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SOMMARIO 

La reazione di difesa innata/infiammatoria è attivata in risposta a patogeni esterni o 
a segnali provenienti dal tessuto danneggiato. I monociti/macrofagi hanno un ruolo 
chiave nell’inizio e risoluzione della infiammazione per mezzo di differenti 
programmi di attivazione. Infatti i macrofagi possono adottare in vivo una varietà di 
fenotipi diversi che dipendono dai cambiamenti del microambiente tissutale, 
esibendo un continuum di stati funzionali diversi. Inoltre i monociti del sangue 
periferico non sono una popolazione omogenea ma differiscono nei loro fenotipi e 
funzioni. Nonostante l’esplosivo aumento di informazioni sull’argomento, molte 
questioni sono ancora aperte riguardo la caratterizzazione fenotipica e funzionale 
dei monociti/macrofagi, e il loro ruolo durante l’omeostasi e l’infiammazione. La 
maggior parte dei dati provengono da studi sul topo e molti immunologi fanno 
ancora affidamento su modelli di topo malgrado la distanza evolutiva e le 
differenze tra i sistemi immuni murino e umano. Nel tentativo di capire le questioni 
di cui sopra e di dirigere gli sforzi verso una immunobiologia basata sull’uomo, il 
fine di questo lavoro è stato quello di costruire e validare un modello umano della 
risposta di difesa innata/infiammatoria in vitro che ricapitolasse le differenti fasi 
della reazione infiammatoria, dal reclutamento e inizio, allo sviluppo e risoluzione 
dell’infiammazione e conseguente ripristino della omeostasi. Il modello è basato su 
monociti umani primari del sangue esposti in coltura a cambiamenti sequenziali 
delle condizioni microambientali (chemiochine, citochine, temperatura, molecole di 
derivazione batterica, ecc.) per 48 h. L’analisi al citofluorimetro ha dimostrato che 
la popolazione monocitaria utilizzata era rappresentativa dell’eterogeneità 
monocitaria così come presente nella circolazione sanguigna. Tutte le fasi della 
risposta infiammatoria sono state definite mediante analisi trascrittomica effettuata 
con U133Plus 2.0 GeneChip (Affymetrix). I risultati sono stati confrontati e integrati 
con profili trascrizionali pubblicamente disponibili di monociti/macrofagi, raccolti e 
annotati in un database ad hoc. Il profilo trascrittomico di alcuni fattori trascrizionali 
e fattori correlati con l’infiammazione sono stati confermati e validati mediante 
qPCR e ELISA. La “cluster analysis” ha rivelato cluster ampi e distinti che 
comprendono geni con un chiaro andamento che ben descrivono le differenti fasi 
dell’infiammazione. Per ottenere maggiori indicazioni sul ruolo biologico dei geni 
differenzialmente espressi durante la risposta infammatoria, ciascun cluster è stato 
analizzato con la GSEA (Gene Set Enrichment Analysis). I set di geni identificati 
dalla GSEA correlati con il profilo di espressione dei differenti cluster ha rivelato 
che la fase infiammatoria era arricchita di pathway infiammatorie mentre la fase 
anti-infiammatoria, così come quella di risoluzione, di pathway relative al 
metabolismo, al ciclo cellulare e al riarrangiamento genico. Inoltre confrontando le 
liste dei geni differenzialmente espressi tra monociti e macrofagi M1 e tra monociti 
e macrofagi M2 estratte dal meta-database, è stato dimostrato che i monociti 
trattati in vitro secondo il modello mostrano un profilo M1 durante la fase 
infiammatoria e M2 durante la risoluzione. L’espressione genica dei fattori 
trascrizionali e di quelli relativi alla infiammazione rispecchiavano il profilo di 
espressione ottenuto con microarray. In conclusione i dati di microarray e l’analisi 
cinetica dei fattori infiammatori e anti-infiammatori validano il modello in vitro 
proposto, modello che consente di descrivere la sequenza tempo-dipendente e 
coordinata degli eventi relativi alla infiammazione.  
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ABSTRACT 

The innate/inflammatory defensive reaction is activated in response to foreign 
pathogens or signals from damaged tissue. Monocytes/macrophages are key 
players in the initiation and resolution of inflammation by different activation 
programmes. Indeed in vivo macrophages can adopt a variety of different 
phenotypes depending on changes in the tissue microenvironment displaying a 
continuum of diverse functional states. Moreover peripheral blood monocytes are 
not a homogeneous population but differ in their phenotypes and functions. In spite 
of the explosive growth of data, many issues are still open about the phenotypic 
and functional characterization of monocytes/macrophages, and their role during 
the homeostasis and in inflammatory conditions. The great majority of the data 
originates from studies in mice and many immunologists still rely on mouse models 
despite the evolutionary distance and the differences between the murine and 
human immune systems. In an attempt to understanding the above issues, and to 
direct efforts in human immunobiology, the aim of this work was to build and 
validate a human model of innate/inflammatory defence response in vitro that 
recapitulates the different phases of the inflammatory reaction, from recruitment 
and initiation, to development and resolution of inflammation, and re-establishment 
of homeostasis. The model is based on human primary blood monocytes exposed 
in culture to sequential changes of microenvironmental conditions (chemokines and 
cytokines, temperature, bacterial-derived molecules, etc.) for 48 h. The flow 
cytometrical analysis has shown that the monocyte population used is 
representative of the monocyte heterogeneity as present in the circulation. All 
phases of the inflammatory response were profiled by transcriptomic analysis 
carried out with U133Plus 2.0 GeneChip (Affymetrix). Results were compared and 
integrated with publicly available transcriptional profiles of monocyte/macrophages, 
collected and annotated in an ad hoc database. The transcriptomic profiling of 
some transcriptional and inflammatory-related factors were confirmed and 
validated by qPCR and by ELISA. The “cluster analysis” revealed broad distinct 
clusters comprising genes with a clear behaviour that well described the different 
phases of inflammation. To gain more insight into the biologic role of the genes that 
are differentially expressed during the inflammatory response, each cluster was 
subjected to gene set enrichment analysis (GSEA). The gene sets identified by 
GSEA correlated with the expression profile of different clusters revealed that the 
inflammatory phase was enriched in inflammatory pathways while the anti-
inflammatory phase, as well as the resolution phase, in pathways related to 
metabolism, cell cycle, and gene rearrangement. Moreover, by comparing the lists 
of differentially expressed gene between monocytes vs. M1 macrophages and vs. 
M2 macrophages extracted from the meta-database, it was shown that monocytes 
treated in vitro according to model resemble M1 during the inflammatory phase and 
M2 during the resolution. The gene expression of transcriptional and inflammatory-
related factors matched with the expression profile obtained with microarrays. In 
conclusion the microarray data and the kinetical analysis of inflammatory and anti-
inflammatory factors validate the proposed in vitro model of the inflammatory 
response, and allowed describing the time-dependent and coordinated sequence 
of inflammation-related events. 
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1. INTRODUCTION 

1.1 Overview of the inflammatory response 

In the healthy organism the innate immune system provides the first line of 

defence against external or internal danger signals, and functions by 

triggering a protective inflammatory response that develops during time 

through different phases: from initiation to full inflammation to resolution 

and re-establishment of tissue integrity. So the first phase of an 

inflammatory response is aimed at destroying pathogens, removing dead 

and dying cells, damaged extracellular matrix (ECM) material, and cellular 

debris, followed by a recovery phase in which the tissue is restored to a 

healthy, fully functional condition. Different ensembles of signalling 

molecules are utilized during each of these phases. These signals guide 

the recruitment into the tissue of cells needed to effect the removal and 

repair phases and within the microenvironment instruct the cells which of 

several states of differentiation are the appropriate ones to assume at that 

particular time. 

