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0th experimental and real-life 
safety-related systems have begun 
to use design diversity to tolerate 

software faults.’ Such systems focus 
strongly on design faults, where the term 
“design” encompasses everything from 
system requirements to realization during 
both initial production and future modifi- 
cations. Design faults are a source of 
common-mode failures, which defeat 

replication (that cope with physical faults) 
and generally have catastrophic conse- 
quences. 

Precomputer safety-related systems 
minimized common-mode failures hardware and railways’ interlocking system).’ 

To confine computer failures, a system 
must automatically check execution re- 
sults for the errors that could lead to fail- 
ure. There are two main approaches to de- 
tecting errors caused by design faults: 

Systems in which one 

piece of hardware 

B 
(1 )  Acceptance tests of the results via 

executable assertions. These asser- 
tions are generalized, formalized 
versions of likelihood checks used 
in process control. 

(2) Diversified design, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the re- 
sults of two software variants can be 
compared (as in the Airbus A-300 
and A-3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 airliners and the Swedish 

software are subject to 

fault-tolerance strategies based on strict Software failures and 

require architectures 

that tolerate both 

through diversified design, that is, two or 
more systems delivering the same service 
through separate designs and realizations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A typical example is a hardwired elec- 
tronic channel backed by an electro- 
mechanic or electropneumatic channel. In 
addition, system architecture was based on 
the federation of equipment, where each 
piece of equipment implemented one or 
more subfunctions of the system rather 
than the entire system. Such partitioning 
confined equipment failures to subfunc- 
tions, allowing the system’s global func- 
tion to continue, although possibly in a 
degraded mode. 

software faults. 

Computer-based safety-related systems 
generally retain the federation approach. 
Each subfunction is implemented by a 
“complete” computer comprising hard- 
ware and executive and application soft- 
ware. Examples of this approach include 
airplane flight-control systems (such as in 
the Boeing 757/767 airliner) and nuclear- 
plant monitors (such as Merlin-GCrin’s 
Systtme de Protection IntCgrC NumCrique). 

The federation approach generally re- 
quires far more processing elements than 
are needed for computing power alone; for 
instance, the Boeing757/767 flight-control 
system comprises 80 distinct functional 
microprocessors, 300 when we account for 
redundancy. 

We could use computers better in such 
systems if the same hardware supported 
software for several subfunctions. Such an 
approach, called integration, is subject to 
software failures, which are due to design 
faults only. Thus, integration requires soft- 
ware-fault tolerance. Moreover, some 
safety-related systems (such as those in the 
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Table 1. Main characteristics of the software-fault-tolerance strategies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Method Error-Processing Judgment on Variant-Execution Consistency of Suspension of No. Variants 

Acceptability During Error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf Sequential 
Technique Result Scheme Input Data Service Delivery to Tolerate 

Processing Faults 

Recovery Error detection by 
Blocks acceptance tests 
(RBI and backward 

recovery 

Absolute, 
with respect 
to specification 

Sequential Implicit, from Yes, duration f+ 1 
back ward necessary for 
recovery executing one 
principle or more variants 

N Self-checking Error detection 
Programming and result 
(NSCP) switching 

Detection by 
acceptance tests 

Detection by 
comparison 

N-Version Vote 
Programming 
( N W  

Absolute, 
with respect 
to specification 

Relative, on 
variant results 

Relative, on 
variant results 

f+ 1 Parallel Explicit, by Yes, duration 
dedicated necessary for 
mechanisms result switching 

Parallel Explicit, by Yes, duration 2Cf+l) 
dedicated necessary for 
mechanisms result switching 

Parallel Explicit, by No f+2 
dedicated 
mechanisms 

NASA Space Shuttle and the Airbus A-320 
airliner) are moving toward limiting or 
eliminating manual or noncomputer 
backup systems. This is an additional in- 
centive for software-fault tolerance, since 
safe system behavior becomes entirely 
dependent on reliable software behavior. 

This article elaborates on previous work 
to present a structured definition of hard- 
ware- and software-fault-tolerant architec- 
tures.2 We have tried to be as general as 
possible, dealing with specific classes of 
faults or techniques only when necessary. 
(More specific definitions extending the 
recovery block approach3 and N-version 
programming4 have appeared elsewhere.) 
After discussing software-fault-tolerance 
methods, we present a set of hardware- and 
software-fault-tolerant architectures and 
analyze and evaluate three of them. A side- 
bar addresses the cost issues related to soft- 
ware-fault tolerance. 

conditions and inputs. The common speci- 
fication must explicitly address the deci- 
sion points, that is, it must state when to 
make decisions and what data to base them 
on (the data processed by the decider). 

The best-documented techniques for 
tolerating software design faults are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
recovery block (RB) approach5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN -  
version programming (NVP).6 In the first 
approach, the variants are called alternates 
and thedecider is an acceptance test, which 
is applied sequentially to the alternates’ 
results. If the results of the primary alter- 
nate do not satisfy the acceptance test, the 
secondary alternate executes. In the sec- 
ond approach, the variants are called ver- 
sions, and the decider is a vote based on all 
versions’ results. 

We use the term “variant” rather than 
“alternate” or “version” because “alter- 
nate” reflects sequential execution, which 
is a feature specific to the recovery block 
approach, and “version” has another mean- 
ing: successive versions of a system result- 
ing from fault removal or functionality 
evolution. During the life of a diversely 
designed system, several versions of the 

Software-fault- 
tolerance methods 

variants will be generated. 
The hardware-fault-tolerant architec- 

tures equivalent to RB and NVP are stand- 
by sparing and N-modular redundancy, 
respectively. A third approach to hard- 
ware-fault tolerance, active dynamic re- 
dundancy, is very popular (especially 

In a diversified design, the different 
systems produced from a common service 
specification are called variants. A diver- 
sified design has at least two variants plus 
a decider, which monitors the results of 
variant execution, given consistent initial 

when based on self-checking components, 
such as in the AT&T Electronic Switching 
System and the Stratus system), but it 
has not been described in the literature as 
a generic technique for software-fault 
tolerance. However, self-checking pro- 
gramming has long been defined;’ a self- 
checking program results from adding re- 
dundancy to a program so that it can check 
its own dynamic behavior during execu- 
tion. A self-checking software component 
consists of either a variant and an accep- 
tance test or two variants and a comparison 
algorithm. 

