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Abstract

A new definition of large space structures (LSS) is given, yielding a
mathematical model of minimal order for three-axis attitude control system
synthesis. Then, the dynamic portrait is introduced, allowing the structure to be
designed with minimal excitation of certain vibration modes by the control
variables. The theory is developed by considering space structures having a
branched configuration near the centre of which are located attitude sensors and
actuators collocated with an orthogonal control axis set to be orientated. It is
well known that the complete set of space structures comprises two subsets,
one in which rigid body dynamics may be assumed and the other, referred to as
the Large Space Structures (LSS), for which one or more flexure modes,
typically with very low natural frequencies, must be taken into account. This
paper provides a much needed quantitative boundary between the two subsets,
given by the definition that a structure is a LSS if the inequalities, ki > 247 and

012 < 2ki , are satisfied for any i, where o, and ki are, respectively, the natural

frequency and excitability coefficient of the i" flexure mode. The approach is
based on a comparison of the flexure mode motion with the rigid-body mode

motion in the phase double-plane (ith modal phase-plane superposed on the
rigid-body phase-plane) of a structural model in the modal state representation
to which is applied a step control variable. Hence, the model derived is suitable
for designing control systems employing discontinuous on-off thrusters as well
as continuous actuators. The Lagrangian and Modal dynamic models of the
structure are then used together to derive the dynamic portrait as a set of
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graphs, [coi]()\,) and [ki](k) , where A 1s a selected physical parameter of the

spacecraft. The structure may be designed, where practicable, to correspond
with minima in these graphs to simplify the control problem. The new method
is demonstrated by examples.

1 Introduction

A new approach is presented for obtaining a mathematical model of the
dynamics of large structures in space on which the synthesis of three-axis
attitude control laws may be based. The method presented here concentrates on
the many space structures requiring attitude control which have a branched
configuration at the centre of which is located an orthogonal control axis set to
be orientated by automatic control, the attitude sensors and actuators being
collocated with this control axis set. This restricted class of space structures
will be referred to as spacecraft. Attention is focussed on a subset of the set of
spacecrafl, referred to as Large Flexible Spacecraft (LFS) having flexure modes
with very low frequencies, referred to as significant modes, which pose the most
challenging problems to the control system designer. This paper introduces a
rigorous definition of LFS via the identification of a quantitative boundary for
the segregation of LFS from the complete set of spacecraft. The approach,
which is suited to control systems employing discontinuous thrusters as well as
continuous torque actuators, is introduced here via the simplified model of such
spacecraft in which inter-axis coupling is negligible, starting with the Lagrange
equations:

MZ

M
J%+ aq =TI, a%+ (Jq +bq) ,2,..M

—

where x is any Euler angle, i.e., the attitude angle to be controlled, q, are

generalised co-ordinates, J, Ti,ai and bi are constant parameters of the

spacecraft, to be defined in the following section, and I' is the control torque.
Next, this model is transformed into the modal form as given by Nurr et. al.[1]:-

where X is the attitude angle which would result if the whole structure moved
as a rigid body under the same control torque, i.e., the mean value of the true
attitude angle, x and X is the additional deflection resulting from the
deflections, X, of the individual flexure modes. The constant dynamic
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parameters are now the vectors of fundamental frequencies, ® = [wi], and
excitability coefficients k = (k. ] which are directly relevant to attitude control

system synthesis.

The aforementioned quantitative boundary for the segregation of LFS from
the set of spacecraft is derived using the double-phase plane method of
Rutkovsky and Sukhanov{2][3] in which the origin of the motion of [ii , fii] in

the modal phase plane is centred on [x, x] of the rigid-body mode phase plane.

The method is based on a comparison of the phase trajectories (i.c., state
trajectories) of the rigid-body mode and the flexure modes. The result, derived
in section 5, is that a LFS is defined by the conditions, k g >247 and

mj <2k d where d 1s the index of the dominant mode.

From the Lagrangian and Modal spacecraft models, a relationship of the
form, £(J,J;,a,,b, [0, L[k,]), follows from which a set of graphs, [(l)i J(A) and
[ki](k), is derived, where A is any physical dynamics parameter of the
spacecraft. This set of graphs constitutes the dynamic portrait of the LFS,
which facilitates model order reduction. Also, there are minima in the graphs

for certain values of A, rendering the dynamic portrait useful for optimisation
of the spacecraft structural design to ease the control problem.

2 Generic Mathematical Model of Spacecraft

2.1 Basis of Model Formulation

To commence the model development, the following definition of large flexible
spacecraft (LFS) given by Nurr, et. Al [1] and by several contributors in Kirk
[4] is first considered:-

A flexible spacecraft is a LFS if it has physically large dimensions
and if the spectral band of elastic oscillation frequencies in the
structure overlaps or is close to the spectral band of the ideal
controlled motion of the spacecraft as a rigid body.

Clearly, under these circumstances, the flexure modes of the structure must be
taken into account in the attitude control system design and this gives the
definition some practical meaning.

It is important to note that if the lowest elastic oscillation frequency is very
low (f_, <05[Hz], say), then the natural damping is very poor. This is true

because the damping ratios of typical space structures are usually of the order of
= 107 and the time constant of decay of the oscillation magnitude of the
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lowest frequency mode is T . :1/(2"Cfmm)>3]8[5] which is excessive.

