dealing with fault t~ lerance.~ Hard-
ware-fault-tolerance mechanisms usually
(and usefully) match the structuring of a
system into layers.’O Given performance
considerations (that is, the time needed to
recover from an error) and damage created

by error propagation, it is especially desir-
able that each layer have fault-tolerance
mechanisms to process errors produced in
that layer.

Implementing this principle in hardware
to deal with software-fault tolerance
requires that the redundant hardware com-
ponents be in the same state when compu-
tation proceeds without error. Such a con-
dition can be satisfied only if the variants
execute sequentially, that is, in the RB
approach. However, the diagnosis of hard-
ware faults could be made possible by
examining the syndrome provided by the
deciders of the particular software-fault-
tolerance method.

Another useful structuring mechanism
is the error-confinement area,” a notion
that cannot be considered separately from
the architectural elements. The particular
architectural elements we consider are:

the hardware and associated executive
software, which provide the necessary
services for application software to
execute (for concision, we call these

“hardware components”), and

ware.
the variants of the application soft-

Considering both hardware and soft-
ware faults helps distinguish hardware and
software error-confinement areas (HECAs
and SECAs, respectively). In our discus-
sion, a HECA covers at least one hardware
component, and a SECA covers at least
one software variant. Because of our defi-
nition of a hardware component, a HECA
corresponds to that part of the architecture
made passive after a solid hardware fault.
It can thus be interpreted as a line replace-
able unit.

Architectures tolerating a single fault.

Three architectures correspond to the three
software-fault-tolerance methods men-
tioned earlier. Figure 2 illustrates the
SECA and HECA configurations for each
method. The intersections of the SECAs
and HECAs characterize the architectures’
software- and hardware-fault-tolerance
dependencies.

44 COMPUTER

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Synthesis of the properties of the hardware-and-software-fault-tolerant architectures.

Architecture Hardware Properties in Addition to Nominal Fault Tolerance Fault-Tolerance After a HECA Is Made Passive
Components/ Hardware Faults Software Faults Hardware Software

Variants

RB/1/1

NSCP/1/1

Low error latency Detection provided
by local diagnosis

Tolerance of one
independent fault

Tolerance of two faults in
hardware components of the
same SECA; detection of
three or four faults in
hardware components

Tolerance of two independent
faults in the same SECA;
detection of two related faults
in disjoint SECAs; detection
of two, three, or four
independent faults

Detection Detection of
independent faults

NSCP/l/l/m Tolerance of two faults in
hardware components of the
same SECA

Detection Detection of
independent faults

NVP/1/1

RB/2/1

NSCP/2/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

NVP/2/1

Detection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo or three
faults

Detection of two or three
independent faults

Detection Detection of

independent faults

Tolerance of one
independent fault

Low error latency Detection provided
by local diagnosis

Detection of three to six
faults in hardware components

Detection of two or three
independent faults

Detection Detection of
independent faults

Detection of three or four
faults in hardware components;
tolerance of combinations of
single fault in hardware
component and independent
software fault in nonduplicated
variant

Detection of two or three
independent faults

Detection Detection of
independent faults

Detection of three or four
faults in hardware components

Detection of two related faults;
tolerance of two independent
faults; detection of three or

four independent faults

NVP/2/2 Detection Detection of
independent faults

We identify the architectures via a con-
densed expression of the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX/i / ; / . . .,
where X is the software-fault-tolerance
method (RB, NSCP, or NVP), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi is the
number of hardware faults tolerated, and;
is the number of software faults tolerated.
We add further labels to this expression
when necessary. Table 3 summarizes the
main fault-tolerance properties of the
architectures discussed here and in the next
section.

However, related faults between a variant
and the acceptance test cannot be tolerated
or detected.