Fault tolerance is provided by the paral- 
lel execution of at least two self-checking 
components. At each execution of such a 
system, one component “acts” (that is, it 
delivers service or results to the controlled 
or monitored application), while the other 
components remain “hot” spares. When 
the acting component fails, a spare begins 
delivering service. If a spare fails, the act- 
ing component continues delivering ser- 
vice. Error processing is thus performed 
through error detection and possible 
switching of results. We call this approach 
N self-checking programming (NSCP). 

It could be argued that NSCP is just a 
parallel recovery block scheme, but the 
latter’s backward recovery strategy pre- 
vents it from being reduced to the associa- 
tion of alternates together with an accep- 
tance test. In NSCP, when a self-checking 
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Table 2. Overheads for tolerance of one software fault. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Method Structural Overhead Operational Time Overhead 

Diversified Mechanisms Systematic When Errors Occur 
Software Layer Decider Variants Execution 

Recovery One variant and Recovery cache 
Blocks one acceptance test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N Self-checking 
Programming 

Error detection One variant and Result switching 
by acceptance two acceptance 
tests tests 

Error detection Three variants Comparators and 
by comparison result switching 

N-Version Two variants Voters 
Programming 

Acceptance test Accesses to One variant and 
execution recovery cache acceptance test execution 

Acceptance test Input data consistency Possible result switching 
execution and variants execution 

synchronization 

Comparison Input data consistency Possible result switching 
execution and variants execution 

synchronization 

Vote execution Input data consistency Usually negligible 
and variants execution 
synchronization 

software component is based on the asso- 
ciation of two variants, only one variant 
fulfills the expected functions, while the 
other acts as an extended acceptance test. 
Each self-checking component in NSCP is 
responsible for determining whether a 
delivered result is acceptable, whereas the 
judgment of acceptability in NVP is co- 
operative. Also, each acceptance test asso- 
ciated with a variant, or each comparison 
algorithm associated with a pair of vari- 
ants, can be the same or can be specifically 
derived from a common specification for 
each variant or variant pair. As in N -  
version programming, the components’ 
parallel execution necessitates a mecha- 
nism to ensure input consistency. 

Our aim in this article is to classify the 
various approaches to software-fault toler- 
ance, not to introduce a new approach. In 
fact, most of the real-life systems men- 
tioned in the introduction do not imple- 
ment either a recovery block approach or 
N-version programming, but rather are 
based on self-checking software. For in- 
stance, the Airbus A-300 and A-310 flight- 
control systems and the Swedish railways’ 
interlocking system are based on the paral- 
lel execution of two variants that stop 
operation when a comparison of their re- 
sults reveals an error. The Airbus A-320 
flight-control system is based on two self- 
checking components, each based in turn 
on the parallel execution of two variants 
whose results are compared. Tolerance of 
a single fault in this system requires four 
variants. (The two self-checking compo- 

nents in this last scheme do not deliver 
exactly the same service. Critical func- 
tions are preserved when the system 
switches from the acting component to the 
spare, but noncritical functions are per- 
formed in a degraded mode.) 

Table 1 summarizes the main character- 
istics of the three strategies. In selecting a 
strategy for a given application, pay par- 
ticular attention to the method for judging 
result acceptability and whether service 
delivery is suspended when an error oc- 
curs. Table 2 summarizes the main sources 
of structural and operation-time overhead 
for software-fault tolerance. The table does 
not mention overhead imposed by tests 
local to each variant, such as input range 
checking and grossly wrong results, since 
such tests are common to all approaches 
(and are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- or should be -present in non- 
fault-tolerant software systems, as well). 

Fault classes. We classify faults ac- 
cording to their independence and their 
persistence. 

Independence.  Faults are either related 
or independem6 Related faults result from 
a specification fault common to all vari- 
ants or from dependencies in the separate 
designs and implementations. Independent 
faults are simply those that are not related. 
Related faults manifest themselves as 
similar errors and lead to common-mode 
failures, whereas independent faults usu- 
ally cause distinct errors and separate fail- 
ures. Figure 1 illustrates these definitions. 

Pers is tence.  Faults are classified as 
solid or soft based on their persisrence. 
Such a distinction is usual in hardware, 
where a fault’s solidity or softness is im- 
portant to fault tolerance. A component 
affected by a solid fault must be made 
passive after the fault is detected, whereas 
a component affected by a soft fault can be 
used after error recovery. In other words, a 
solid fault necessitates error processing 
and fault treatment, while a soft fault re- 
quires only error processing. A permanent 
fault is a typical solid fault, and a tempo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Independent Distinct Separate 
faults wwl failures 

Related Similar Common-mode 
faults failures 

I I 
Figure 1. Classes of faults, errors, and failures. 
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The cost of software-fault tolerance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fault tolerance introduces additional 

costs; we estimate those costs here. 
Since design diversity affects costs dif- 
ferently according to the life-cycle 
phases, we start with cost distribution 
among the various life-cycle activities 
for classical, non-fault-tolerant, soft- 
ware. Our simplified life-cycle model‘ 
(see the first table) groups all activities 
relating to verification and validation 
(V&V) separately. 

Three maintenance categories cover 
the software’s entire operational life.’ 
Corrective maintenance concerns fault 
removal and involves design, imple- 
mentation, and V&V. Adaptive mainte- 
nance adjusts software to environ- 
mental changes and also involves 
specification activity. Perfective mainte- 
nance improves the software’s function; 
thus, it actually concerns software evo- 
lution, and so involves all development 
activities, starting with modified require- 
ments. 

The cost breakdowns for the life- 
cycle and maintenance’ do not address 
a specific class of software. However, 
since we are concerned with critical ap- 
plications, we must incorporate some 
multiplicative factors that depend on the 
particular activity.* The last two col- 
umns, which are derived from the data 
in the other columns, give the life-cycle 
cost distribution for development only 
and for development and maintenance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Software cost elements for non-fault-tolerant software. 