Briefly, when in a tissue occurs an infection or any potential dangerous 

event such as trauma, the innate immune system is activated by PAMPs 

(Pathogen-associated molecular patterns) or DAMPs (Damage-associated 

molecular patterns) [1, 2] respectively, which in turn activate receptors of 

innate immune system, PRR (Pattern-Recognition Receptor, such as Toll-

like receptors and NOD-like receptor) [3], setting in motion a local 

inflammatory response that includes the recruitment of leukocytes (i.e. 

neutrophils and monocytes) [4] from blood vessels and the production of a 

series of pro-inflammatory molecules (including chemokines, cytokines, 

vasoactive amines, eicosanoids and product of proteolytic cascade) by 

local immune cells (e.i. mast cells and resident macrophages). The most 

important signalling routes that generate inflammatory response are TNF 
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and Interleukin 1(IL-1)/Toll pathways. These pathways are a central 

component of the innate immune response to bacterial lipopolysaccharides 

(LPS), a main component of the outer membrane of Gram-negative 

bacteria such as Escherichia coli. Examples of genes up-regulated through 

activation of these pathway include IL-1β, IL-6, TNF-α, the chemokine IL-8, 

and the cell adhesion molecules ICAM-1 and E-selectin. These highly 

potent effectors together with reactive oxygen and nitrogen intermediates 

(ROIs and RNIs, respectively) releasing by neutrophils and macrophages, 

do not discriminate between microbial and host targets, so collateral 

damage to host tissue in unavoidable. Thus the activation of innate immune 

system has side effects collectively known as inflammation, mainly owing to 

tissue damage to the host, and the innate immune response and 

inflammatory response are two ways to call the same biological process. In 

the late phase of inflammation, T cells appear in the tissue by means of 

chemokines responsible for their recruitment, and may influence the 

inflammation progress before and resolution then. In fact, the lymphocytes 

and natural killer cells (NK) produce IFN-γ which keeps the innate immune 

cells in an active state but when the injurious stimulus is cleared and the 

inflammation is resolved with inflammatory cytokines catabolism, they 

produce anti-inflammatory cytokines IL-4, IL-13, and IL-10. These cytokines 

in turn induce innate immune cells to produce growth factors, tissue factors 

and anti-inflammatory cytokines, including TGF-β, responsible for the 

reconstruction and tissue remodelling. The inflammatory mechanisms are 

potentially harmful to the host, and so the inflammation has to be tightly 

controlled to avoid excessive tissue damage [5]. It is generally thought that 

a controlled inflammatory response, occurring for a short period of time 

(acute inflammation), has a therapeutic effect or physiological purpose in 

proving protection to the body against infection and injury, but if lasts too 

long as in the case of enhanced or deregulated reactions (chronic 



 

3 

 

inflammation) can itself become harmful and detrimental, and degenerate 

into a series of pathological conditions, from auto-inflammatory or chronic 

inflammatory to autoimmune diseases with deleterious consequences to 

the host. The chronic inflammatory state does not seem to be caused by 

classic inducers of inflammation, such as infection and injury. Instead, it 

seem to be associated with malfunction of tissue, that is, with the 

homeostatic imbalance of one of several physiological system that are not 

directly functionally related to host defence or tissue repair. Maintaining 

homeostasis, i.e. maintaining tissue morphology as well as tissue function, 

is the ultimate goal of tissue in multicellular organisms [6]. From this 

perspective inflammation also presumably evolved as an adaptive 

response to tissue malfunction or homeostatic imbalance [7]. Thus, while 

the disease state is a displacement from this homeostasis, the inflammation 

is an adaptive response for restoring homeostasis.  

The mononuclear phagocyte system (MPS) plays major roles in 

development, scavenging, inflammation, and anti-pathogen defences. 

Under the term MPS are grouped lineage-committed bone marrow 

precursors, circulating monocytes, resident macrophages and dendritic 

cells (DC) [8]. The issue of heterogeneity in the MPS still leads to a 

confusion and debate about DC as truly distinct cells from macrophages 

[9]1, but a review of this issue is beyond the scope of this essay, which 

focuses only on monocytes/macrophages. While the development and 

classification of monocytes and macrophages is very complex [10], here a 

simple scheme is shown (Figure 1). The monocytes/macrophages are 

involved in the host defence both by the direct elimination of foreign agents 

and as organizers of each different phases of the inflammatory process 

(see below). 

                                                           
1
 Macrophages and myeloid DC allegedly represent alternative differentiation options of 

bone marrow progenitors and blood monocytes. 
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Figure 1.  Genealogy and nomenclature of monocyte/ macrophage 
lineage. The picture is taken from Ref. 11. 



 

5 

 

1.2 Human blood monocyte subsets 

Monocytes are a group of cells constituting 5-10% of the total circulating 

leukocytes in humans. They have some typical morphological features such 

as irregular cell shape, oval- or kidney-shaped nucleus, cytoplasmic 

vesicles, and high cytoplasm-to-nucleus ratio. Monocytes can remain in the 

circulation for up to 3 days, after which time, if they have not been 

activated, they die and are removed. Monocytes originate in the bone 

marrow from the common monocyte, macrophage and DC precursor (MDP) 

[12], circulate in the bloodstream and enter tissues, where they differentiate 

into macrophages, in order to replenish the pool of tissue macrophages. 

Monocytes have been considered as the systemic reservoir of myeloid 

precursors for the renewal of tissue macrophages and antigen-presenting 

DC. However, many DC and macrophage subpopulations (for example, 

lymphoid organ DC, plasmacytoid DC, skin Langherans cell and brain 

microglia) originate from the MDP independently of monocytes [12, 13], and 

in some cases they can even develop directly from the bone marrow [14]. 

Abundant experimental evidence indicates that monocytes are innate 

effectors of the inflammatory response to microbes [15], killing pathogens 

via phagocytosis, production of reactive oxygen species (ROS), nitric oxide 

(NO), myeloperoxidase and inflammatory cytokines. In some circumstances 

they can trigger and polarize T-cell responses [15, 16] and may also 

contribute to tissue repair and neovascularisation. In addition, monocytes 

can both stimulate and suppress T-cell responses in infectious and 

autoimmune diseases [17]. Studying the biology of monocytes is useful for 

the understanding of susceptibility to infection, providing ideas and tools to 

control, delay, or alleviate the long-term detrimental side effects of the 

inflammatory response. It has long been recognized that human peripheral 

blood monocytes are not a homogeneous population but rather differ in 
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their phenotypes and functions. In recent years investigators have identified 

three functional subsets of human monocytes, the characterization of which 

is still in its infancy and is a matter of intense investigation, as well as the 

specific roles that they exert in homeostasis and inflammation in vivo, 

reminiscent of those of the previously described classically and alternatively 

activated macrophages (see below). The new nomenclature that groups 

monocytes into three subsets, based on the expression of the surface 

markers CD14 and CD16, has recently been approved by the 

Nomenclature Committee of the International Union of Immunologic 

Societies [18]. Based on this new nomenclature, the major population of 

human monocytes (90%) with high CD14 but no CD16 expression 

(CD14++CD16- or CD14+CD16-) are now termed classical monocytes, 

whereas the minor population (10%) of human monocytes is further 

subdivided into the intermediate subset, with low CD16 and high CD14 

(CD14++CD16+ or CD14+CD16+), and the non-classical subset, with high 

CD16 but with relatively lower CD14 expression (CD14+CD16++ or 

CD14dimCD16+) [18]2.  