The hardware components operate in
hot standby redundancy and always exe-
cute the same variant. Thus, hardware
faults are detected by a high-coverage,
concurrent comparison between the accep-
tance test results and the hardware results.
When a discrepancy is detected during
execution of the primary alternate or the
acceptance test, the secondary executes so
that the fault is tolerated (if the fault is
soft). If the discrepancy persists (which
would occur if the fault were solid), the
failed HECA is identified by running diag-
nostic programs on each HECA. The failed
HECA is thus made passive and service
continuity is ensured.

The architecture remains software-fault
tolerant after this hardware degradation,

and subsequent hardware faults are de-
tected by either the acceptance test or peri-
odic execution of the diagnostics.

NSCPIII1. The basic NSCP/l/l archi-
tecture (see Figure 2) comprises

four hardware components grouped in
two pairs in hot standby redundancy,
each pair forming a HECA; and
four variants grouped in two pairs,
each pair forming a self-checking soft-
ware component, with error detection
performed by comparison. Each vari-
ant pair also forms a SECA associated
with a HECA.

The computational states of the hard-
ware components cannot be directly com-
pared due to the diversification imposed by
the variants. However, a comparison of
each variant pair’s results also effectively

RBII I I . This architecture duplicates a
two-variant RB on two hardware compo-
nents. Two variants and their instances of
the acceptance test constitute two distinct
SECAs and intersect each HECA. The RB

method assures that each HECA is soft-
ware-fault tolerant. A variant’s indepen-
dent faults are tolerated, while related
faults between variants are detected.

July 1990 45

RBI211 N SC PI21 1

NVPl211 NVPl212 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. Architectures tolerating two consecutive faults. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
compares the two hardware components in
each HECA to check hardware faults
(including design faults). Thus, a HECA is
also a self-checking hardware component.

If the results from a HECA’s variant pair
differ, irrespective of the type of fault, then
the results are delivered by the other
HECA. If the discrepancy occurs repeat-
edly, thus indicating a solid hardware fault,
then the HECA is made passive. The re-
sulting degraded structure still allows de-
tection of both software and hardware
faults.

Besides nominally tolerating an inde-
pendent software fault, the NSCP/1/1
architecture can also

tolerate two simultaneous independent
faults in a SECA,
detect a related fault between two
variants (each pertaining to one of the
two disjoint SECAs), and
detect three or four simultaneous inde-
pendent software faults.

The NSCP/I/l architecture corresponds
to the architectural principle implemented
in the Airbus A-320.‘ However, since re-
quiring four variants would be prohibitive

in some applications, a modified architec-
ture (NSCP/l/l/m) exists based on just
three variants (see Figure 2).

To see the major difference in error
processing between the NSCP/1/1 and
NSCP/l/l/m architectures, consider a soft-
ware fault in V2. Such a fault would cause
a discrepancy in both self-checking com-
ponents, implying an associated SECA
covering all four software components and
preventing any software-fault tolerance.
Since this is the only event that can cause
such an error syndrome (assuming a single
independent fault), the “correct” result is

immediately available as the one provided
by V1 or V3. Hence, the NSCP/l/l/m
architecture has a third SECA associated
with V2 alone. However, the three addi-
tional fault-tolerance and detection capa-
bilities of the NSCP/1/1 architecture listed
above are lost. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

NVPIl I1. The NVP/I/l architecture is a
direct implementation of the NVP method
consisting of three hardware components,
each running a distinct variant. The han-
dling of both hardware faults (including
design faults) and software faults is per-

formed at the software layer by the decider.
In addition to tolerating an independent
fault in a single variant, the architecture
can detect independent faults in two or,
three variants.

The problem of discriminating between
hardware and software faults, so that a
hardware component is only made passive
due to a solid fault, demonstrates the de-
pendency between software- and hard-
ware-fault tolerance. Because software
faults are considered soft, a repeatedly
disagreeing hardware component could
easily be treated as a sign of a (solid)
hardware fault. After the failed hardware
component is made passive, the decider
must be reconfigured as a comparator in
case a hardware or software fault is subse-
quently activated.