Life-Cycle Multipliers Cost Distribution 
Activity Cost Breakdown’ for Critical Development Development 

Applications2 and Maintenance 

Development 
Requirements 3% 1.3 8% 6 % 
Specification 3 % 1.3 8% 7 % 
Design 5% 1.3 13% 14% 
Implementation 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYo 1.3 19% 19% 

and Validation 1 5% 1.8 52% 54% 
Verification 

Maintenance. 67% 

*Of this, 20% is for corrective maintenance, 25% is for adaptive maintenance, and 55% is for perfective 
maintenance.’ 

From this table, it appears that main- 
tenance does not significantly affect 
cost distribution over the other life-cycle 
activities (in fact, the discrepancy is 
likely to be lower than indicated). Ac- 
cordingly, let’s assume in the following 

back-to-back testing, and V&V tools, 
such as test harnesses. We cannot ac- 
curately estimate such factors given the 
current state of the art. We can, how- 
ever, give reasonable ranges of vari- 
ations. 

example that the figures for develop- 
ment only are general and cover the en- 
tire life-cycle, since we are concerned 
only with relative costs. 

software, we must introduce factors to 
account for the overheads associated 
with the decision points and the decid- 
ers and to account for the cost reduc- 
tion in V&V caused by commonalties 
among variants. These commonalties 
include actual V&V activities, such as 

To determine the cost of fault-tolerant 

Consider the following factors: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* r  is the multiplier associated with the 

decision points, with 1 c r c 1.2. 
*S is the multiplier associated with the 

decider, with 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc s c 1.1 for NVP and 
NSCP when error detection is per- 
formed through comparison, and 1 < s 
c 1.3 for RB and NSCP when error de- 
tection is performed through accep- 
tance tests. This difference reflects the 
differences in the deciders, that is, the 
fact that the deciders are specific when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

rary fault (either transient or intermittent) 
is a typical soft fault. 

Let’s now consider software faults in 
operational programs. Once a program has 
been thoroughly debugged, problems are 
more likely to arise from subtle fault con- 
ditions (such as limit conditions, race 
conditions, or strange underlying hard- 
ware conditions) than from easily identifi- 
able faults. Just a slight change in the 
execution context could keep fault condi- 
tions from occurring again, thus keeping 
the software from failing again. Since the 
likelihood of such an error occurring again 
is negligible, we can extend the notion of a 
soft fault to software.8 

Another important consideration for 
error recovery is the notion of local and 
global variables for the components. Let’s 
call the program between two decision 
points a diversity unit. Generally, error 
recovery requires that the diversity units 
be procedures (so their activation and 
behavior do not depend on any internal 

state). In other words, all data needed by a 
diversity unit must be global data. The 
data’s global nature can result from the 
nature of the application itself. One ex- 
ample is physical-process monitoring 
(such as nuclear-plant protection), where 
tasks begin based on sensor data and do not 
use data from previous processing. The 
data’s global nature can also result from 
transforming local data into global data. 
This incurs overhead and could decrease 
diversity (since the decision-point specifi- 
cation must be more precise). A simplified 
example is a filtering function that consti- 
tutes a diversity unit. In this example, past 
samples should be part of the global data. 

Although these classifications apply to 
all software-fault-tolerance methods, we 
can alter the general rules somewhat in 
specific, application-dependent cases. For 
example, there is an alternate solution for 
NSCP and NVP when the overhead cannot 
be afforded or when transforming local 
data into global data will decrease diver- 

sity too much. This solution involves fault 
treatment, that is, i t  eliminates failed vari- 
ants from further processing. 

Let’s summarize the preceding discus- 
sion by adopting the following definitions 
for soft and solid faults: A soft software 
fault has a negligible likelihood of recur- 
rence and is recoverable, while a solid 
software fault is recurrent under normal 
operation or cannot be recovered. 

Defining hardware- 
and software-fault- 
tolerant architectures 

Our discussion of architectures that tol- 
erate both hardware and software faults 
emphasizes the dependencies among the 
software- and hardware-fault-tolerance 
methods and the effects of solid and soft 
software faults on the architecture defini- 
tion. We investigate two levels of fault- 
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Cost of fault-tolerant software versus non-fault-tolerant software. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Faults Fault-Tolerance N (C,,/C,Jmin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C,,/C,,)max (C, /CN,,)av (C,, /NC,,,)av 
Tolerated Method 

Recovery blocks 2 1.33 

N self-checking 
programming 
Acceptance test 2 1.33 
Comparison 4 2.24 

N-version 3 1.78 
programming 

Recovery blocks 3 1.78 

N self-checking 
programming 
Acceptance test 3 1.78 
Comparison 6 3.71 

N-version 4 2.24 
programming 

2.17 

2.17 
3.77 

2.71 

2.96 

2.96 
5.54 

3.77 

1.75 

1.75 
3.01 

2.25 

2.37 

2.37 
4.63 

3.01 

~ 

.88 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.88 

.75 

.75 

.79 

.79 

.77 

.75 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
they decide by acceptance test and ge- 
neric when they decide by comparison 
or vote. 

U is the proportion of testing per- 
formed once for all variants (such as 
provision for test environments and har- 
nesses), with 0.2 < U < 0.5. 

vis the proportion of testing, per- 
formed for each variant, that takes ad- 
vantage of the existence of several vari- 
ants (such as back-to-back testing), 
with 0.3 < v < 0.6. 

w is the cost-reduction factor for 

testing performed in common for sev- 
eral variants, with 0.2 < w < 0.8. 

The following expression then gives 
the cost of fault-tolerant software ( Cm) 
with respect to the cost of non-fault- 
tolerant software (C,,): 

‘FTl‘NFT = P R q  + ” P S p  + 

[Nr + (s-1 )I (Pms + P,J + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rIus + ( 1 4  N [ v w +  (1-411 P”& 

and PReq’ PSWl PD& P,,,S and P,, are 
where N is the number of variants, 

the cost distribution percentages for re- 
quirements, specification, design, im- 
plementation, and V&V, respectively. 

the ratio C,,/C,,, as well as the aver- 
age values and the average values per 
variant. In this table, we do not distin- 
guish between RB and NSCP with error 
detection by acceptance test, since our 
abstract cost model is likely to mask 
their differences. 