Over the recent years, an increasing amount of knowledge has been 

gained in the field of monocyte subpopulations. Many authors 

demonstrated that the three subsets express different transcriptomes [22-

28], although discrepancy between studies were evident. These 

discrepancies may be due to differences in cell isolation methodology and 

in the purity of the cell populations isolated, the use of negative versus 

positive selection, and the microarray methodologies which use different 

                                                           
2
 Recent data, hovewer, indicate the this classification may be inappropriate and has led to 

confusion in functional studies, in part because CD16 expression is shared by many cell 
types and does not define a unique functional monocyte subset, and may mask 
heterogeneity the may be spread across some or all subsets. In fact, based on current 
evidence, there seems to be at least two distinct functional populations within the CD16

+ 

monocyte population, defined according to Tie-2 and slan expression [19, 20]. The 
expression of these surface markers does not follow the current definition of monocytes 
subsets based on CD14 and CD16 expression [21].  
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amounts of total RNA for the hybridization and different probes to identify 

the genes, and even distinct solid supports for the probes [29]. However, it 

seems there is stronger agreement for the proximity of relationship between 

the intermediate and non-classical monocyte subset, while the classical 

subset is the most distant subset [21]. This close relationship suggests a 

direct developmental relationship between these two subsets, although this 

has yet to be formally proven, as well as how characteristics previously 

ascribed to CD16+ monocytes are distributed between intermediate and 

non-classical subsets [21]. 

The physiological roles of monocyte subsets in vivo are not fully defined 

and the subsets might have different roles during the homeostasis, immune 

defense/inflammation, and tissue repair. In general terms, both human 

CD14++CD16- and CD14++CD16+ monocytes have inflammatory properties 

reminiscent of the murine Gr1+Ly6C+ monocytes, while CD14+CD16++ 

monocytes display patrolling properties similar to those of murine Gr1-Ly6C- 

monocytes.  

Moreover it is worth remembering that to date transcriptome analysis of 

monocyte subsets has been done at the basal unstimulated level and this 

has shown dramatic differences that are consistent with a different 

functionaI repertoire of the three types of monocytes. Since much of the 

function of monocytes involves their gene expression after activation, it will 

be important to analyze the stimulus-induced transcriptome of these cells in 

order to asses pro- and anti-inflammatory properties of the monocyte 

subsets. 

The three monocyte subsets are different in gene expression patterns, in 

their capacity to become activated and secrete key inflammatory cytokines 

in response to different stimuli, in antigen processing and presentation, in 

pro-angiogenic and patrolling behaviour. The phenotypic and functional 

differences between three monocyte subsets are summarized in Table I, 
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and recently discussed in an exhaustive review [21]. Moreover the authors 

of this review report a complete and referenced list of studies on bacterial 

and viral infections, autoimmune diseases and inflammatory conditions, in 

which the frequencies of the three monocyte subsets have been evaluated. 

Briefly, within the CD16+ cells, it appears that the intermediate subset is the 

main population to be perturbed in almost all disease conditions 

irrespective of their aetiology, while in bacterial and viral infections (e.g. 

sepsis, tubercolosis, dengue fever, hepatitis B, C and HIV) most studies 

observed a concurrent expansion of both the intermediate and non-

classical subsets. In the few studies on autoimmune disease (e.g. Crohn’s 

disease, rheumatoid arthritis) it has been reported expansion only in the 

intermediate subset, and for other inflammatory condition (e.g. asthma, 

coronary artery disease) excluding autoimmune disease, the expansion 

was either the intermediate or the non-classical subset.   

To date a relevant question that still needs to be elucidated concerns the 

origin of the various monocyte subpopulations. It is unknown if they are 

end-stages of different paths of differentiation of a common precursor, or 

they represent subsequent maturation stages in a common path of 

differentiation, where the intermediate subset could be a phenotypical 

and/or developmental intermediate between the classical and non-classical 

subsets. 

In the centre of this issue there are the differences in monocyte subset 

trafficking observed during the acute and chronic inflammation in studies on 

mice. In a model of Listeria monocytogenes infection, non-classical 

monocytes (Gr1-Ly6C-) extravasate rapidly within 1 h, invade the 

surrounding tissue, and develop a very early inflammatory response 

producing chemokines involved in the recruitment of the other effectors 

cells such as granulocytes, NK cells, and T cells, and cytokines, such as 

TNF-α a cytokine central to macrophage-mediate inflammation and the 
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innate response [31]. However this inflammatory response is only transient, 

and at 8 h after infection classical monocytes (Gr1+Ly6+) are the main 

producers of inflammatory cytokines. Moreover it has been observed that in 

the presence of Listeria monocytogenes pathogen in vivo, the two subsets 

of monocytes differentiate into two distinct cells types: Gr1-Ly6C- patrolling 

monocytes initiate a macrophage differentiation program that resembles 

that of M2 macrophages (see below), while Gr1+Ly6+ monocytes 

differentiate into DC-like cells that resemble Tip-DC [31]. On the other 

hand, only classical monocytes migrate to injured tissue in a model of 

skeletal muscle injury and determinate early inflammatory responses [32]. 

Generally, they infiltrate inflamed tissues more robustly than their non-

classical counterparts, and are specially increased in the circulation during 

systemic or chronic infection [15]. After engulfing dying cells, they 

differentiate into cells that resemble non-classical monocytes, which 

mediate tissue repair mechanism [32]. By contrast, after myocardial 

infarction, both monocyte subsets appear to home to the same tissue at 

different stages of inflammation [33]. Specifically, although the classical 

subset of monocytes first infiltrates the infracted heart and exhibits 

inflammatory functions, the non-classical subset is recruited at a later stage 

and promotes tissue healing by expressing high amounts of vascular 

endothelial growth factor [33]. The two subsets are under the control of 

distinct trafficking mechanisms, with the classical subset being recruited via 

CCR2 and the non-classical one utilizing a CXCR1-dependent pathway 

[33]. So, some studies conclude that classical monocytes had differentiated 

into non-classical monocytes [32], while others concluded that distinct 

populations of monocytes are recruited from the blood [31, 33]. Together, 

these observations reveal an unsuspected dichotomy of the differentiation 

potential and functions of blood monocytes subsets during Listeria 

monocytogenes infection and myocardial infarction. Moreover, in 
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atherosclerosis as a model of chronic inflammation, both monocyte subsets 

are recruited in the same time and healing is correlated with a reduction in 

total monocyte recruitment [34].  