Architectures tolerating two consecu-

tive faults. Tolerance of two faults brings
the distinction between soft and solid soft-
ware faults into play. If the software faults
are soft, then the number of variants is the
same as in architectures that tolerate one
fault. These architectures are of the type
X/2/1. If the software faults are solid, then

46 COMPUTER

the number of variants must increase be-
cause a failed variant cannot execute fur-
ther. These architectures are of the type
x/2/2.

Figure 3 shows architectures that toler-
ate two faults. The first three architectures
(RB/2/1, NSCP/2/1, and NVP/2/1) tolerate
two hardware faults and a single software
fault. Another NVP-based architecture
(NVP/2/2) deals with solid software faults
by tolerating two consecutive (solid) faults
in hardware zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor software. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

RBIZII. This architecture comprises
three hardware components arranged in
triple modular redundancy. Its ability to
tolerate software faults is the same as that
of RB/ l / l . When a solid hardware fault is
detected, the corresponding hardware
component is made passive, thus degrad-
ing the architecture to a level analogous to
the RB/l/ l architecture. Accordingly, each
hardware component must include local
diagnosis, even if it is basically useless in
handling the first hardware fault.

NSCPIZII. This architecture is a direct
extension of NSCP/l/l/m. A supplemen-
tary duplex HECA supports a software
self-checking component made up of two
variants, resulting in a symmetric distribu-
tion of the three SECAs among the three
HECAs. Since all the variants are dupli-
cated, hardware faults can be instantly
diagnosed by comparing the results from
all hardware components. The architecture
also detects simultaneous independent
faults in two or three variants.

NVPRII .The NVP/2/l architecture adds
a hardware component to the NVP/l/I
architecture without introducing another
variant. To maintain software-fault toler-
ance after a hardware component has been
made passive, at least two instances of
each variant must pertain to two distinct
HECAs. Figure 3 shows only one of 18
possible configurations.

Of the two distinct variants associated
with each HECA, one is active and the
other is idle. At a given execution step,
three hardware components execute three
distinct variants, while the fourth hard-
ware component executes a replica of one
of the variants (V1 in this configuration).
In addition to tolerating an independent
software fault, this architecture can detect
two or three simultaneous independent
faults.

Tolerance of an independent fault is
based on a vote incorporating the knowl-
edge that two variants are identical. The

Active component Idle variant Failed hardware

Figure 4. Various activations of the variants in the NVP/2/1 architecture.

unbalanced number of variant executions
allows use of a double vote decision to
improve the diagnosis of hardware faults
(each vote includes the results of the
nonduplicated variants and only one of the
results of the duplicated variant). To un-
derstand this scheme, consider what hap-
pens when

a hardware fault causes an error in one
of the hardware components executing
the duplicated variant (VI),
a software fault causes an error in the
duplicated variant,
a hardware fault causes an error in one
of the hardware components executing
the nonduplicated variants (V2, V3),
or a software fault causes an error in
one of these variants.

In the first example, the fault is easily
tolerated and diagnosed, since the three
results agree on one vote and disagree on
the second. Hence, the result of the dupli-
cated variant is designated as false.

In the second example, the decider rec-
ognizes that the two votes are not unani-
mous and designates as false the results
supplied by the duplicated variant. The
“correct” result is thus immediately avail-
able as the one provided by the nondupli-
cated variants.

In the last example, tolerance is immedi-
ate, but the votes do not allow fault diagno-
sis. Since software faults are assumed to be
nonrecurring, repeated failure of a hard-
ware component leads to a diagnosis of a
hardware fault. However, another form of
diagnosis lets us relax this assumption:
when a localized fault (attributable to one
SECA or one HECA) occurs, the next
execution step is performed after the active
variants are reconfigured to match the
duplicated variant with the affected
HECA. The decider must then solve
for one of the first two examples. A
systematic rotation of the duplicated vari-
ants would also contribute to such a
diagnosis.