This calls for control laws capable of providing active modal damping and these
generally can only be designed using a model including the significant modes.

A limitation of the above definition, however, must now be pointed out. It
is well known that the closure of a control loop around any dynamical system,
changes its dynamic characteristics and so the frequencies of the flexure modes
depend not only on the physical structure of the spacecraft but also on the
particular attitude control system employed. This creates a difficulty in using
the aforementioned definition which refers only to the ‘open loop’ system. A
precise definition of LFS is developed here which overcomes this difficulty.

In order to develop a generic spacecraft model, a generalised mechanical
construction must be chosen for which the equations of motion can be derived.
A wide variety of FS configurations, however, result from different mission
requirements and these must be catered for. Nevertheless, this large variety of
mechanical configurations can be grouped into three basic categories:-

i) FS with continuous mass distribution which are modelled by partial
differential equations.

i) FS comprising a rigid centre-body to which is attached one or more elastic
appendages with distributed parameters.

ii1) FS which can be regarded as a rigid centre-body to which is attached a
number of appendages, each regarded as a chain of other rigid bodies
connected via massless elastic links.

Attempting to use the partial differential equations appropriate to category (i)
directly for the analysis and design of practicable control systems leads to
insurmountable obstacles as reported by Lurye[5]. The mathematical model for
category (i) is based on the well known method of hybrid co-ordinates and
comprises a mixed set of ordinary and partial differential equations, but again
this is not practicable for control system synthesis. Category (iii) is the most
common and may be modelled by ordinary differential equations in terms of a
set of generalised co-ordinates, the number of which is determined by the
spacecraft configuration. This, being a model of finite order, lends itself readily
to control system synthesis. It is well known, that a mechanical dynamical
system with distributed parameters can be represented by a lumped parameter
model of finite order to a certain accuracy. This means that category (i) and (ii)
spacecraft can ultimately be represented as category (iii) spacecraft. Hence, the
generic model developed here refers to category (iii). In view of its general
shape, category (iii) spacecraft are described as having a branched
configuration. '

Typical appendages of branched LFS are elastic solar panels, large
deployable antennas (sometimes with actuators) and docked transportation
modules in the case of space stations. All these elements can be divided into
two groups:-

1) Elastic plates (representing, for example, solar panels and antenna reflectors).
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2) Rigid bodies, which are connected to the rigid centre-body by massless
elastic links.

In addition to this, it is necessary to take into consideration additional degrees
of freedom of relative motion such as assoctated with pointing mechanisms for
antennae and solar panels. Thus, the spacecraft model must, in general, be time
varying.

The generalised mechanical structure of LFS on which the generic
mathematical model is based is a branched structure comprising a rigid centre-
body with an arbitrary, finite number of flexible appendages in both groups (1)
and (2). This is considered to be sufficient for most practical purposes. For
example, FS SAT 2 referred to in Kirk[2] and Ekran studied by Nekhoroshiy et.
al [7] are LFS that are well represented by such a model structure. Figure 1
shows the common appearance of the generalised mechanical structure.

e(o

solar panel (Sj)
(m ‘J X,y ‘Z)Sj

Figure 1 A spacecraft represented within the generalised structure framework

To reduce the mathematical model to minimal order in a form suitable for
attitude control system synthesis, it is necessary to convert the elastic elements'
models of group (i) to finite order models. This is achieved here by finding the
minimal number of mass points, r, of the original distributed system allowing
motion approximating the mode shapes that are known to exist and affect the
centre-body attitude. Three main conditions of dynamic equivalence between
the original and simplified systems must be satisfied in this process:-

r
C1) The condition of mass equality:- Imds => m, =m
S k=1

S

C2) The condition of reduced

r
2 2
L. . mp“ds= Q> m =]
moment of inertia equality: - -! b kzﬂ Pk T xy.z



\IQ Transgtions on the Built Environment vol 19, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509
260 tructures in Space

C3) The condition of fundamental frequency coincidence (or nearness) of the
finite-dimensional model and the original elastic element.

Condition C3 requires further explanation. Figure 2 shows a type (1) elastic
element, exemplified as a solar panel, together with its lumped parameter model.

m3
a 13k
:11 /“'2 ZSJ
r_‘.b4

my

a) appendage configuration b) lumped parameter model in rest position

c) lumped parameter model in deflected state
Figure 2 Formation of a lumped parameter model of a flexible appendage

The finite-dimensional model with r =4 reflects the main mode shapes of the
oscillations (longitudinal, transverse and torsional) of the original flexible
appendage of Figure 2(a). The parameters of the finite order model,

m,r, bi , are, respectively, the mass, length and spring constant of the i link.

As the solar panel is rotated relative to rigid centre-body of the spacecraft (to
maintain solar power output) through the angle, y, then the planes of the
flexure mode oscillations are rotated by the same angle with respect to the
control axes, thereby changing the dynamic characteristics.