Finally, these findings focus the attention on the fact that a specific subset 

of monocytes is committed to become a specific type of macrophage. In 

summary, in mouse it seems that the non-classical monocytes contribute to 

resident macrophage populations [35], and it is possible that when they are 

recruited in the inflamed tissue may differentiate into alternatively activated 

macrophages [31, 32, 33], while classical monocytes give rise to classically 

activated macrophages [31, 33, 36]. However the developmental 

relationship between the different monocyte subsets and different 

macrophage phenotypes has yet to be fully and formally proven and there 

is not yet strong supporting evidence in man.  
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1.3 Macrophage polarization  

Macrophages are very heterogeneous and versatile cells that are present in 

virtually all tissues. They originate from the differentiation of circulating 

peripheral blood monocytes that migrate into tissues under a variety of 

stimuli, including inflammation, infections and cell damage, to become 

resident tissue macrophages. The traditional role of these cells has been 

linked to the phagocytosis of pathogens or cellular debris, and the host 

defence and tissue repair [37, 38]. However, independent of inflammation 

and tissue damage, macrophages also play a central role in tissue 

homeostasis by clearing apoptotic or senescent cells. Resident 

macrophages constitute 5-15% of the total cell number of most organs and 

their number is increased further in response to inflammatory stimuli. The 

specialization of macrophages in particular microenvironments explains 

their heterogeneity. They can be classified, according to their tissue 

location, into osteoclasts (bone), alveolar macrophages (lungs), microglial 

cells (CNS), histiocytes (connective tissues), Kupffer cells (liver), 

Langerhans cells (skin) and so on. Moreover macrophages can undergo 

different activation processes and gain different functional phenotypes, as a 

consequence of tissue-derived (damaged tissue) or cell-derived signals 

(from microbes or activated lymphocyte) in surrounding microenvironment 

[8, 39, 40]. The macrophage polarization defines the different typologies of 

the activation programs to which the cells answer to carry out their 

defensive functions. In this way macrophages become able to response 

with appropriate functions in distinct contexts, and the functional diversity 

becomes the key feature of these cells. Although the microenvironmental 

stimuli and the resulting functional phenotypes are varied, two main 

macrophage phenotypes have been suggested, mirroring the Th1/Th2 

polarization scheme. In fact, a useful and dominant nomenclature for CD4+ 
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T cells reflects the roles that these helper cells play in a given scenario of 

inflammation. Type 1 immune response, mediated by Th1 cells, refers to 

the inflammatory response that clears viral, bacterial, and protozoan 

infections. Type 2 immune response, mediated by Th2 cells, refers to a 

response that is more efficacious in clearing multicellular parasites. Since it 

has been shown that distinct populations of macrophages facilitate and 

control type 1 and type 2 immune responses not surprisingly they have 

been termed M1 or classically activated macrophages, and M2 or 

alternative activated macrophages, respectively [41, 42]. Th1-related 

cytokines like  IFN-γ, alone or in concert with microbial stimuli (e.g. LPS) or 

cytokines (e.g. TNF-α), activate macrophages towards the functional M1 

program. M1 macrophages are characterized by an IL-12hiIL-23hiIL-10lo 

phenotype; are efficient producers of effector molecules (ROI and RNI) and 

inflammatory cytokines (IL-1β, TNF, IL-6); participate as inducers and 

effector cells in polarized Th1 responses; mediate resistance against 

intracellular parasites and tumors [43, 44]. Conversely, anti-inflammatory 

cytokines can induce the M2 activation program (alternative activation). M2 

macrophages are regarded as a continuum of functionally and 

phenotypically related cells generated in response to a variety of stimuli. In 

fact, M2 macrophages are generally divided into a, b, and c subtypes [41, 

42]. They appear to perform separate tasks in inflammation with variable 

capacity to produce inflammatory cytokines depending on the signal, and 

are designated by different monikers in different publications. M2a 

macrophages are the alternatively activated or profibrotic macrophages, 

elicited by Th2-related cytokines IL-4 or IL-13 [45]. M2b are regulators or 

Th2-related macrophages, activated by triggering of Fcγ receptors in 

presence of a Toll-like receptor (TLR) stimulus. M2c are deactivated cells, 

involved in remodeling, or anti-inflammatory cells, elicited by 

glucocorticoids, IL-10 or TGF-β. Some researchers also regarded the M2c 
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as regulatory macrophages [45, 46, 47]. M2 cells are characterized by an 

IL-12loIL-23loIL-10hi phenotype and generally have high levels of scavenger, 

mannose and galactose-type receptors, and their arginine metabolism is 

shifted to ornithine and polyamines, while in M1 is shifted to NO and 

citrulline. In addition, differential regulation of components of the IL-1 

system occurs in alternatively polarized macrophages, with low levels of IL-

1β and caspase-1, and high levels of IL-1Ra and decoy IL-1 type II receptor 

(sIL-1RII) [48]; the opposite regulation occurs in M1 cells [44]. IL-33,  

another cytokine of the IL-1 family, is associated with Th2 and M2 

polarization [49, 50]. In general, alternative macrophages take part in 

polarized Th2 responses, allergy, parasites clearance, the dampening of 

inflammation, the promotion of tissue remodeling, angiogenesis,  

immunoregulation, and tumor promotion [52].  

Macrophage taxonomy is an attempt to rationally categorize an extended 

variety of cell functions. Indeed the M1/M2 paradigm is limiting to define the 

complexity and plasticity of mononuclear phagocytes. In vivo macrophages 

can adopt a variety of functional phenotypes depending on changes in the 

tissue microenvironment. So, the polarization of macrophage functions 

should be viewed as an operationally useful, simplified, conceptual 

framework describing a continuum of diverse functional states, of which M1 

and M2 activation states are not ontogenically defined subsets but 

represent the extremes [42, 47, 50, 52]. The classification M1/M2 persists 

despite a growing body of evidence indicating that M2 designation 

encompasses cells with dramatic differences in their biochemistry and 

physiology [53]. In this regard Mosser and Edward [47] have suggested a 

macrophage classification taking into account the three functions of these 

cells in maintaining homeostasis: host defence, would healing, and immune 

regulation. Classifying macrophages according to these functions provides 

three basic macrophage population: classically activated macrophages, 



 

15 

 

wound-healing macrophages and regulatory macrophages. The authors 

believe that this classification also helps to illustrate how macrophages can 

evolve to exhibit characteristics that are shared by more than one 

macrophage population [47]. Though agreeing with the concept of this 

classification, in general terms this essay will continue to refer to M1 and 

M2 macrophages, as the most authors still do. In fact, while M1, M2a, M2b, 

M2c do not necessarily represent distinct populations of cells, they do 

represent a useful functional nomenclature. 

M1 and M2 macrophages have distinct chemokinome profiles, with M1 

macrophages expressing Th1 attracting chemokines such as CXCL9 and 

CXCL10, and M2 macrophages expressing the chemokines CCL17, CCL22 

and CCL24 [54, 55]. Chemokines can also influence macrophage 

polarization, with CCL2 and CXCL4 driving macrophages to an M2-like 

phenotype [56, 57]. 

M1 and M2 polarized macrophages have distinct features in terms of 

metabolism of the iron, folate and glucose [58, 59], and it has long been 

known that macrophages and metabolism are connected [58]. Indeed, 

recent evidence shows the importance of metabolism in shaping the 

functional phenotype of macrophages in response to distinct polarizing 

stimuli in the tissue microenvironment, under normal as well as pathological 

settings. The macrophage-metabolism connection has two faces: on one 

hand, macrophages exert an “extrinsic” regulatory function on metabolic 

functions, via release of soluble mediators such as inflammatory cytokines; 

on the other hand, “intrinsic” metabolic functions of these cells contribute to 

shaping their activation state [58, 59]. Polarized macrophages show a 

distinct regulation of glucose metabolism. Macrophages in response to M1 

stimuli display a metabolic shift towards the anaerobic glycolytic pathway, 

while exposure to M2 stimuli such as IL-4 show a minor effect [60]. The use 

of specific metabolic pathways can be functionally related to different 
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purposes. M1 activated macrophages are often associated with acute 

infection: these cells need to quickly acquire microbicidal activity as well as 

keep up with the hypoxic tissue microenvironment [61]. In this context, an 

anaerobic process like glycolysis is best suited to meet their rapid energy 

requirements. In contrast, M2 polarization-related functions like tissue 

remodelling, repair and healing require a sustained supply of energy. This 

request is fulfilled by oxidative glucose metabolism (oxidative 

phosphorylation), which is believed to be the metabolic pathway of choice 

in M2 macrophages [62]. Moreover M2 macrophages show a significant up-

regulation of fatty acid uptake and fatty acid oxidation, which are 

suppressed in M1 macrophages [63]. Lipid metabolism also contributes to 

macrophage phagocytosis by fulfilling its energetic needs and regulating 

membrane fluidity necessary for this process. In fact, saturated and 

unsaturated fatty acids differentially modulate macrophage pahgocytosis. 