After a failed hardware component is
made passive, the active variants are re-
configured to distribute the SECAs among
the remaining HECAs, forming disjoint
areas. Figure 4 shows the distribution of
active and idle variants among the three re-
maining HECAs after any of the HECAs
have been made passive. In each case, the
reconfiguration affects only a single
HECA. Further decisions in this architec-
ture are made by a vote among the active
variants on the remaining HECAs. Thus,
the degraded architecture is the same as the
NVP/l/l architecture.

July 1990 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47

Table 4. Probability of failure: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPs,x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ps,D,x + Ps,u,x

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProbability of Detected Failure: P,,,,x Probability of Undetected Failure: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPs,Lj,,y I
RB/1/1 Separate: (P,,~,)' Common-mode: P

Common-mode: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPID,RB + Pzl K R

Separate: 4(P,,,v,scP)z [1 - NSCP/1/1 Common-mode: P?l,,N,sc.P + 4P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31.,NSCP

+ ((P,,,s,,)*/4)1
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP4V.NSCP + 'R\D,NSCP

Common-mode: P,,,N,s,P + 4P?1,,NSCP

NVP/1/1 Separate: 3(P,,,,)' [1-(2/3)P,,,v,,] Common-mode: 3P2L.,NC.P + P IC . ,N l .P

Common-mode: P,,,,, + P,,,,N,P

Table 5. Comparison of analytical and experimental results.

2.91 x I O ' 4.48 x l o h 1.09 x IO-' 3.90 x 10' 3.67 x IO-'

NVPl212. To understand the effect of
solid software faults on architectures that
tolerate two faults, consider the NVP
method. Such an architecture requires four
disjoint HECAs and SECAs, hence the
NVP/2/2 architecture.

This architecture might seem to be a
direct extension of NVP/I/I, adding only
one HECA and an associated SECA, but
there are major differences in error pro-
cessing. The fault-tolerance decision is
now based on finding a single set of two or
more agreeing results among the four vari-
ant results provided. Also, after the first
discrepancy is discovered, the designated
hardware component and its associated
variant are made passive without any at-
tempt to diagnose the fault as a hardware or
software fault. Further decisions are then

made by vote among the remaining vari-
ants, making the degraded architecture
similar to the NVP/l/I architecture. How-
ever, unlike the other NVP-based architec-
tures, subsequent faults are treated the
same as the first detected fault.

Besides tolerance to two consecutive
independent software faults, this architec-
ture lets the system tolerate two simultane-
ous independent faults, detect related
faults between two variants, and detect
simultaneous faults in three or four vari-
ants. The Fault-Tolerant Processor/
Attached Processor' is an implementation
of this architecture: a quad configuration
of the core fault-tolerant processor sup-
ports the execution of four different pieces
of application software on four distinct ap-
plication processors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Proper Service Delivery State

0 Detected Failure State

@ Undetected Failure State

Figure 5. Generic model of architecture behavior.

48

Analyzing and
evaluating
architectures

In discussing how to conduct a dependa-
bility analysis of hardware- and software-
fault-tolerant architectures when adopting
a Markov approach, we consider three
architectures that tolerate a single hard-
ware or software fault: RB/I/l, NSCP/l/I
and NVP/I/I.

Analyzing software-fault-tolerant

architectures. Our analysis emphasizes
the distinctions among the different
sources of failures - independent and
related faults in the variants and the de-
cider - and assumes that only one type of
fault can cause errors during each execu-
tion. Also, we do not address the underly-
ing fault-tolerance mechanisms, that is,
establishment and restoration of recovery
points for RB, and version synchroniza-
tion, establishment of cross-check points,
and the decision mechanisms for NSCP
and NVP.