The second table’s results let us 
quantify the qualitative statement that 
N-variant software is less costly than N 
times a non-fault-tolerant software. Also 
note that previously published figures3 
fall within the ranges displayed here; 
that an experiment at the University of 
Newcastle upon Tyne estimated RB’s 
overhead for two variants at 60 per- 
cent and that the Project on Diverse 
Software estimated the cost of NVP for 
three variants at 2.26 times the cost of 
a one-variant ~ r o g r a m . ~  
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tolerance: architectures tolerating a single 
fault and architectures tolerating two con- 
secutive faults. (We can relate these re- 
quirements, respectively, to the classical 
Fail OpFail Safe and Fail Op/Fail OpFai l  
Safe requirements used in the aerospace 
community for hardware-fault tolerance.) 

Due to the article’s scope, our discussion 
is highly abstract. We do not discuss such 
distinguishing features as the overhead 
imposed by intercomponent communica- 
tion for synchronization, decision-making, 
data consistency, etc., or the differences in 
memory space for each architecture. 

Implementing design diversity. Of the 
many issues involved in design diversity,6 
two related issues are especially impor- 
tant: the number of variants and the level at 
which fault tolerance is applied. 

Number of variants. Aside from eco- 
nomic considerations (see the sidebar), the 
number of variants for a given software- 

fault-tolerance method is directly related 
to the number of faults to be tolerated (see 
Table 2). The soft or solid nature of the 
software faults significantly affects the 
architecture only when it must tolerate 
more than one fault. Also note that an 
architecture tolerating a solid fault can also 
tolerate a (theoretically) infinite sequence 
of soft faults, provided there are no fault 
coincidences. 

The relation between the likelihood of 
such fault sandthe numberofvariantsisnot 
simple. Whether increasing the number of 
variants increases or decreases the number 
of related faults depends on several fac- 
tors, some of which affect the others ad- 
v e r ~ e l y . ~ . ~  However, there is good reason to 
increase the number of variants in NVP: in 
a three-version scheme, two similar errors 
can outvote agood result; while they would 
be detected in a four-version scheme. 

Level offault-toleranceapplication. The 
level of application involves twoquestions: 

How much should the system be decom- 
posed into components to be diversified? 
and Which layers (application software, 
executive, hardware) must be diversified? 

The answer to the first question involves 
a trade-off between two opposing consid- 
erations: smaller components allow a bet- 
ter mastering of the decision algorithms, 
but larger components aid diversity. In 
addition, the decision points are “non- 
diversity” points (and synchronization 
points for NSCP and NVP); as such, they 
must be limited. Decision points are neces- 
sary only for interactions with the environ- 
ment (sensor data acquisition, delivering 
orders to actuators, operator interaction, 
etc.). However, performance considera- 
tions could prompt additional compro- 
mises. 

Concerning the second question, the 
methods for tolerating design faults can 
apply to any layer of either the application 
or the executive software. They can also 
apply to the hardware layers.’ With respect 
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E! 

NVP/1/1 

Hardware error- 
confinement area 

Software error- 
confinement area 

Idle variant 

NSCP/l/l/rn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2. Architectures tolerating a single fault. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to the computation process, the states of 
distinct variants are different. Thus, in 
NSCP and NVP, when the variants execute 
in parallel on distinct (redundant) hard- 
ware, agiven layer’sdiversity yields differ- 
ent states in its underlying layers, even if 
they are not diversified (except, of course, 
at the decision points). The decision to 
diversify layers underlying the application 
software involves additional considera- 
tions, such as determining the influence of 
those portions of the hardware and execu- 
tive software specifically designed for the 
application, and determining how much 
confidence to place on experience valida- 
tion for off-the-shelf components. 

Structuring principles for architec- 

ture definition. Structuring is a prerequi- 
site to mastering complexity, especially 
when dealing with fault t~ lerance.~ Hard- 
ware-fault-tolerance mechanisms usually 
(and usefully) match the structuring of a 
system into layers.’O Given performance 
considerations (that is, the time needed to 
recover from an error) and damage created 

by error propagation, it is especially desir- 
able that each layer have fault-tolerance 
mechanisms to process errors produced in 
that layer. 

Implementing this principle in hardware 
to deal with software-fault tolerance 
requires that the redundant hardware com- 
ponents be in the same state when compu- 
tation proceeds without error. Such a con- 
dition can be satisfied only if the variants 
execute sequentially, that is, in the RB 
approach. However, the diagnosis of hard- 
ware faults could be made possible by 
examining the syndrome provided by the 
deciders of the particular software-fault- 
tolerance method. 

Another useful structuring mechanism 
is the error-confinement area,” a notion 
that cannot be considered separately from 
the architectural elements. The particular 
architectural elements we consider are: 

the hardware and associated executive 
software, which provide the necessary 
services for application software to 
execute (for concision, we call these 

“hardware components”), and 

ware. 
the variants of the application soft- 

Considering both hardware and soft- 
ware faults helps distinguish hardware and 
software error-confinement areas (HECAs 
and SECAs, respectively). In our discus- 
sion, a HECA covers at least one hardware 
component, and a SECA covers at least 
one software variant. Because of our defi- 
nition of a hardware component, a HECA 
corresponds to that part of the architecture 
made passive after a solid hardware fault. 
It can thus be interpreted as a line replace- 
able unit. 

Architectures tolerating a single fault. 

Three architectures correspond to the three 
software-fault-tolerance methods men- 
tioned earlier. Figure 2 illustrates the 
SECA and HECA configurations for each 
method. The intersections of the SECAs 
and HECAs characterize the architectures’ 
software- and hardware-fault-tolerance 
dependencies. 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Synthesis of the properties of the hardware-and-software-fault-tolerant architectures. 