With the generalised co-ordinates, qg =(q,,-,4,,Y), of Figure 2, where

Yy=¥+¥, ¥ and ¥ being, respectively, the nominal solar panel orientation

angle and the torsional oscillation component of the solar panel root where it
joins the main body, the following expressions for the potential and kinetic
energies of the finite order model may be derived for the j* panel:-

6b,b b 3 1
_ %0 by 2 2 3(, 2 2y, 1n a2
PSJ " 4b, +21b, HbZ v qul a2 q]q2}+ 2(b3q3 +b4q4)+ 27
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B.
where b, = — and C./ are the reduced bending and torsional spring constants.

2

where 1=r +r,. These expressions may then be used in Lagrange's

formulation to determine the system of equations governing the oscillations of
the solar panel, provided they are of sufficiently small amplitude for the
assumption of linear springs to hold. Furthermore the equation for the

fundamental frequencies follows in the form, A(ﬁz) =0, the solution of which

yields r functions ﬁf =F,(A), i=1...,r, expressing the dependence of the
fundamental frequencies on the parameter vector
A=(m, . ,m,r,.,1,,b..,b,.C ).‘ If ﬁ. are the fundamental frequencies

of the original distributed model of the solar panel then if F(X) Ql o
i=1,.,r, then the task of deriving the equivalent finite-dimensional model of
the type (1) elastic element will have been solved.

Elastic elements of the second type already have a finite-dimensional
structure the mass distribution of the elastic link being neglected. The
expression for the potential energy of an elastic link on the top of which there is
an additional body AJ. , as illustrated in Figure 3, may be determined using the

method of Lurye[5] and is as follows:-

2
6B r s T 2C 2
Py =| x| i +30l -5, +al +307 —a e, |+ e
J e X v o3 2 r
A A A

J

- '\‘\(];m)‘lr

,«\’< - Z]
gL (¢..9,.,9. ),
T ‘Zaj

Figure 3 Geometry of deflected link interconnection
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where B Aj and C ajare the bending and torsional spring constants of link r Aj

with elastic displacement co-ordinates (q, ,q v,¢x,¢v $,) A}

Figure 4 illustrates the generalised lumped parameter FS model with

generalised co-ordinates, q = (q O,q~) :

k‘;zj
X
AN
<\ /
2 = 7.
Y] ro; Zaj Ay \( v
(6. 6,,0), DT \
e -~ Faj @y9)
Zaj

Figure 4 Geometric illustration of generic spacecraft model

The sub-vector, q, = (0,v,8,p ), defines the location, p__, of the main body
centre of mass, ¢, and its orientation in terms of the Euler angles (o,y,8) with
respect to the base co-ordinate system cXYZ. The sub-vector, q_ =(q5,q, ),
defines the instantaneous elastic deformation of the spacecraft. The elastic part
of the spacecraft comprises the solar panels, N, with elastic deformation co-

ordinates, qg =(Y,4,,..,q, )Sj, as previously defined, together with an antenna

platform, N, , connected to the main body by elastic links, with elastic

A 2
deformation co-ordinates, q, = (qx,q'v ,¢X,¢y 6,04 i In addition, the
position vectors of the attachment points of the flexible appendages to the main

body are denoted by p(s)j,pg‘j. (mg,J, x’y,z), (1"],“',4,m1m4,81 and

(r.,BomJ..2): je=L.,N =1,..,N are the mechanical and
X, V.27 ), S

S b4 JA 300 A 3
geometric parameters of the main and additional bodies of the FS. In this
notation, the suffices, j; and j,, are ascribed to every element inside the

parenthesis. For example, (y,ql)jS = (YjS’qus)‘

It must be noted that the lumped parameter model, as developed so far,
allows only four flexure modes per flexible appendage and if more than this is
required, the same principles would have to be applied with more mass points.
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This would achieve the original objective of deriving a lumped parameter solar
panel model with an arbitrary set of flexure modes.

Recalling that the solar panel rotation angle,y , comprises two components,
¥ and 7, it should be noted that the mean angle, 7, generally varies far more

slowly than the oscillatory component, ¥, so that y =¥ . Also, the oscillatory
component of the angle is assumed to be much less than the mean value so that

sin(y) = sin(?), y €(0-2n) .
2.2 Derivation of Model Equations

Lagrange’s equation:-
Frerai bl (1)

forms the basis of the mathematical model represented geometrically in Figure
3, where L=K(q;,q9;)-P(q;), i=1..,n+3 is the Lagrangian, K(q;.q;)
and P(q;) are, respectively, the kinetic and potential energies of the complete
spacecraft and F, is the i generalised force. Note that this is truly a force if the
co-ordinate, q,, is a franslational displacement, but is a torque if q; is an
angular displacement. Dimensional analysis (in SI units) of equation (1) agrees
with this.

These equations yield many non-linear terms such as gyroscopic cross-
coupling torques and correolis forces, but these are found to be insignificant
compared with the linearly occurring inertial forces and torques in most
spacecraft applications. With this assumption, Likins[6] has derived the
following linear differential equations for the three-axis angular motion of FS
using Lagrange's method and then omitting the non-linear terms:-

Jig+A =T, Al +J g +B.q_=0 ()

where J is the (3 x 3) inertia tensor (sometimes referred to as the inertia matrix)
applicable to the non-deformed spacecraft, A, is the (3xn) mass-inertia
coefficient matrix determining the interaction between the FS's elastic parts and
the rigid centre-body, J_ is the (nxn) characteristic inertia matrix of the
elastic part of the FS, B_ is the (n x n) rigidity matrix of elastic elements (i.e.,
the matrix of spring constants of the elastic links between the mass elements of
the flexible part). I'=[I', I' v T ]T is the control torque (or moment) vector

applied to the rigid centre-body. As previously stated, the natural damping of
flexure modes in space structures is usually negligible and so the model of
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equations (2) does not include such damping which is evident through terms
involving the velocity vector, q, being absent.