We classify failures as separate or com-
mon-mode and as detected or undetected.
Separate failures result from independent
faults in the variants, whereas common-
mode failures can result either from related
faults or from independent faults in the
decider. We also distinguish between two
types of related faults: those among the
variants and those between the variants
and the decider. We consider a failure
detected when the decider identifies no
acceptable result and no output result is
delivered. A failure is undetected when
erroneous results are delivered.

We also assume that the probability of a
fault is identical for all variants of a given
architecture. We make this assumption to
simplify the notation; i t does not alter the
significance of the results (it is simple to
deduce the generalization to the case where
variant characteristics are distinguished).

To characterize the probabilities of fail-
ure, we introduce the following notation
for the X/ l / l architectures:

is the probability of activating an
independent fault in one variant of X
on execution
P,,,, is the probability of activating an
independent fault in the decider of X
on execution
Pnl.,x is the probability of activating a
related fault among n variants of X on
execution
P,,,, is the probability of activating a

COMPUTER

Table 6. Specific state and transition definitions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
States and
Interstate RB/I/I
Transitions

NSCP/I/I NVP/I/I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1

2

3

4

1 to 2

1 t o 3

1 to 4

2 to 3

2 to 4

2 (RB +hardware component)
operational

(RB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ hardware component)
operational

Detected failure

Undetected failure

2(2(variant + hardware component))
operational

2(variant + hardware component)
operational

Detected failure

Undetected failure

3(variant + hardware component)
operational

2(variant + hardware component)
operational

Detected failure

Undetected failure

Covered hardware component failure: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2c'H,RB

Noncovered hardware component
failure or detected RB failure:

2"H.RB + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'S.D.RB

Undetected RB failure: h,,,,,,

Covered hardware component failure
or detected RB failure: ~ h ~ , ~ ~ + h,,,,,,

Noncovered hardware component
failure or undetected RB failure:

c h H , R B + ' s , u , R B

-

Hardware component failure: 4hH,,,,,

Detected NSCP failure: hs,D,Nscp

Undetected NSCP failure: h,,,,N,cp

Hardware component failure or detected
two-variant failure: 2h,,,,,, + h,,D,,,.

Undetected two-variant failure: h,,,,,,,

Hardware component failure: 3hH,,,

Detected NVP failure:)\,,D,Nvp

Undetected NVP failure h, u N I . P

Hardware component failure or detected
two-variant failure: 2hHNVP + h,, *,
Undetected two-variant failure: h, , 21.

related fault among the variants and
the decider of X on execution
Ps,D,x is the probability of a detected
failure of X on execution
Ps,,,x is the probability of an unde-
tected failure of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX on execution
PsPix + P,,u,x = P,,,, the probability of
a failure of X on execution

Table 4 summarizes the probabilities of
failure and separates them into the sepa-
rate/common-mode and detectedhnde-
tected categories. The table shows that
either separate failures or common-mode
failures can be detected, while only com-
mon-mode failures can go undetected.
Comparing the probabilities is difficult
due to the different parameter values for
each architecture. However, some general
observations are possible.

Although a large number of experiments
have analyzed NVP, no quantitative study
has reported the decider's reliability. Still,
the probabilities of failure associated with
the deciders can differ significantly. Due
to the generic character and functional
simplicity of the NSCP (comparison) and
NVP (voting) deciders, the probabilities
are likely ranked as follows:

For separate failures, the influence of
independent faults differs significantly.
For RB, the probability of separate failure
equals the square of the probability that
independent faults will occur, while the
probability for NVP is almost three times
as much, and four times as much for NSCP.
This difference results from the number of
variants and the type of decision. How-
ever, it does not mean that RB and NSCP
are the only architectures that allow detec-
tion of related-fault combinations among
the variants. All related faults in NVP re-
sult in undetected failures. (This is due to
our analysis' limitation to architectures
that tolerate only one fault. Increasing the
number of versions would allow NVP
methods to detect some related faults.)