Architecture Hardware Properties in Addition to Nominal Fault Tolerance Fault-Tolerance After a HECA Is Made Passive 
Components/ Hardware Faults Software Faults Hardware Software 

Variants 

RB/1/1 

NSCP/1/1 

Low error latency Detection provided 
by local diagnosis 

Tolerance of one 
independent fault 

Tolerance of two faults in 
hardware components of the 
same SECA; detection of 
three or four faults in 
hardware components 

Tolerance of two independent 
faults in the same SECA; 
detection of two related faults 
in disjoint SECAs; detection 
of two, three, or four 
independent faults 

Detection Detection of 
independent faults 

NSCP/l/l/m Tolerance of two faults in 
hardware components of the 
same SECA 

Detection Detection of 
independent faults 

NVP/1/1 

RB/2/1 

NSCP/2/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

NVP/2/1 

Detection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo or three 
faults 

Detection of two or three 
independent faults 

Detection Detection of 

independent faults 

Tolerance of one 
independent fault 

Low error latency Detection provided 
by local diagnosis 

Detection of three to six 
faults in hardware components 

Detection of two or three 
independent faults 

Detection Detection of 
independent faults 

Detection of three or four 
faults in hardware components; 
tolerance of combinations of 
single fault in hardware 
component and independent 
software fault in nonduplicated 
variant 

Detection of two or three 
independent faults 

Detection Detection of 
independent faults 

Detection of three or four 
faults in hardware components 

Detection of two related faults; 
tolerance of two independent 
faults; detection of three or 

four independent faults 

NVP/2/2 Detection Detection of 
independent faults 

We identify the architectures via a con- 
densed expression of the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX/i / ; / .  . ., 
where X is the software-fault-tolerance 
method (RB, NSCP, or NVP), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi is the 
number of hardware faults tolerated, and; 
is the number of software faults tolerated. 
We add further labels to this expression 
when necessary. Table 3 summarizes the 
main fault-tolerance properties of the 
architectures discussed here and in the next 
section. 

However, related faults between a variant 
and the acceptance test cannot be tolerated 
or detected. 

The hardware components operate in 
hot standby redundancy and always exe- 
cute the same variant. Thus, hardware 
faults are detected by a high-coverage, 
concurrent comparison between the accep- 
tance test results and the hardware results. 
When a discrepancy is detected during 
execution of the primary alternate or the 
acceptance test, the secondary executes so 
that the fault is tolerated (if the fault is 
soft). If the discrepancy persists (which 
would occur if the fault were solid), the 
failed HECA is identified by running diag- 
nostic programs on each HECA. The failed 
HECA is thus made passive and service 
continuity is ensured. 

The architecture remains software-fault 
tolerant after this hardware degradation, 

and subsequent hardware faults are de- 
tected by either the acceptance test or peri- 
odic execution of the diagnostics. 

NSCPIII1. The basic NSCP/l/l archi- 
tecture (see Figure 2) comprises 

four hardware components grouped in 
two pairs in hot standby redundancy, 
each pair forming a HECA; and 
four variants grouped in two pairs, 
each pair forming a self-checking soft- 
ware component, with error detection 
performed by comparison. Each vari- 
ant pair also forms a SECA associated 
with a HECA. 

The computational states of the hard- 
ware components cannot be directly com- 
pared due to the diversification imposed by 
the variants. However, a comparison of 
each variant pair’s results also effectively 

RBII I I .  This architecture duplicates a 
two-variant RB on two hardware compo- 
nents. Two variants and their instances of 
the acceptance test constitute two distinct 
SECAs and intersect each HECA. The RB 

method assures that each HECA is soft- 
ware-fault tolerant. A variant’s indepen- 
dent faults are tolerated, while related 
faults between variants are detected. 
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Figure 3. Architectures tolerating two consecutive faults. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
compares the two hardware components in 
each HECA to check hardware faults 
(including design faults). Thus, a HECA is 
also a self-checking hardware component. 

If the results from a HECA’s variant pair 
differ, irrespective of the type of fault, then 
the results are delivered by the other 
HECA. If the discrepancy occurs repeat- 
edly, thus indicating a solid hardware fault, 
then the HECA is made passive. The re- 
sulting degraded structure still allows de- 
tection of both software and hardware 
faults. 

Besides nominally tolerating an inde- 
pendent software fault, the NSCP/1/1 
architecture can also 

tolerate two simultaneous independent 
faults in a SECA, 
detect a related fault between two 
variants (each pertaining to one of the 
two disjoint SECAs), and 
detect three or four simultaneous inde- 
pendent software faults. 

The NSCP/I/l architecture corresponds 
to the architectural principle implemented 
in the Airbus A-320.‘ However, since re- 
quiring four variants would be prohibitive 

in some applications, a modified architec- 
ture (NSCP/l/l/m) exists based on just 
three variants (see Figure 2). 

To see the major difference in error 
processing between the NSCP/1/1 and 
NSCP/l/l/m architectures, consider a soft- 
ware fault in V2. Such a fault would cause 
a discrepancy in both self-checking com- 
ponents, implying an associated SECA 
covering all four software components and 
preventing any software-fault tolerance. 
Since this is the only event that can cause 
such an error syndrome (assuming a single 
independent fault), the “correct” result is 

immediately available as the one provided 
by V1 or V3. Hence, the NSCP/l/l/m 
architecture has a third SECA associated 
with V2 alone. However, the three addi- 
tional fault-tolerance and detection capa- 
bilities of the NSCP/1/1 architecture listed 
above are lost. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

NVPIl I1.  The NVP/I/l architecture is a 
direct implementation of the NVP method 
consisting of three hardware components, 
each running a distinct variant. The han- 
dling of both hardware faults (including 
design faults) and software faults is per- 

formed at the software layer by the decider. 
In addition to tolerating an independent 
fault in a single variant, the architecture 
can detect independent faults in two or, 
three variants. 

The problem of discriminating between 
hardware and software faults, so that a 
hardware component is only made passive 
due to a solid fault, demonstrates the de- 
pendency between software- and hard- 
ware-fault tolerance. Because software 
faults are considered soft, a repeatedly 
disagreeing hardware component could 
easily be treated as a sign of a (solid) 
hardware fault. After the failed hardware 
component is made passive, the decider 
must be reconfigured as a comparator in 
case a hardware or software fault is subse- 
quently activated. 