For use in a simulation programme, the component scalar differential
equations of the mathematical model are needed. These may be obtained as the
component equations of the following combined form of equations (2):-

e R L

A§+Bq=CTI (3)
where

0" o, %9,] {0,959, 8]

T, je=L.Ne i, =1.,N,, (4
{(S‘P‘V)(ql-~Q47)js(qqu¢x¢y¢z)jj ) v *

and I is the unit matrix of dimension (3 x 3). Thus, B is the symmetric
(n+3) x (n+3) matrix of elements of J, J_ and A and n is the number of

generalised co-ordinates used in the modelling of all the elastic parts together.

The individual elements, b, ,, are given by 0P/ 0q, where P is the potential

energy of the FS's elastic parts and q, ] is the k™ generalised co-ordinate of the
I* flexible appendage. The potential energy, P, is given by:-

NS NA
P(q_)= 2P, (ag) + 2. Ps;(a,) (5)
j=1 i=1

and once expressions for Pg j and P, ; have been obtained any coefficient, b, 15

may be determined. For example, in the fourth equation (3), the corresponding

12b,,(b,, +b.,) 6b,.b
_ S P ] | _ 11721
row elements are O,.‘,O,b‘t’4 = 4b“ +21b, bys= —4b” +21b,, ,0,..,0.

Then any scalar component equation of (3) (or (1)) may be written down. For
example, the second equation is:-

N
S

N - o - G4 ta ).

a¢99 AP TagyV jz_l(awaql acpqqu a‘PYY)JS
=

N
A
. . . ; QN
+jz_jl(acpqqu+a¢quY a¢¢x¢x a¢¢y¢Y+a‘P¢z¢Z)JA rw
=
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a S+a o+a ,Y+a G +a 4, +
qls qle qlg qlql™l  “qlq2™2
and the fourth . i b N o Thus, a
...+aquy+...+aq1¢z¢z+ qlqlqll+ qlqzq“_

complete spacecraft model may be formed. Expressions for the remaining
coefficients are not given here due to space limitations.

It should be noted that for space structures with a symmetrical
configuration, the matrix A is symmetric, and the work of deriving the
coefficients may be nearly halved by using the relation 0iq = qgiqic

The foregoing caters for an arbitrary disposition of the flexible components
with respect to the principal axes of the rigid centre-body and this is determined

by the set of cross-coupling coefficients (ag 0723y 3yo ). These, however,

are very small in some practical cases where the spacecraft configuration is
fairly symmetrical. The following simplified spacecraft model, obtained by
setting the cross-coupling coefficients to zero, is then applicable:-

M
Ja&+;aiaqia :ra > (1=(D,9,\U
1=

M (6)
1=

where o is one of the three spacecraft attitude angles, ¢,3,y, about the three

centre-body principal axes, valid for small rotations of the spacecraft about a
zero-attitude reference, q; are the generalised co-ordinates of the flexural

motion in the plane perpendicular to the rotation axis for o and the constant
coeflicients of equations (6) are the elements of the matrixes J, J~,A_,B.
This model has M flexure modes per axis and, of course, three rigid-body
modes and since each of these modes is of second order, the complete model is

of order, n =6(M+1). This will be the highest order model available, model
order reduction being applied before the control system synthesis is carried out.

The original model will then be useful in carrying out simulation studies to
explore the effects of ignoring some of the modes in particular cases.

3 The Modal Physical Model

In the three-axis de-coupled LFS model (6) the attitude co-ordinates,
o = 3,0,vy, are those of the rigid centre-body which may be assumed directly

measurable. This may be represented as a sum of two basic components:-
M

a=g+d=a+.0, (7
i=1
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where & is the attitude angle that would result from the same control torques
applied to a rigid-body spacecraft with the same total moments of inertia as the
M

complete LFS and a = Z&i is the component of the true spacecraft attitude
i=1
co-ordinate due solely to the elastic oscillations.
The general co-ordinates, q, , of model (6) cannot be identified in the

physical system. For the purpose of designing an attitude control law, it would
be better to obtain a model in which the co-ordinates are either physically
measurable those associated with the flexure mode dynamics being directly
related to the elastic mode displacements. In view of this, the resulting model
will be referred to as the modal physical model. To this end, equations (6) will
be expressed in terms of @ and o«,. The most straightforward way of

achieving this is to convert equations (6) to the Laplace transfer function form
and solve them with respect to a(s) = (£{a(t)}. This will be of the form:-

afs)  D(s)
£() s°C(s)