Also the amino acid metabolism is closely linked to the functional 

phenotype of myelomonocytic cells. M1 macrophages are characterized by 

the expression of NO-synthase 2 (NOS2) and  production of NO, which is 

an important effector for their microbicidal activity [64]. In contrast, M2 

macrophages do not produce NO, but express high levels of arginase-1 

(ARG-1), which catalyses polyamine production which is necessary for 

collagen synthesis, cell proliferation, fibrosis and other tissue remodeling 

functions [65]. Interestingly polyamine production per se has been reported 

to be a driver of M2 polarization [66]. Moreover, evidence supports a critical 

role for the metabolism of various aminoacids in regulating different steps 

of both innate and adaptive immunity, and catabolitic enzymes, such as 

indoleamine 2, 3-dioxygenase (IDO), ARG1 and NOS2, have acquired 

novel functions [67]. L-arginine-derived metabolites, cysteine/cysteine, and 

tryptophan metabolism (via IDO) are important mediators of the 

immunosuppressive activity of myeloid-derived suppressor cells (MDSCs). 
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Similarly, intracellular nicotinamide adenine dinucleotide (NAD), an end 

product of tryptophan metabolism, has been demonstrated as an important 

regulator of inflammatory cytokines like TNF and IL-6 in mononuclear 

phagocytes, with implications in various pathologies [68].  

Recent studies in mouse as well as human macrophages show striking 

differences in iron metabolism between M1 and M2 polarized cells [69, 70]. 

M1 macrophages express high levels of proteins involved in iron storage, 

such as ferritin while expressing low levels of ferroportin, an iron exporter. 

In contrast, M2 macrophages show low levels of ferritin but high levels of 

ferroportin. This divergent iron metabolism can be related to functional 

outcomes. Sequestration of iron by M1 cells would have a bacteriostatic 

effect (since iron is essential for supporting growth) and thus support host 

protection from infection. Conversely, iron release from M2 cells would 

favour tissue repair as well as tumor growth, consistent with the functional 

phenotype of these cells. Based on the facts presented above, it is clear 

that divergent iron management seems to be an important metabolic 

signature in polarized macrophages [71]. Collectively, these facts highlight 

that metabolic adaptation is an integral aspect of macrophage polarization 

and their functional diversity.  

In physiological and pathological conditions macrophages are confronted 

with an oxygen gradient and contribute to the orchestration of the tissue 

response to hypoxic conditions [72]. They adapt to hypoxia by shifting their 

metabolic setting to glycolysis [40]. In addition, activation of hypoxia 

inducible factor (HIF) 1 and 2 orchestrates profound functional changes, 

including expression of chemokines and chemokine receptors (CXCR4 and 

CXCL12) [73] and angiogenic factor (VEGF).  

In summary, the initial inflammatory response is carried out by activated 

macrophages in classical or alternative modality, eliminating invading 

microbes and promoting the inflammatory response, whereas the resolution 
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phase is carried out by macrophages in deactivated modality, unresponsive 

to inflammatory stimuli and active in the elimination of the injured cells and 

tissues, in promoting angiogenesis, cell proliferation, matrix deposition and 

in general in tissue remodeling (Figure 2). The mechanisms that account 

for macrophage deactivation play key roles in maintaining homeostasis and 

keeping the immune response under control [74]. Both innate and adaptive 

signals can influence macrophage phenotype alterations, which can have 

potentially dangerous consequences if not appropriately regulated. For 

example, classically activated macrophages can cause damage to host 

tissues, predispose surrounding tissue to neoplastic transformation and 

influence glucose metabolism by promoting insulin resistance (see later). 

Macrophages that are normally involved in wound healing can promote 

fibrosis, exacerbate allergic responses and be exploited by pathogens for 

intracellular survival. Regulatory macrophages can contribute to the 

progression of neoplasia (see later), and the high levels of IL-10 that these 

cells produce can predispose the host to infection. 
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Figure 2. Schematic representation of the M1- and M2-polarized macrophages. 
The polarizing signals and major molecular, metabolic and functional 
characteristic of these macrophages are indicated. Subtypes of M2-polarized 
macrophages are not distinguished in this figure. The figure is taken from [59]. 
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1.4 Macrophage plasticity 

Plasticity and flexibility are key features of macrophages and of their 

activation states. A controversial issue is whether a phenotypic and 

functional evolution of macrophages occurs in vivo. Several studies 

suggest that the phenotype of polarized M1-M2 macrophages can change, 

to some extent, and reverse in vitro and in vivo [75, 76]. As mentioned 

above, in mice it has been observed that the M1 to M2 switch during the 

progression of the inflammatory response enables the dual role of 

macrophages in orchestrating the onset of inflammation and subsequently 

promoting healing and repair [31, 32, 33]. The controversy refers to the 

mechanism underlying this switch is whether M1 and M2 macrophages 

consist of phenotypically distinct subpopulations that can serve different 

functions [31, 33] or the same cells can shift from one to another functional 

phenotype based on microenviromental signals [32]. So it is not clear 

whether this phenotypic alteration is the result of the de-differentation of the 

original macrophages back to the resting state or of the migration of a new 

subpopulation of macrophages into the tissue site where they replace the 

first cells. Regardless of the mechanisms, there are some cases in which a 

phenotypic switch in the macrophages population occurs over time and 

often is associated with pathology. Three specific examples of this 

phenotypic switch are reported: 1. endotoxin tolerance, an altered state of 

responsiveness to secondary stimulation with LPS, resulting in a global and 

sustained switch of the gene expression program from a pro-inflammatory 

M1 signature to an M2-like anti-inflammatory phenotype [77]; 2. obesity-

induced insulin resistance or type-2 diabetes, and atherosclerosis lesions 

are metabolic syndromes that can lead to a switch in the phenotype of 

adipose tissue macrophages from wound-healing (as in healthy, non-obese 

humans) to classically activated macrophages [78, 79]; 3. cancer, where 
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the original classically activated macrophages have the potential to 

contribute to the earliest stages of neoplasia [80], and then, as tumor 

progresses, can progressively differentiate to a regulatory phenotype and 

eventually become cells that share the characteristics of both regulatory 

and wound-healing macrophages [47]. Although the pathology provides 

proof of principle that macrophages can undergo dynamic transitions 

between different functional states, the stability of M1 and M2 phenotypes 

in a physiological setting is still unclear and requires further investigation. 