Architectures tolerating two consecu- 

tive faults. Tolerance of two faults brings 
the distinction between soft and solid soft- 
ware faults into play. If the software faults 
are soft, then the number of variants is the 
same as in architectures that tolerate one 
fault. These architectures are of the type 
X/2/1. If the software faults are solid, then 
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the number of variants must increase be- 
cause a failed variant cannot execute fur- 
ther. These architectures are of the type 
x/2/2. 

Figure 3 shows architectures that toler- 
ate two faults. The first three architectures 
(RB/2/1, NSCP/2/1, and NVP/2/1) tolerate 
two hardware faults and a single software 
fault. Another NVP-based architecture 
(NVP/2/2) deals with solid software faults 
by tolerating two consecutive (solid) faults 
in hardware zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor software. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

RBIZII. This architecture comprises 
three hardware components arranged in 
triple modular redundancy. Its ability to 
tolerate software faults is the same as that 
of RB/ l / l .  When a solid hardware fault is 
detected, the corresponding hardware 
component is made passive, thus degrad- 
ing the architecture to a level analogous to 
the RB/l/ l architecture. Accordingly, each 
hardware component must include local 
diagnosis, even if it is basically useless in 
handling the first hardware fault. 

NSCPIZII. This architecture is a direct 
extension of NSCP/l/l/m. A supplemen- 
tary duplex HECA supports a software 
self-checking component made up of two 
variants, resulting in a symmetric distribu- 
tion of the three SECAs among the three 
HECAs. Since all the variants are dupli- 
cated, hardware faults can be instantly 
diagnosed by comparing the results from 
all hardware components. The architecture 
also detects simultaneous independent 
faults in two or three variants. 

NVPRII  .The NVP/2/l architecture adds 
a hardware component to the NVP/l/I 
architecture without introducing another 
variant. To maintain software-fault toler- 
ance after a hardware component has been 
made passive, at least two instances of 
each variant must pertain to two distinct 
HECAs. Figure 3 shows only one of 18 
possible configurations. 

Of the two distinct variants associated 
with each HECA, one is active and the 
other is idle. At a given execution step, 
three hardware components execute three 
distinct variants, while the fourth hard- 
ware component executes a replica of one 
of the variants (V1 in this configuration). 
In addition to tolerating an independent 
software fault, this architecture can detect 
two or three simultaneous independent 
faults. 

Tolerance of an independent fault is 
based on a vote incorporating the knowl- 
edge that two variants are identical. The 

Active component Idle variant Failed hardware 

Figure 4. Various activations of the variants in the NVP/2/1 architecture. 

unbalanced number of variant executions 
allows use of a double vote decision to 
improve the diagnosis of hardware faults 
(each vote includes the results of the 
nonduplicated variants and only one of the 
results of the duplicated variant). To un- 
derstand this scheme, consider what hap- 
pens when 

a hardware fault causes an error in one 
of the hardware components executing 
the duplicated variant (VI), 
a software fault causes an error in the 
duplicated variant, 
a hardware fault causes an error in one 
of the hardware components executing 
the nonduplicated variants (V2, V3), 
or a software fault causes an error in 
one of these variants. 

In the first example, the fault is easily 
tolerated and diagnosed, since the three 
results agree on one vote and disagree on 
the second. Hence, the result of the dupli- 
cated variant is designated as false. 

In the second example, the decider rec- 
ognizes that the two votes are not unani- 
mous and designates as false the results 
supplied by the duplicated variant. The 
“correct” result is thus immediately avail- 
able as the one provided by the nondupli- 
cated variants. 

In the last example, tolerance is immedi- 
ate, but the votes do not allow fault diagno- 
sis. Since software faults are assumed to be 
nonrecurring, repeated failure of a hard- 
ware component leads to a diagnosis of a 
hardware fault. However, another form of 
diagnosis lets us relax this assumption: 
when a localized fault (attributable to one 
SECA or one HECA) occurs, the next 
execution step is performed after the active 
variants are reconfigured to match the 
duplicated variant with the affected 
HECA. The decider must then solve 
for one of the first two examples. A 
systematic rotation of the duplicated vari- 
ants would also contribute to such a 
diagnosis. 

After a failed hardware component is 
made passive, the active variants are re-  
configured to distribute the SECAs among 
the remaining HECAs, forming disjoint 
areas. Figure 4 shows the distribution of 
active and idle variants among the three re- 
maining HECAs after any of the HECAs 
have been made passive. In each case, the 
reconfiguration affects only a single 
HECA. Further decisions in this architec- 
ture are made by a vote among the active 
variants on the remaining HECAs. Thus, 
the degraded architecture is the same as the 
NVP/l/l architecture. 
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Table 4. Probability of failure: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPs,x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ps,D,x + Ps,u,x 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProbability of Detected Failure: P,,,,x Probability of Undetected Failure: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPs,Lj,,y I 
RB/1/1 Separate: (P,,~,)' Common-mode: P 

Common-mode: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPID,RB + Pzl K R  

Separate: 4(P,,,v,scP)z [ 1 - NSCP/1/1 Common-mode: P?l,,N,sc.P + 4P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31.,NSCP 

+ ((P,,,s,,)*/4)1 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP4V.NSCP + 'R\D,NSCP 

Common-mode: P,,,N,s,P + 4P?1,,NSCP 

NVP/1/1 Separate: 3(P,,,,)' [ 1-(2/3)P,,,v,,] Common-mode: 3P2L.,NC.P + P IC . ,N l .P  

Common-mode: P,,,,, + P,,,,N,P 

Table 5. Comparison of analytical and experimental results. 

2.91 x I O '  4.48 x l o h  1.09 x IO-' 3.90 x 10' 3.67 x IO-' 

NVPl212. To understand the effect of 
solid software faults on architectures that 
tolerate two faults, consider the NVP 
method. Such an architecture requires four 
disjoint HECAs and SECAs, hence the 
NVP/2/2 architecture. 