Although related faults among variants
do not affect the probability of undetected
failure for the RB architecture, they are the
major contributor to undetected failure for
NSCP and NVP. However, comparing the
respective probabilities of undetected fail-
ure is not simple.

Experiments on multiversion software
help us estimate some elementary proba-
bilities of the expressions in Table 4. For
example, Table 5 shows that the results
obtained from the model agree with previ-
ous experimental result^.^ The first three

columns show the values derived for the
model parameters from the experimental
results. The fourth column gives the asso-
ciated probability of failure, computed
from the expressions of Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 using these
parameter values and excluding decider
fault parameters. The last column shows
the experimental statistic for the probabil-
ity of failure.

Evaluating hardware and software

architectures. Inmodeling the behavior of
the architectures, we assume

only one type of fault can cause an
error (either hardware or software)
during each execution;
the variant is not discarded after error
detection and recovery, but is given
the new input data at the next step (that
is, software faults are soft); and
the hardware components and the soft-
ware-fault-tolerant architectures have
constant failure rates.

Models. The generic model in Figure 5
describes the hardware and software be-
havior for the RB/ l / l , NSCP/I/ l , and
NVP/1/1 architectures. Table 6 gives the
specific definitions for states and interstate
transitions of the model. The transition

July 1990 49

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Time-dependent reliability and probability of undetected failure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I Method Reliability Probability of Undetected Failure I

I

rates in Table 6 are based on the following
notation:

c is the hardware coverage factor of the
RB/1/1 architecture, where c= 1-c.
hH,x denotes the failure rate for a hard-
ware component of theX/1/1 architec-
ture.
hs,D,x and ks,u,x denote the detected and
undetected failure rates, respectively,
for the fault-tolerant software X. If y
denotes the application software’s
execution rate, then we can express
these failure rates as functions of the
failure probabilities in Table 4: hs,D,x =

hs,D,2V and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhs,u,2v denote the application
software detected and undetected fail-
ure rates, respectively, of the NSCP/
1/1 and NVP/l/l architectures after an
HECA has been made passive. These
rates are defined as [Ps,D,2v]y and
[Ps,u,2v]y, respectively, where the
probabilities of detected and unde-
tected failure in the degraded two-
version configuration are defined as

[‘S,D,X]y and kS,U,X = [‘S,U,X1y

‘S.D.2V =
and ‘S,U,ZV = ‘RVD,ZV

‘/,2V (l - (‘/.2J2)) + ‘ /D,ZV

In RB/l/ l , a hardware failure does not
alter the architecture’s software-fault tol-
erance, and a software failure does not
alter its hardware-fault tolerance. We as-
sume we can achieve near-perfect detec-
tion coverage for hardware faults, since
both HECAs run the same variant simulta-
neously. Thus, the coverage considered
here for the hardware-fault-tolerance
mechanisms corresponds to local cover-
age, due to the diagnostic program and the
acceptance test’s capacity to identify hard-
ware failures.

In NSCP/I/l , hardware- and software-
fault-tolerance techniques are not inde-
pendent, since the HECAs and the SECAs
match. After a hardware component fails,
the corresponding HECA and SECA are
discarded. The resulting architecture com-
prises a pair of hardware components and
a two-version software architecture. form-

ing a self-checking hardware and software
architecture.

In NVP/1/1, hardware- and software-
fault-tolerance techniques are again not
independent. After a hardware unit has
been made passive, the remaining archi-
tecture is analogous to the degraded NSCP/
1/1 architecture.

In both NSCP/l/l and NVP/1/1, hard-
ware faults are tolerated at the software
layer through the decision algorithm (com-
parison or vote). Accordingly, only the
software level accounts for the associated
coverage, which the decider incorporates
in the probability of a fault occurring. In the
degraded NSCP/l/l and NVP/1/1 archi-
tectures, the software is no longer fault-
tolerant, so the variants’ failure rates are
important to the failure rate of the applica-
tion software’s degraded configuration.