W, ()= ®

where f_ =T, / J  will be defined as the control acceleration and,

2M-1 2M 2M-1
Cls)= c2Ms +c (2M—1)( . +cs +¢,, D(s)= d2Ms +d(2M—1)( )y +d,s +d,

where ¢, ,d, are constant coefficients depending on the mechanical and
geometric parameters of the LFS configuration. This approach to modelling has
been pursued by Rutkovsky and Suhkanov(8]. The double integrator factor of
transfer function (8) results from the fact that the spacecraft rotates in space
only under the influence of the control torques and without any damping
torques from the surrounding medium which is assumed to be a vacuum. It
should also be noted that only even powers of s appear in the polynomials, C(s)

and D(s) because zero natural damping is assumed in the spacecraft structure

on the basis that in practice they are known to be of the order of 10”2 which is
negligible. Transfer function (8) may now be written as:-

als) als) D(s)

W, ()= a(s)+fa()—W() W;(s) = 2C(s)

©

where W_(s) =H(s)/ £, (s) is the transfer function of the LFS as a rigid body,
and W_(s) =G(s)/f_(s) is the transfer function representing the oscillatory
component of the spacecraft motion. Partial fraction expansion of the right

. . . D(s) _ 4
hand side of transfer function (9) yields 2ces) =— +H(s) where,
s°C(s

COS
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d
—02— }O% on the basis that the rigid-body motional response to the control
CyS

torque must be that of a double integrator. It then follows that H(s) =W, (s)

comprises the remaining terms of the partial fraction expansion which model the
flexure mode dynamics. Setting ¢, =d, without loss of generality then yields,

upon comparison with equation (9):-

D(s)-C
W_(9) = :‘(()) wa(s)—wa(s)=%&—s-)(i) (10)
(dyy = Cpp )M +(@damny - cZ(M_l))s(z(M_2)+,..+(d2 ~-¢c,)

2M (2M-1) 2

ComS FCopm-S +.4C 8" +¢

2 0
Since the polynomial, C(s), contains only even powers of s, the remaining terms
of the partial fraction expansion must be of the form, ii / (s2 +coi2) and these

may be recognised as simple harmonic oscillators with natural frequencies, o,,

as would be expected in the flexure mode part of the model. These terms may
then be associated on a one-to-one basis with the individual flexural motion
M
variables, &, . Then, recalling that & = )_d, :-
i=1

i=1, : (11)

Comparing the right hand sides of equations (10) and (11) then yields the
following system of 2m simultaneous equations in ii and m“; -

M J- MM
Zk ==y =T Uk 207 | =dyy =y

...... M[ ]’]mJ d,-c,

1 Lizj

(12a)

M
2 _ 2
_CZ(M—Z)""’iI:IImi =c, (12b)

Mz
e

Lkl &1
1}

}:O

Z
™M
e
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Assuming that the coefficients, ¢,, are known in the first place, equations (12b)
may be solved for 6312 Then equations (12a) may be solved for the coefficients

Ei. It is evident from equation (11) that these coefficients determine the

relative amplitudes of the oscillations of each mode caused by a given arbitrary
input, m_(t). They are therefore referred to as the excitability coefficients

defined by Rutkovsky and Sukhanov[9]. Finally, transforming the transfer
functions, W:(s) and W(s), to the time domain yields the following

differential equations of the modal physical model:-

a="f(u,), fu)=T (u)/], (13a)

d,+678, =K f(uy), i=1.,M (13b)
M

A=2.0, a=0+a a=0,9,y (13c)

where u_ is the input to the control actuator determined by a suitable control
law, u =u_(a,a,t). The function I' (u_), represents the actuator transfer
characteristic. Given the structure of the modal physical model, then the vector
of ordered fundamental frequencies ® =(®, <®, <..<®,;)and the
corresponding vector of excitability coefficients k = (EI ’Ez ,.A..,EM) together
determine the dynamic characteristics of the spacecraft.

4 The Dynamic Portrait
The new theory of the dynamic portrait will now be presented. Let a structural

design parameter of the spacecraft, such as the length of a solar panel be
denoted by A. Then the spacecraft dynamic parameters, ©. and ﬁi , in model

(13) will be functions of A, ie, cT)iz(k) and Ei (A). Another important
parameter is the mean value of the flexure mode displacement with a constant
control acceleration of magnitude, f_, and this will also be a function of A.
From equation (13b), this is seen to be:-

£k ()
a.(AM)=—"— i=12..M 14)
i) 512 - (

This, in effect, is another form of modal excitability parameter with a larger
empbhasis on low frequency modes than the previously defined modal excitability

coefficient, k,(A). In general, the graph of the j* dynamic parameter, P asa
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function of the k™ structural parameter, A, , may be plotted to form a family of
characteristics, Pj(lk), je(l, J), k e(l, K) and this provides what may be

referred to as the dynamic portraif[9) of the spacecraft. An example of such a
dynamic portrait is shown in Figure 5.

As pointed out previously, a model should first be developed representing
the real spacecraft. This should be as accurate as possible, including afl the
modes that are suspected of having even the slightest interaction with the
attitude control loops to be designed. This model, however, will inevitably be
of a considerably high order, perhaps several hundred in some cases, and it is
therefore desirable to obtain a realistic model of lower order containing only the
modes requiring active damping. It commonly believed that the most dominant
modes are always the lowest frequency ones, leading to the simple model order
reduction method of eliminating all the modes above a certain frequency. For
any ordered pair of natural frequencies, ®, <@, it is possible, however, to

have a_, >or<d_,. Thus, the most dominant mode is not necessarily the

1 2

lowest frequency one, but certainly has the highest value of o which will be
denoted by o _,. This leads to the more rigorous model order reduction

method of ranking the modes with respect to the relative degrees of modal
excitability, a_, and eliminating all the modes having values below a chosen

threshold. Unfortunately, there is no available formula for the choice of this
threshold and it is therefore a matter of judgement. It is suggested here,
however, that any mode for which

—~

d,, <01d,, (15)

may be ignored. The dynamic portrait is envisaged to be a useful tool in this
model reduction process, using, for example, the third family of characteristics
in Figure 5.