This architecture might seem to be a 
direct extension of NVP/I/I, adding only 
one HECA and an associated SECA, but 
there are major differences in error pro- 
cessing. The fault-tolerance decision is 
now based on finding a single set of two or 
more agreeing results among the four vari- 
ant results provided. Also, after the first 
discrepancy is discovered, the designated 
hardware component and its associated 
variant are made passive without any at- 
tempt to diagnose the fault as a hardware or 
software fault. Further decisions are then 

made by vote among the remaining vari- 
ants, making the degraded architecture 
similar to the NVP/l/I architecture. How- 
ever, unlike the other NVP-based architec- 
tures, subsequent faults are treated the 
same as the first detected fault. 

Besides tolerance to two consecutive 
independent software faults, this architec- 
ture lets the system tolerate two simultane- 
ous independent faults, detect related 
faults between two variants, and detect 
simultaneous faults in three or four vari- 
ants. The Fault-Tolerant Processor/ 
Attached Processor' is an implementation 
of this architecture: a quad configuration 
of the core fault-tolerant processor sup- 
ports the execution of four different pieces 
of application software on four distinct ap- 
plication processors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Proper Service Delivery State 

0 Detected Failure State 

@ Undetected Failure State 

Figure 5. Generic model of architecture behavior. 
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Analyzing and 
evaluating 
architectures 

In discussing how to conduct a dependa- 
bility analysis of hardware- and software- 
fault-tolerant architectures when adopting 
a Markov approach, we consider three 
architectures that tolerate a single hard- 
ware or software fault: RB/I/l, NSCP/l/I 
and NVP/I/I. 

Analyzing software-fault-tolerant 

architectures. Our analysis emphasizes 
the distinctions among the different 
sources of failures - independent and 
related faults in the variants and the de- 
cider - and assumes that only one type of 
fault can cause errors during each execu- 
tion. Also, we do not address the underly- 
ing fault-tolerance mechanisms, that is, 
establishment and restoration of recovery 
points for RB, and version synchroniza- 
tion, establishment of cross-check points, 
and the decision mechanisms for NSCP 
and NVP. 

We classify failures as separate or com- 
mon-mode and as detected or undetected. 
Separate failures result from independent 
faults in the variants, whereas common- 
mode failures can result either from related 
faults or from independent faults in the 
decider. We also distinguish between two 
types of related faults: those among the 
variants and those between the variants 
and the decider. We consider a failure 
detected when the decider identifies no 
acceptable result and no output result is 
delivered. A failure is undetected when 
erroneous results are delivered. 

We also assume that the probability of a 
fault is identical for all variants of a given 
architecture. We make this assumption to 
simplify the notation; i t  does not alter the 
significance of the results (it is simple to 
deduce the generalization to the case where 
variant characteristics are distinguished). 

To characterize the probabilities of fail- 
ure, we introduce the following notation 
for the X/ l / l  architectures: 

is the probability of activating an 
independent fault in one variant of X 
on execution 
P,,,, is the probability of activating an 
independent fault in the decider of X 
on execution 
Pnl.,x is the probability of activating a 
related fault among n variants of X on 
execution 
P,,,, is the probability of activating a 
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Table 6. Specific state and transition definitions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
States and 
Interstate RB/I/I 
Transitions 

NSCP/I/I NVP/I/I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

2 

3 

4 

1 to 2 

1 t o 3  

1 to 4 

2 to 3 

2 to 4 

2 (RB +hardware component) 
operational 

(RB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ hardware component) 
operational 

Detected failure 

Undetected failure 

2(2(variant + hardware component)) 
operational 

2(variant + hardware component) 
operational 

Detected failure 

Undetected failure 

3(variant + hardware component) 
operational 

2(variant + hardware component) 
operational 

Detected failure 

Undetected failure 

Covered hardware component failure: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2c'H,RB 

Noncovered hardware component 
failure or detected RB failure: 

2"H.RB + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'S.D.RB 

Undetected RB failure: h,,,,,, 

Covered hardware component failure 
or detected RB failure: ~ h ~ , ~ ~  + h,,,,,, 

Noncovered hardware component 
failure or undetected RB failure: 

c h H , R B  + ' s , u , R B  

- 

Hardware component failure: 4hH,,,,, 

Detected NSCP failure: hs,D,Nscp 

Undetected NSCP failure: h,,,,N,cp 

Hardware component failure or detected 
two-variant failure: 2h,,,,,, + h,,D,,,. 

Undetected two-variant failure: h,,,,,,, 

Hardware component failure: 3hH,,, 

Detected NVP failure: )\,,D,Nvp 

Undetected NVP failure h, u N I . P  

Hardware component failure or detected 
two-variant failure: 2hHNVP + h,, *, 
Undetected two-variant failure: h, , 21. 

related fault among the variants and 
the decider of X on execution 
Ps,D,x is the probability of a detected 
failure of X on execution 
Ps,,,x is the probability of an unde- 
tected failure of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX on execution 
PsPix + P,,u,x = P,,,, the probability of 
a failure of X on execution 

Table 4 summarizes the probabilities of 
failure and separates them into the sepa- 
rate/common-mode and detectedhnde- 
tected categories. The table shows that 
either separate failures or common-mode 
failures can be detected, while only com- 
mon-mode failures can go undetected. 
Comparing the probabilities is difficult 
due to the different parameter values for 
each architecture. However, some general 
observations are possible. 

Although a large number of experiments 
have analyzed NVP, no quantitative study 
has reported the decider's reliability. Still, 
the probabilities of failure associated with 
the deciders can differ significantly. Due 
to the generic character and functional 
simplicity of the NSCP (comparison) and 
NVP (voting) deciders, the probabilities 
are likely ranked as follows: 

For separate failures, the influence of 
independent faults differs significantly. 
For RB, the probability of separate failure 
equals the square of the probability that 
independent faults will occur, while the 
probability for NVP is almost three times 
as much, and four times as much for NSCP. 
This difference results from the number of 
variants and the type of decision. How- 
ever, it does not mean that RB and NSCP 
are the only architectures that allow detec- 
tion of related-fault combinations among 
the variants. All related faults in NVP re- 
sult in undetected failures. (This is due to 
our analysis' limitation to architectures 
that tolerate only one fault. Increasing the 
number of versions would allow NVP 
methods to detect some related faults.) 