Model processing. Combining the pro-
cessing model in Figure 5 with the transi-
tion rates in Table 6 lets us derive the time-
dependent probabilities of detected and
undetected failure: and Po,x(f) , re-
spectively, where ? denotes time. In prac-
tice, we are interested mostly in the prob-
ability of undetected failure and in the
reliability: Rx(t) = 1 - [PD,(t)+Pu,x(t)]. We
can simplify these expressions for short
missions (with respect to the mean times to
failure). The simplified, approximate ex-
pressions (see Table 7) show that RB/l/l ’s
reliability depends strongly on the cover-
age of fault diagnosis in the hardware
components. Furthermore, the hardware
failure rate is likely greater forRB/l/ l than
for the other architectures, due to the extra
memory needed to store the second vari-
ant. Also, to ensure near-perfect detection
coverage, further hardware or software
resources are needed to compare the re-
sults from each hardware processor, and
storage is needed for the acceptance test
and the diagnostic program.

The expressions also reveal that the
application software’s failure rate has an
identical influence on the three architec-

tures, although this is tempered by the
differences between the associated proba-
bilities (identified in the section on analyz-
ing software-fault-tolerant architectures).

he emergence of hardware-fault-
tolerant commercial systems will T increase the user’s perception of

the influence of design faults, due to these
systems’ tolerance of physical faults.
Consequently, software-fault-tolerance
schemes that use design diversity to give
system users continuous service (as op-
posed to current implementations that
preserve system core integrity through the
termination of erroneous taskss) are likely
to spread from their current domain:
safety-related systems. Accordingly, the
approaches and results in this article are
likely to apply more widely. W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Acknowledgments

We acknowledge the highly useful comments
received from the referees, the contribution by
Tom Anderson (University of Newcastle upon
Tyne) when discussing the recoverability is-
sues, and the contribution of Catherine
Hourtolle (now with Centre National d’Etudes
Spatiales, the French space organization) to the
previous version of this article. The work pre-
sented in this article has been partially sup-
ported by Aerospatiale and Matra in the frame-
work of the Hermes (European Space Shuttle)
project and by the Commission of the European
Communities in the framework of ESPRIT’S
Basic Research Action “Predictably Depend-
able Computing Systems.”

References

1. U. Voges, ed., “Application of Design Di-
versity in Computerized Control Systems,”
Proc. IFIP Workshop on Design Diversity
in Action, Springer-Verlag, Vienna, 1986.

2. J.-C. Laprie et al., “Hardware- and Soft-
ware-Fault Tolerance: Definition and
Analysis of Architectural Solutions,” Proc.
17th Int’lSymp. Fault-Tolerant Computing,
1987, Computer Society Press, Los Alami-
tos, Calif., Order No. 778 (microfiche only),
pp. 116-121.

3. K.H. Kim and H.O. Welch, “Distributed
Execution of Recovery Blocks: An Ap-
proach for Uniform Treatment of Hardware
and Software Faults in Real-Time
Applications,” IEEE Trans. Computers,
Vol. 38, No. 5 , May 1989, pp, 626-636.

4. J.H. Lala and L.S. Alger, “Hardware- and
Software-Fault Tolerance: A UnifiedArchi-

50 C 0 M P U T E R

tectural Approach,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. 18th Int’l Symp.
Fault-Tolerant Computing, 1988, Com-
puter Society Press, Los Alamitos, Calif.,
Order No. 867, pp. 240-245. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Randell, “Design-Fault Tolerance,” in
The Evolution of Fault-Tolerant Comput-
ing, A. Avizienis, H. Kopetz, and J.-C.
Laprie, eds., Springer-Verlag, Vienna,
1987, pp. 251-270.

6 . A. Avizienis, “The N-Version Approach to
Fault-Tolerant Systems,” IEEE Trans. Soft-

ware Engineering, Vol. SE- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1, No. 12, Dec.
1985, pp. 1,491-1,501.