However, it is now apparent that specialized or polarized T cells (Th1, Th2, 

Treg) that are key orchestrators of macrophage polarized activation [51] 

also exhibit previously unsuspected flexibility and plasticity [81]. The 

commonly held view is that macrophage polarization is driven by cues in 

the tissue microenvironment, which can include cytokines, growth factors 

and micro-organism associated molecular patterns. These signals are 

thought to dictate a transcriptional response that shapes the phenotype and 

function of macrophages on the basis of the physiological or 

pathophysiological context. This model is based on a large number of 

independent experimental studies. However the data are still incomplete 

and far from being systematic, and our knowledge of the molecular 

determinants (mechanistic basis) of macrophage diversity in different 

tissues or in response to changing environment is to a large extent 

unknown. Progress has been made in defining the molecular mechanism 

underlying macrophage polarization, including signalling pathways, miRNA, 

epigenetic modification, posttranscriptional regulators, and transcriptional 

factors [52, 59, 74, 82, 83]. Briefly it is worth to remember in this essay the 

recent advances/progress in understanding of the transcriptional regulation 

of macrophage polarization, i.e. of inflammatory response. The 

transcriptional factors can translate signals from the microenvironment into 

a polarized macrophage phenotype imposing different requirements for 
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gene activation in response to stimulation [82, 83]. For example the 

induction of the transcriptional response by LPS in macrophages is 

orchestrated by many transcription factors, consistent with the complexity 

of the response. These transcriptional factors can be divided into three 

categories on the basis of their mode of activation and function. The first 

category consists of transcriptional factors that are constitutively expressed 

and that are activated by signal-dependent post-translational modifications 

(e.g. NF-kB, IFN-regulatory factors - IRFs- and cAMP-responsive-element-

binding protein 1 - CREB1). The second category of transcription factors 

are synthesized de novo after LPS stimulation, and they could enable the 

reprogramming of macrophage functions (e.g. CCAAT/enhancer-binding 

protein-δ – C/EBPδ). The third category of transcriptional factors consists of 

lineage-specific transcriptional regulators, the expression of which is turned 

on during macrophage differentiation (e.g. PU.1, runt-related transcription 

factor 1 – RUNX1 ) and their combined expression specifies the 

macrophage phenotype. The transcription factors of the three categories do 

not act independently, but function coordinately to effect the LPS-induced 

transcriptional response [84, 85, 86].  

A network of signalling molecules and transcription factors underlies the 

different forms of macrophage activation. Canonical IRF/STAT signalling 

pathways are activated by IFN and TLR signalling to skew macrophages 

function towards the M1 phenotype via STAT1; or by IL-4/IL-13 and IL-10 to 

skew towards the M2 phenotype via STAT6 and STAT3 [87, 88]. The 

balance between activation of STAT1 and STAT3/STAT6 finely regulates 

macrophage polarization and activity. A predominance of NF-kB and 

STAT1 activation promotes M1 macrophage polarization, resulting in 

cytotoxic and inflammatory function, while a predominance of STAT3 and 

STAT6 activation results in M2 macrophage polarization, associated with 

immune suppression and tumor progression. STAT-mediated activation of 
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macrophages is regulated by members of SOCS family. IL-4 and IFN-γ, the 

latter in concert with TLR stimulation, up-regulate SOCS1 and SOCS3, 

which in turn inhibit the action of STAT1 and STAT3, respectively [89, 90]. 

Downstream of, or in parallel with, the IRF/STAT/SOCS pathway, a panel 

of transcription factors orchestrates polarized macrophage activation, and 

some of these are described hereafter.  

NF-kB is a key transcription factor related to M1 macrophage activation that 

regulates the expression of a large number of inflammatory genes like 

TNFA, IL1B, COX2, IL6 and IL12p40, characteristic of the M1 polarization 

state [91]. However, NF-κB activation also activates a genetic program 

essential for resolution of inflammation [92] and for M2 polarization of 

tumor-associated macrophages (TAMs) [93].  

IRF5 is up-regulated in M1 macrophages, in which it is essential for 

induction of cytokines (IL-12, IL-23, TNF) involved in eliciting Th1 and Th17 

responses [94]. 

PPARγ [95] and PPARδ [96, 97] control distinct subsets of genes 

associated with M2 macrophage activation and oxidative metabolism. 

PPARγ is constitutively expressed by adipose tissue macrophages, but its 

expression can also be induced by IL-4 and IL-13 [98], which indicates that 

M2 polarization in the context of Th2 cell responses might also involve 

PPARγ. Moreover PPAR receptors are involved in inflammatory responses 

[99, 100] and monocyte-macrophage differentiation  [101-103].  

A number of reports have demonstrated the role of Kruppel-like factor 4 

(KLF4) in both monocyte differentiation and macrophage activation [104, 

105, 106]. Another recent study using a myeloid-specific knockout for the 

KLF4 demonstrated its role in regulating M2 polarization of macrophages 

as well as in protecting from obesity-induced insulin resistance [107]. 

Similarly, IRF4 has been implicated in regulating M2 genes in macrophages 

and in mediating lipolysis functions [108]. Moreover IRF4 was shown to 
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specifically regulate M2 macrophage polarization in response to parasites 

or the fungal cell wall component chitin [109]. 

The CREB-C/EBPβ axis specifically regulates M2-associated genes [110] 

and is crucial for wound-healing [111]. Moreover C/EBP proteins have 

specific functions during macrophage development, with C/EBPα that is 

mainly expressed in undifferentiated pluripotent myeloid cell and gradually 

decreased with macrophages maturation. Conversely, expression of 

C/EBPβ and C/EBPδ is up-regulated during macrophage maturation [112]. 

In addition C/EBPα regulates myeloid development and interacts with NF-

kB to regulate inflammation [113].  

Finally, PU.1 is a transcriptional factor which must be constantly expressed 

at high levels to induce and then maintain macrophage differentiation [114], 

but it is able to interface with other transcription factors that are known to 

be relevant for macrophage differentiation, such as IRF8 [115], or for 

functional specialization, such as IRF4 and IRF5, and C/EBPβ [102]. By 

contrast moderate levels of PU.1 and high expression of MafB, an inducer 

of monocyte differentiation [116, 117], are able to drive monocyte 

differentiation towards macrophages as opposed to DC [118, 119].  

Other transcription factor involved in the control of macrophages phenotype 

under physiological and pathological conditions is the hypoxia-inducible 

factor (HIF) and its two isoforms HIF-1α and HIF-2α [120]. Their effects are 

mediated by hypoxia that is an important microenvironmental signal of the 

inflamed tissue. Gene expression profiling of monocytes and macrophages 

has characterized profound changes in response to hypoxia [121, 122], 

such as the expression of angiogenesis- and metastasis-related genes 

(e.g. VEGF, FGF2, MMP7 and MMP9) and pro-inflammatory (e.g. TNFA, 

IL1B, MIF, CCL3 and COX2) [123] as well as M2 markers like IL-10 and 

arginase 1 [124]. The two isoforms seem to be implicated in driving these 

different responses in line with the fact that HIF-1α is expressed in M1-
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polarized macrophages and HIF-2α in M2-polarized macrophages [125]. 

Moreover, recently it has been demonstrated that in monocytes, unlike in 

macrophages, it is NF-kB1, and not HIF-1α, which is of central importance 

for the expression of hypoxia-adjusted genes. These new data demonstrate 

that during differentiation of monocytes into macrophages crucial cellular 

adaption mechanisms are decisively changed [126]. 