Although related faults among variants 
do not affect the probability of undetected 
failure for the RB architecture, they are the 
major contributor to undetected failure for 
NSCP and NVP. However, comparing the 
respective probabilities of undetected fail- 
ure is not simple. 

Experiments on multiversion software 
help us estimate some elementary proba- 
bilities of the expressions in Table 4. For 
example, Table 5 shows that the results 
obtained from the model agree with previ- 
ous experimental  result^.^ The first three 

columns show the values derived for the 
model parameters from the experimental 
results. The fourth column gives the asso- 
ciated probability of failure, computed 
from the expressions of Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 using these 
parameter values and excluding decider 
fault parameters. The last column shows 
the experimental statistic for the probabil- 
ity of failure. 

Evaluating hardware and software 

architectures. Inmodeling the behavior of 
the architectures, we assume 

only one type of fault can cause an 
error (either hardware or software) 
during each execution; 
the variant is not discarded after error 
detection and recovery, but is given 
the new input data at the next step (that 
is, software faults are soft); and 
the hardware components and the soft- 
ware-fault-tolerant architectures have 
constant failure rates. 

Models. The generic model in Figure 5 
describes the hardware and software be- 
havior for the RB/ l / l ,  NSCP/I/ l ,  and 
NVP/1/1 architectures. Table 6 gives the 
specific definitions for states and interstate 
transitions of the model. The transition 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Time-dependent reliability and probability of undetected failure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I Method Reliability Probability of Undetected Failure I 

I 

rates in Table 6 are based on the following 
notation: 

c is the hardware coverage factor of the 
RB/1/1 architecture, where c= 1-c. 
hH,x denotes the failure rate for a hard- 
ware component of theX/1/1 architec- 
ture. 
hs,D,x and ks,u,x denote the detected and 
undetected failure rates, respectively, 
for the fault-tolerant software X. If y 
denotes the application software’s 
execution rate, then we can express 
these failure rates as functions of the 
failure probabilities in Table 4: hs,D,x = 

hs,D,2V and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhs,u,2v denote the application 
software detected and undetected fail- 
ure rates, respectively, of the NSCP/ 
1/1 and NVP/l/l architectures after an 
HECA has been made passive. These 
rates are defined as [Ps,D,2v]y and 
[Ps,u,2v]y, respectively, where the 
probabilities of detected and unde- 
tected failure in the degraded two- 
version configuration are defined as 

[‘S,D,X]y and kS,U,X = [‘S,U,X1y 

‘S.D.2V = 
and ‘S,U,ZV = ‘RVD,ZV 

‘/,2V ( l  - (‘/.2J2)) + ‘ /D,ZV 

In RB/l/ l ,  a hardware failure does not 
alter the architecture’s software-fault tol- 
erance, and a software failure does not 
alter its hardware-fault tolerance. We as- 
sume we can achieve near-perfect detec- 
tion coverage for hardware faults, since 
both HECAs run the same variant simulta- 
neously. Thus, the coverage considered 
here for the hardware-fault-tolerance 
mechanisms corresponds to local cover- 
age, due to the diagnostic program and the 
acceptance test’s capacity to identify hard- 
ware failures. 

In NSCP/I/l , hardware- and software- 
fault-tolerance techniques are not inde- 
pendent, since the HECAs and the SECAs 
match. After a hardware component fails, 
the corresponding HECA and SECA are 
discarded. The resulting architecture com- 
prises a pair of hardware components and 
a two-version software architecture. form- 

ing a self-checking hardware and software 
architecture. 

In NVP/1/1, hardware- and software- 
fault-tolerance techniques are again not 
independent. After a hardware unit has 
been made passive, the remaining archi- 
tecture is analogous to the degraded NSCP/ 
1/1 architecture. 

In both NSCP/l/l and NVP/1/1, hard- 
ware faults are tolerated at the software 
layer through the decision algorithm (com- 
parison or vote). Accordingly, only the 
software level accounts for the associated 
coverage, which the decider incorporates 
in the probability of a fault occurring. In the 
degraded NSCP/l/l and NVP/1/1 archi- 
tectures, the software is no longer fault- 
tolerant, so the variants’ failure rates are 
important to the failure rate of the applica- 
tion software’s degraded configuration. 

Model processing. Combining the pro- 
cessing model in Figure 5 with the transi- 
tion rates in Table 6 lets us derive the time- 
dependent probabilities of detected and 
undetected failure: and Po,x( f ) ,  re- 
spectively, where ? denotes time. In prac- 
tice, we are interested mostly in the prob- 
ability of undetected failure and in the 
reliability: Rx(t )  = 1 - [PD,(t)+Pu,x(t)]. We 
can simplify these expressions for short 
missions (with respect to the mean times to 
failure). The simplified, approximate ex- 
pressions (see Table 7) show that RB/l/l ’s 
reliability depends strongly on the cover- 
age of fault diagnosis in the hardware 
components. Furthermore, the hardware 
failure rate is likely greater forRB/l/ l  than 
for the other architectures, due to the extra 
memory needed to store the second vari- 
ant. Also, to ensure near-perfect detection 
coverage, further hardware or software 
resources are needed to compare the re- 
sults from each hardware processor, and 
storage is needed for the acceptance test 
and the diagnostic program. 

The expressions also reveal that the 
application software’s failure rate has an 
identical influence on the three architec- 

tures, although this is tempered by the 
differences between the associated proba- 
bilities (identified in the section on analyz- 
ing software-fault-tolerant architectures). 

he emergence of hardware-fault- 
tolerant commercial systems will T increase the user’s perception of 

the influence of design faults, due to these 
systems’ tolerance of physical faults. 
Consequently, software-fault-tolerance 
schemes that use design diversity to give 
system users continuous service (as op- 
posed to current implementations that 
preserve system core integrity through the 
termination of erroneous taskss) are likely 
to spread from their current domain: 
safety-related systems. Accordingly, the 
approaches and results in this article are 
likely to apply more widely. W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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