7. S.S. Yau and R.C. Cheung, “Design of Self-
Checking Software,” Proc. 1975 Int’l Conf.
Reliable Software, pp. 450-457.

8. J.N. Gray, “Why Do Computers Stop and
What Can Be Done About It?” Proc. Fifth
Symp. Reliability in Distributed Software
and Database Systems, 1986, Computer
Society Press, Los Alamitos, Calif., Order
No. 690 (microfiche only), pp. 3-12.

Jean-Claude Laprie is directeur de recherche
of CNRS, the French national organization for
scientific research. He joined LAAS-CNRS in
1968, where he has directed the research group
on fault tolerance and dependable computing
since 1975. He was chair of the IEEE Computer
Society Technical Committee on Fault-Tolerant
Computing in 1984.1985 and has been chair of
the IFIP working group on Dependable Comput-
ing and Fault Tolerance since 1986.

Laprie received the Certified Engineer degree
from the Higher National School for Aeronauti-
cal Constructions, Toulouse, France, in 1968,
and the Doctor in Engineering degree in auto-
matic control and the Doctor-&-Sciences de-
gree in computer science from the University of
Toulouse in 1971 and 1975, respectively.

Jean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAArlat is chargC de recherche of CNRS. He
joined LAAS-CNRS, where he is a member of
the research group on fault tolerance and de-
pendable computing, in 1976. His research
focuses on evaluating dependability including
both analytical modeling and experimental fault
injection.

Arlat received the Certified Engineer degree
from the National Institute of Applied Sciences,
Toulouse, France and the Doctor in Engineering
degree from the National Polytechnic Institute,
Toulouse, France, in 1976 and 1979, respec-
tively. He is a member of the IEEE Computer
Society’s technical committees on fault toler-
ance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand simulation.

Christian BCounes is chargC de recherche of
INRIA, the French National Institute for Com-
puting and Automatic Control Research. He
joined LAAS in 1974 as a member of the group
on fault tolerance and dependable computing.
His research interests include stochastic petri
nets, modeling, and dependability evaluation.

BCounes received the Certified Engineer
degree from the National Institute of Applied
Sciences, Toulouse, France, in 1973 and the
Doctor in Engineering degree in automatic con-
trol from the University of Toulouse, in 1977.

9. J.C. Knight and N.G. Leveson, “An Empiri-
cal Study of Failure Probabilities in Multi-
version Software,” Proc. 16th IEEE Int’l
Symp. Fault-Tolerant Computing, 1986,
Computer Society Press, Los Alamitos,
Calif., Order No. 703, pp. 165-170.

10. D.P. Siewiorek and D. Johnson, “A Design
Methodology for High-Reliability Sys-
tems: The Intel 432,” in The Theory and
Practice of Reliable System Design, D.P.
Siewiorek and R.S. Swarz, eds., Digital
Press, 1982.

Karama Kanoun is chargCe de recherche of
CNRS. She joined LAAS in 1977 as a member
of the group on fault tolerance and dependable
computing. Her research interests include mod-
eling and evaluating computer system dependa-
bility, considering hardware as well as software.

Kanoun received the Certified Engineer
degree from the National School of Civil Avia-
tion, Toulouse, France in 1977, and the Doctor-
Engineer and Doctor-&-Sciences degrees from
the National Institute Polytechnique of Tou-
louse in 1980 and 1989, respectively.

Readers can contact the authors at LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse
Cedex, France.

Moving?
Name (Please Print)

PLEASE NOTIFY
US 4 WEEKS
IN ADVANCE

New Address

MAIL TO:
IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

City StatelCountry Zip

This notice of address change will apply to all

List new address above.
If you have a question about your subscription,

ATTACH
LABEL

IEEE publications to which you subscribe.

place label here and clip this form to your letter.

July 1990 51