In the last years gene expression profiling techniques and genetic 

approaches have been used to cast light on the understanding of the 

plasticity of macrophage activation, but the mechanisms underlying the 

program must still be clarified. Elucidating the molecular basis of 

macrophage activation is a fundamental step to understand inflammatory 

disorders and develop new therapeutic strategies.  
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1.5 Surfing data tsunami: the macrophages.com website  

Large-scale genomic analysis related to innate immune responses of 

mammalian species have generated large sets of heterogeneous genomic 

data. A growing need to store, retrieve and analyse these datasets has led 

to the emergence of various on line data repositories, some of these listed 

here:  

 Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) 

[127] provides a vast amount of gene expression data;  

 Kyoto Encyclopedia of Genes and Genomes (KEGG, at 

http://www.genome.jp/kegg/), Biocarta, (at http://www.biocarta.com/) and 

Reactome (at http://www.reactome.org/) databases provide the 

biological processes or pathways which are “hidden” in the gene 

expression profiles; 

 Innate DB [128] provides manually curated protein-protein interaction 

data to help system-levels analysis of immune responses in human and 

mice, and provides access to the visualization of interactome-based 

pathways relevant to innate immunity;  

 Immunome Knowledge Base (IKB) [129] that integrate Immunome, 

ImmTree, Immunome Database, species-specific databases that have 

been developed for the investigation of immune systems in specific 

model organisms;  

 Immunology Database and Analysis Portal resource (www.immport.org) 

provides human data with a comprehensive list of immune-related genes 

and differential gene expression information, including single nucleotide 

polymorphisms (SNPs) data and a specialised section to analyse 

polymorphism in the human major histocompatibility complex;  

 ImmGen (Immunological Genomic Project) [130] focused on the mouse 

immune system;  

http://www.ncbi.nlm.nih.gov/geo/
http://www.genome.jp/kegg/
http://www.biocarta.com/
http://www.reactome.org/
http://www.immport.org/
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 IIDB repository [131] focused on Toll-like receptor (TLR) genes and TLR 

signalling pathways in the mouse genome.  

Despite the large amount of data accessible through these and other on-line 

portals with immunity-driven database backends, these available innate 

immunity-based resources do not specifically focus on 

monocyte/macrophage systems. As mentioned in previous paragraphs, 

monocytes/macrophages have a fundamental role in many aspects of 

biological functions from tissue remodelling during development, wound 

healing and tissue homeostasis, to innate immunity and to pathology of 

tissue injury and inflammation. With the escalation of genome-scala data, an 

enormous wealth of information has been accumulated on these cells in the 

literature on their functional activity, signalling pathways, and their role in 

health and disease. So, in recent years, a centralized portal on macrophage 

biology is born, macrophages.com (http://www.macrophages.com/), a 

resource that integrates macrophage-related data, provide bioinformatics 

tools to facilitate data analysis and allow comparative analysis of functional 

motifs and evolution in macrophage-active promoters, and centralises links 

to other research and teaching materials relevant to study of macrophages. 

Briefly, the website is composed by following sections: (1) data analysis 

screenshots from the bioinfoweb gene-centric portal, (2) collection of gene 

expression datasets and clustering analysis with Biolayout Express3D, (3) 

large publication and reviews section, (4) comprehensive macrophage 

image library divided in two main categories (tissue macrophage and 

transgenic animals), (5) protein expression data with access to HPA 

resource, and (6) macrophage pathway resource. An accurate description of 

website is available in “Macrophages.com: An on-line community resource 

for innate immunity research” [132]. Researchers interested in studying the 

biology of macrophages can usefully refer to this website as a 

comprehensive online resource. 

http://www.macrophages.com/
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1.6 Man is not a mouse. The importance of human immunology 

Immunobiology has advanced tremendously over the last 50 or so years. In 

this time, a whole system of innate immune receptors and CD antigens 

have been discovered, different hematopoietic cell subsets have been 

discriminated, dozens of cytokines and chemokines have been identified as 

mediators of cellular response and cell-to-cell communication. Nevertheless 

almost none of these advances in basic immunology have been 

incorporated into standard medical practice. A reason of that is the 

overreliance on the mouse model. The mouse has been so successful at 

uncovering basic immunologic mechanisms that many immunologists rely 

on it to answer every question. In fact the use of animal models in 

immunological research has proven useful for investigating and assessing 

mechanisms resulting in autoimmune and inflammatory diseases [133] and 

mouse models will continue to provide important information for many years 

to come. However, the question is still open of how the animal data can be 

translated to the human situation. In fact mice are lousy models for clinical 

studies and this is readily apparent in autoimmunity [134] and in cancer 

immunotherapy [135] where of dozens of protocols that work well in mice, 

very few have been successful in humans. Moreover, despite conservation 

between human and mouse genome (to date only 300 or so genes appear 

to be unique to one species or the other) there exist a sheer evolutionary 

distance (65 million years) that raised significant differences between the 

two species in immune system development, activation, and response to 

challenge, in both the innate and adaptive arms [136]. In this regards, 

Mestas and Hughes [137] have carefully examined the many differences 

between mice and humans with respect to various immune markers, 

suggesting that the potential limitations of extrapolating data from mice to 

humans should be taken in account. Moreover Mark. M. Davis [138] thinks 
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that the mouse models are not the answer to everything in immunology and 

underlines that we need to make greater efforts in human immunology if we 

are to realize the potential health benefits. After all, it is worth remembering 

that humans live “in natura” more or less, outbred and exposed to many 

more diseases than laboratory mice [139]. This topic has been recently 

discuss in depth in a symposium entitled “Wild Immunology”, where the 

central question was the importance to understand infection and immunity 

in wild systems [140].  

In several cases no strict molecular correlation has been found between 

immune reactions in mice versus humans, and there is evidence of 

alternative molecular pathway usage [141]. These issues arise also in the 

case of the more conserved reactions involving the innate/inflammatory 

response and monocyte/macrophage activation mechanisms. First of all in 

the blood of a healthy human adult, monocytes represent about 10% of the 

total peripheral blood leukocyte pool against 1.5% in the mouse blood. The 

human blood contains three main monocytes subsets while mouse blood 

only has two. Moreover, the monocyte subsets described in humans do not 

fully correspond to those identified in the mouse [141, 142] and there are 

still uncertainties regarding distinct expression patterns of cell-surface 

markers. Although general properties are retained between mouse and 

man, differences are apparent for instance in the types of pathogens that 

infect humans and the effector molecules that are deployed by 

macrophages to control infections. To make some examples: phenotypic 

markers of M2 polarization such as chitinase 3-like-3 lectin (CHI3L3, also 

known as Ym-1) and the transcription factor found in inflammatory zone 1 

(Fizz-1 or Relmalpha or Retnla) have been identified in the mouse but are 

not expressed in human macrophages [45, 54].  Moreover, Fizz1 inhibits 

Th2-driven inflammation in the lung of mice but not in humans [143]. 

Neither Arginase-1 (ARG1) nor nitric oxide synthase (iNOS) are expressed 
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by in vitro polarized human macrophages stimulated with IL-4 or IFN-γ, 

respectively, in amounts comparable with those expressed by mouse 

macrophages. This discrepancies have fueled an intense debate on 

similarities between human and mouse macrophages subsets and their 

expected function [144, 145], since a number of the commonly used 

phenotypic subset marker are not implicitly conserved across species [146].  

In general, mice are highly resilient to induction of inflammation in many 

experimental models, as compared with humans, which are for instance 

much more sensitive to the inflammatory effects of bacterial LPS [147]. 

Another example is IL-37, a new member of the IL-1 family that is a potent 

anti-inflammatory cytokine in humans but is absent in the mouse [148]. The 

p47 immunity-related GTPase (IRG) family, involved in the protective anti-

mycobacterial autophagy response, has 20 members in mice but only two 

in humans (IRGM and IRGC) [149, 150]. Human and mice have different 

number and functional Toll-like Receptors (TLR), which have a major role in 

pathogen recognition and activation of the innate immune response. 