At the opposite end of the scale, it is interesting to note that some
structures exist, with particular reference to the branched mechanical
configuration, in which one or more flexure modes are not substantially excited
by the control actuators. In theory, uncontrollable modes are possible in the
sense that & _; =0. This condition may easily be determined with the aid of the

dynamic portrait by searching for minima of &ci(k) with respect to . Such

uncontrollable modes are evident Figure 5. This leads to the concept of
designing a spacecraft structure to purposely satisfy this condition for as many
flexure modes as possible to minimise the number of significant modes requiring
active control, but this must be done with extreme caution, paying attention to
sources of external disturbance that may excite the uncontrollable modes
through acting on different regions of the structure than the rigid centre-body
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Figure 5 An example of a dynamic portrait
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where the control actuators are situated.

In view of the foregoing, the reduced order model for control system
synthesis comprises equation (13a) of the rigid centre-body together with m of
the M flexure mode equations (13b) which must be taken into consideration in
compliance with condition (15). The lowest order LFS model comprises the
rigid-body part of equation (13a) together with just the dominant flexure mode,
o ;. It is suggested that after the model order reduction has been carried out

that the original model is retained for inclusion in control system simulations to
confirm the validity of the simplified model on which the control law is based.

The following section develops another analysis method appropriate to
attitude control systems employing on-off gas jet actuators, again using the
modal physical model (13).

5 Double Phase Plane Analysis of LSS

5.1 The Basic Trajectories

This alternative method of analysis of FS and particularly LFS, leading to model
order reduction, is that of the double phase plane (DPP) of Rutkovsky and
Sukhanov(2][3] and is particularly useful where gas-jet (on-off thruster) control
actuators are employed with special control laws intended to achieve active
modal damping such as generated by Dodds and Williamson[10] and Rutkovsky
and Sukhanov[11]. The method is based on the well known phase plane
method for second order systems. Each of the co-ordinates of the modal
physical model is described by a second order sub-system and, as previously
stated, is influenced only by the control variables and not by other co-ordinates.
After expressing each of these sub-systems in the control canonical form,
therefore, their phase-trajectories may be plotted on individual phase planes.
Here, phase variables are defined as state variables of a chain of pure
integrators, comprising the output of the last integrator and its time derivatives,
as in the control canonical form.

The essence of the DPP method is to first plot the rigid-body phase

trajectory [?i(t), &(t)] and then plot the modal phase trajectories [Gii(t), &i(t)]

on the same diagram but with all their origins moved to the point, [&(t), &(t)]A

In this way the effect of individual flexure modes on the attitude motion of the
spacecraft may be displayed on a single diagram by superimposing the phase
trajectory of the flexure mode in question on the rigid-body phase trajectory. In
this process, of course, the axes of the flexure mode phase plane remain parallel
to but translate with respect to the fixed axes of the rigid-body phase plane.

In order to carry out the double phase plane analysis, the aforementioned
phase trajectories will be determined analytically. First, the following scaling of
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the modal rates is carried out to ensure that the phase trajectory of the dominant
flexure mode is circular with a constant control variable. Thus:-

e

o

o
o

B=

(=%
(=9

The same scaling is applied to both rates to enable a direct comparison between
the rigid body and flexure mode motions to be made. The rigid-body and
dominant flexure mode state differential equations corresponding to equations
(13a) and (13b) are then, respectively:-

]

6-
noting from equation (14) that m(u) =E—dac(u) . Dividing the left hand sides
d
of these equations to eliminate time then vyields the corresponding phase
trajectory differential equations:-

B

=k
da ()’

afa
I R

In the case of gas-jet control, m(u(t)) is a piecewise constant function and these
equations may be solved by the method of separation of variables. Thus:-

kBB
CL=(l0 +TC(‘;)— (16)

B% +[@-&, (W =B+, - &, (W} a7

where a, B—O, &0 and Eo are the initial phase variables. It is evident from

equations (16) that the phase portrait of the rigid-body mode is a family of
parabolic trajectories symmetrical about the o axis and that the phase portrait
of the dominant flexure mode is a family of circular trajectories with centre at

the point, [&c(u),O] . In the polar co-ordinate system, these trajectories can be

represented by a radius vector, p, of length equal to the amplitude of oscillations
relative to the static deflection, o, . Thus:-
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1
p=(B* +[a & (])? (18)

The oscillation phase, ¢, measured as the clockwise increasing angle between
the line of length, r, joining the point, [E(t),&(t)] to the describing point,
[E(t) +a(t), a(t) +&(t)] of the true attitude motion is given by:-

o= arctg(a%(?)} (19)

The trajectories discussed above are illustrated in Figure 6.

- T
1}
e au

NG
I
el ey

motion of dominant
flexure mode

\( motion of rigid-body mode

Figure 6 Double phase plane diagram for rigid body mode and dominant flexure
mode alone and constant control torque

The complete phase trajectories, of course, depend on the timing of the
sequence of piece-wise constant control torques produced by the particular gas-
jet control law employed but the trajectories described in this section may be
used to analyse the system for each interval of constant u.

5.2 Wash-out Double Phase Plane
For spacecraft models with more than one flexure mode, the double phase plane

method introduced in section 4.1 may be extended to display the attitude motion
of the spacecraft on a single diagram by adding the individual flexure mode
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displacements and similarly adding the flexure mode rates to form a composite
flexure mode phase trajectory which, after several cycles of the lowest
frequency component have passed, appears as a “noisy” ring instead of a circle.
In the phase double plane, this trajectory is superimposed on the parabolic rigid-
body phase trajectory, sweeping out a swathe on the diagram which appears as
a ‘noisy ring’, as illustrated in Figure 7.
~ w
- B Instantaneous noise-like
B = elastic motion of

combined flexure modes

A
Mean elastic motion
of combined flexure
/ modes
B T
/ p
\ —~
\{‘ motion of rigid-body mode

Figure 7 Double phase plane diagram for rigid body mode and multiple flexure
modes and constant control torque

81|Qa.

etlm-

Q1

This effect gives rise to the name ‘wash-out double phase plane’. The statistical
mean radius, p, of the noisy ring forms a useful means of assessing the overall
effect of the flexure mode oscillations. This can be calculated as follows. Let

.%.
e G g
=1,12d T
y = === (20)
a’cd acd

M J~.

where @ . = ;& i = ZTij_l is defined as the degree of excitability of the

multiple-frequency elastic .oscillations and bj is the coefficient of reduced

rigidity of the i” elastic link. Then the width of the noisy ring is given by:-
Ll

An interesting approach of Rutkovsky and Sukhanov[12] is to simplify the
flexure mode model by starting with just the circular trajectory, [a(t),B(t)] , of
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the dominant flexure mode superimposed on the parabolic rigid-body mode
trajectory, yielding a similar double phase plane trajectory to that shown in
Figure 6. Then, the remaining M —1 modes are replaced by an equivalent
narrow-band random process. This is a single sinusoid:-

a ()= A (t)cos[o ()+ (1)] 21

where A_(t),0 (t)and ¢ (t) are, respectively, the amplitude , frequency and

phase which are each random variables with probability distributions chosen to
closely approximate the sum of the M sinusoidal components of the real flexure
modes with constant amplitudes, frequencies and phase angles. The trajectory,

{ar(t),Br(t)] of this random process, where Br(t)=dr(t), is then

superimposed on the determinate circular trajectory [& d(t),fi~ d(t)} of the

dominant mode to yield a double phase plane diagram as in Figure 7.

6 Precise Definition of Large Flexible Spacecraft

The modal physical model and the double phase plane method will now be used
to introduce quantitative correlations providing an exact definition of large
flexible spacecraft.

Once the parameters of model (13) are assigned, then the spectrum
boundaries of the fundamental frequencies of the elastic oscillations may be
calculated. The lower bound coincides with the magnitude of the mode with the
lowest frequency, @,. Then, the closeness of the upper bound of the closed-
loop attitude control system frequency response, assuming rigid-body dynamics,
to @, determines the degree of difficulty in guaranteeing the stability of both

the rigid-body motion and the flexural motion, as pointed out by Nurr et. al [1],
thereby determining the complexity of the control law ultimately to be applied in
terms of the number of flexure modes that must be actively controlled together
with the rigid-body mode. The synthesis of suitable control laws has occupied
researchers for many years, particularly for gas-jet control where several
innovative methods have emerged, such as generated by Rutkovsky and
Sukhanov[2] and Dodds and Williamson [10].

The significance of a given flexure mode in the modal physical model may
be assessed by comparing its motion with that of the rigid-body mode,
considering deviations about the desired steady-state condition of the spacecraft
which, in most cases is zero flexure mode state and zero centre-body pointing
error. A simply way of achieving this is to set zero initial state variables of the
model, corresponding to the desired state and then apply a constant control
torque and compare the modal states. The differential equations of motion
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(13a) and (13b) for fa(u):const, and zero initial conditions

@, =0, = &, =d, = 0 have the following solutions, considering just one mode

and omitting the suffix, i, for simplicity of notation:-
a0 =f1, @)=—f,0 22
a()=ft, al)=2f, (22)

&(t):iﬁac sin(EB t) , alt) :&c[l—cos(éi t)] (23)

where a_ = faia'z. Figure 8 shows a sketch of these solutions for three

different values of the modal excitability coefficient, k .

The first maximum of o (t) may be either
greater or less than a(t) at time t=1.
Clearly, for rigid body like behaviour,
a(t) <a(t) and for a(t)>al(r), the
flexure mode is very significant. The
intermediate condition, &(t) =a (1), may
therefore be used to define a boundary

Figure 8 Comparison of rigid-body ~separating large flexible spacecraft from

and flexure mode disp[acéments others. Hence, a Spacecraﬁ falls within
the LFS class if

a(t) za(r) 24)

"/E>n2/4
/’/,,,/E=n2/4

According to the second of equations (23), the flexure mode displacement first
reaches its maximum value at half the modal period. Hence t=n/0.
Evaluating o(t) and o(t) using the second of equations (22) and (23) then
2 ~
yields a(t) = lf % and a(1)=2f Niz and so condition (24) is equivalent
2 a m.- a @
to the following condition that an LFS must satisfy:-

2
~ T
A spacecraft is an LFS if k 2—4—- for any flexure mode (25)

Since this definition is independent of the flexure mode frequency, however, it
cannot be used alone to define a boundary segregating the class of LFS from the
others. Spacecraft not qualifying as LFS would be expected to exhibit dynamic
behaviour resembling that of a rigid body. It is possible for a spacecraft with a
very low frequency flexure mode and low excitability coefficient, which hardly
approximates a rigid body, to satisfy definition (25). It will therefore be
considered only as a necessary condition for LSS. Hence a further criterion
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will now be sought which involves the flexure mode frequencies to complete the
definition of LFS. Phase plane analysis will be employed for this purpose, with
the same zero initial conditions as before.

The focus of the parabolic phase plane trajectory

a’=2f @ (26)

a
of the rigid-body mode is located on the & axis at the point (&, &) = (045 f, o),
as indicated in Figure 9. Since the lower bound of the elastic mode spectrum is
defined by the frequency, @,, of the

first mode, only this mode will be
considered. Its trajectory in the phase
plane is an ellipse

e +[a-a ) =a? @7

with centre at the point,
(&, &) = (fai(ﬁ_z , 0)4 Figure 8 shows

Figure 9 Comparison of rigid body

and lowest frequency flexure x _
mode phase trajectories that there is a point of intersection of

the two trajectories at @ =l =a~. The

rigid-body mode trajectory (26) is determined by only one parameter,
F=f, /2, and is therefore ‘frozen’ by setting f_ =const. On the other hand,

the eccentricity and centre of the elliptical flexure mode trajectory (27) may be

changed, respectively, by means of & and k .
It should be noted that although the trajectories of Figure 9 cross at the

point, @ =d =a", in general, they do not pass through this point at the same
time. The constraints imposed on the relative values of F and &c by coincident

arrival at the point of coincidence in Figure 9 for different flexible spacecraft
subject to the same control acceleration, fx, will now be examined. The

simultaneous solution of equations (26) and (27) forces arrival of the describing
points of the trajectories at the point of intersection at the same time, yielding: -

2f
a*=—>(k-1) (28)
(0]

Hence, the coincidence is only possible if k > 1. It should be noted that the
necessary condition (25) automatically satisfies this inequality. With this
assumption, the variations of F and a_ over a wide range of & will now be
determined. Since f_(u) =const, the shape of the parabolic rigid-body mode

phase trajectory (26) is independent of @ . As supposed previously, as @ is
increased indefinitely, the dynamic behaviour of the spacecraft approaches that
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of a rigid body. Under these circumstances, o <<F because F=f /2 and

&c = faE(T) =2 which is very small for large @ and the intersection (28) of

trajectories occurs on the interval d <2a_ . When @ is small, the spacecraft
has very little ngidity and o >>F with the result that the elliptical flexure

mode trajectory is stretched along the o axis. In the region of intermediate
magnitudes of @, the dynamic behaviour of the spacecraft is characterized by
similar energy levels being associated with the components, ccand o . In this
case &c and F approach coincidence. In view of this, the condition

&c > F together with condition (25) will be taken together as the final criterion
for categorizing spacecraft as LFS. Since F=f /2 and &C = faﬁa 2 the
condition, &C 2 F, is equivalent to:-

~2 =~

a2 <2k (29)

The following definition of large flexible spacecraft may now be used instead of
the less precise one given at the beginning of section 2.1.

Any spacecraft of relatively large dimensions is a Large Flexible Spacecraft
(LES) if its dynamic behaviour is characterised in the modal physical
representation by closeness of any of the flexure mode motions to the rigid-

body motion, according to the conditions 4§i > n? and (312 <2k S E(l,---M)

7 Conclusions and Recommendations for Further Research

A generic model of flexible spacecraft with a branched structure, comprising a
rigid centre-body and flexible appendages has been presented together with a
new definition of large flexible spacecraft, enabling a model of manageable
order to be generated for the synthesis of attitude control systems. A new
dynamic portrait has also been presented which is recommended for use in the
structural design stage to facilitate the tailoring of the spacecraft dynamics to
ease the application of a particular control strategy. An example is the
minimisation of the excitability of flexural modes so that they may be ignored in
the control system design, but this procedure would have to be followed with
great care to ensure that external disturbances would not excite modes that are
uncontrollable by via the control variables.

It is highly recommended that for the purpose of substantiating the new
modelling methods presented, they are tried out with several different spacecraft
and the application of various attitude control laws simulated, including those
designed for on-off gas-jet actuators and continuous momentum exchange
actuators such as reaction wheels and control moment gyros.
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The new methods would be most effectively introduced as useful tools for
practicing spacraft control systems engineers by developing a user friendly
computer aided design package in which they would be incorporated. Such a
package would cater for the insertion of control laws under investigation to be
inserted and realistic simulations to be carried out with the higher order
spacecraft models used as the basis of the model order reduction.
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