Humans encode eleven TLRs but only ten (TLR1-TLR10) are functional, 

while mice express also TLR12 and TLR13, but TLR10 is not functional 

[151]. The fact that mice may express TLRs that are not found in humans 

and vice versa can make it challenging to generalize findings about the fine 

mechanisms of innate/inflammatory response regulation between humans 

and mouse model systems. Acute and chronic inflammatory conditions 

such as sepsis and many autoimmune diseases occur spontaneously in 

humans (i.e. without deliberate exposure/induction), but do not occur in 

mice and are hard to induce without genetic or experimental manipulation 

to alter host response. Moreover it is often not made clear that most data 

on allergy, an innate immune response as inflammation, derive solely from 

experiment in mice or rats, species that obviously never suffer from allergic 

human diseases [152].   
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1.7 Aim of work: an in vitro human model of the inflammatory 

reaction 

Many studies on monocyte/macrophage activation in inflammation have 

relied on murine models in vivo and on isolated primary mouse cells 

(mainly peritoneal or bone marrow derived macropahges), and on in vitro 

models based on immortalized monocytic cell lines (either human or 

murine). Experiments with monocytic cell lines have limitations due to the 

fact these are transformed/tumor cells, which differ from primary 

monocytes/macrophages certainly in terms of regulation of cell cycle and in 

most cases also in terms of differentiation and activation state [153-156].  

More recently, a wealth of information has become available that has been 

obtained with human normal/primary monocytes/macrophages ex vivo or in 

vitro (primary macrophages isolated from tissues, in vitro differentiated 

myeloid precursors, in vitro matured macrophages, peripheral blood 

monocytes). These studies have investigated the activation of 

monocytes/macrophages in response to different kinds of challenges, either 

administered in culture or upon in vivo pathological conditions, and have 

provided information about the modes of type I vs. type II inflammatory 

activation vs. deactivation of macrophages in the human being. However, 

there is no information at present on the features of the entire course of the 

inflammatory reaction and on the possibility that the same cell population 

could be first polarized towards an effector inflammatory programme and 

subsequently re-polarized to the deactivation programme. 

In this context, the aim of this study is to set up a reliable and 

representative model, based on human primary cells, that could allow us to 

study the development of the inflammatory reaction during its entire course, 

thus opening the possibility of accurately characterizing the development 

and regulation of human macrophage functions.  
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We propose here an in vitro model of the type I inflammation that 

reproduces the different phases of the inflammatory defence response 

occurring in vivo, from recruitment of inflammatory monocytes to the site if 

inflammation, to the onset and development of the inflammatory reaction, 

until resolution of inflammation and re-establishment of tissue homeostasis. 

The model is based on human primary blood monocytes exposed in culture 

to sequential changes in the microenvironmental conditions (chemokines 

and cytokines, temperature, bacterial-derived molecules) for 48 h. 

Macrophage activation has been assessed by transcriptomic profiling, data 

validated for some inflammation-related genes by real-time PCR and 

protein production, and representativeness of the findings confirmed by 

comparison with an ad hoc constructed and annotated database of gene 

expression in human monocytes/macrophages. Robustness and 

reproducibility of the model was demonstrated by the homogeneity of gene 

and protein profiles in monocytes from 12 individual donors. Although 

simplified, this model thus provides an accurate description of the 

inflammatory reaction in humans, from initiation to conclusion, in a totally 

primary system. 
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2. MATERIALS AND METHODS 

2.1 Monocyte isolation from peripheral blood and in vitro activation 

Human monocytes were obtained from peripheral blood buffy coats of 

healthy donors (n=12) by two-step gradient density centrifugation with 

Ficoll-Paque PLUS (GE Healthcare, Bio-Sciences AB, Uppsala, Sweden) 

and then separated using Monocyte Isolation kit II (Miltenyi Biotec, 

Bergisch-Gladbach, Germany) according to the manufacturer’s protocol.  

The purity of isolated cells (> 98%) was determined microscopically after 

cytocentrifugation and staining with a modified Wright-Giemsa dye (Diff 

Quik®, Medion Diagnostics AG, Düdingen, Switzerland). Viability was 

determined by trypan blue dye exclusion. Monocytes were also analyzed 

for cell-surface CD14 and CD16 antigen expression by flow cytometry 

(FACScan, Becton Dickinson, Rutherford, NJ, USA). The CD14dimCD16+ 

subset of purified monocytes was < 8%  (Figure 3). 

Monocytes were cultured at a density of 5x106 cells/well in 6-well culture 

plates (Corning Incorporated, Costar®, NY, USA) in 2 ml of RPMI 

1640+Glutamax-I Medium (GIBCO® by Life Technologies, Paisley, UK) 

supplemented with 50 μg/ml Gentamicin (GIBCO®), 5% heat-inactivated 

human AB serum (Sigma-Aldrich Inc., St. Louis, MO, USA) in moist air with 

5% CO2. During culture, monocytes were sequentially exposed to 

inflammatory and anti-inflammatory stimuli at different time points to mimic 

the micro-environmental conditions of an inflamed tissue. All human 

recombinant cytokines were obtained from R&D Systems (Minneapolis, 

MN, USA), while LPS (from E.coli serotype 055:B5) was from Sigma-

Aldrich Inc..  

Briefly, the in vitro stimulation was performed as follows: at time 0 

monocytes were exposed to CCL2 (20 ng/ml) at 37°C. After 2 h, CCL2 was 

removed, cells were washed with PBS, fresh medium was added 
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containing LPS (5 ng/ml) and the temperature was increased to 39 °C. 

TNF-α (10 ng/ml) and IFN-γ (25 ng/ml) were added at times 3 and 7 h, 

respectively. Temperature was maintained at 39°C. At time 14 h, all 

inflammatory stimuli were removed, monocytes were washed with PBS, 

fresh medium was added containing IL-10 (20 ng/ml), and temperature 

brought back to 37°C until the end of experiment. At time 24 h, medium 

containing IL-10 was removed, fresh medium containing TGF-β (10 ng/ml) 

was added, and the culture prolonged until 48 h.  

Freshly isolated monocytes were taken as time 0. Cells were harvested in 

700 µl of Qiazol (Qiagen, Hilden, Germany) at times 2, 2.5, 3, 3.5, 4, 14, 

24, and 48 h. Supernatants were collected at times 4, 14, 24, 48 h. 

Samples were stored at -80°C until analysis.  

2.2 Staining procedure  

The immunostaining were performed on peripheral blood monocytes from 

three donors, isolated and stimulated in culture as described in paragraph 

2.1. After in vitro stimulation, the cells were collected and centrifuged at 

300xg for 10 min, the supernatant fluid was discarded and the cell pellet 

was resuspended in cold PBS (Lonza, Verviers Belgium) plus 1% BSA 

(Sigma-Aldrich). An adequate volume of cells was added to four different 

tubes (1x106 cells/tube) and incubated with the following labeled antibodies 

in a total final volume of 100 µl: tube 1, isotype control labeled with 

phycoerythrin (PE) (5 µl) + isotype control labeled with peridin chlorophyll 

protein (PerCP) (1 µl); tube 2, anti-CD14-PerCP (10 µl) + isotype control-

PE (5 µl); tube 3, anti-CD16-PE (10 µl) + isotype control-PerCP (1 µl); tube 

4, anti-CD14-PerCP (10 µl) + anti-CD16-PE (10 µl). Isotype controls and 

specific antibodies were used at the same final concentration. All antibodies 

were from BD Biosciences (San Jose, California, USA). Tubes were 

incubated for 30 min on ice in the dark, then diluted with 1 ml PBS/BSA 1% 
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and centrifuged at 300xg for 10 min. Finally, samples were resuspended 

with 0.5 ml PBS/BSA 1% and immediately analyzed by flow cytometry.  

2.3 Flow cytometric analysis 

Monocytes were analyzed for identification of the three subsets 

(CD14++CD16-, CD14++CD16+, CD14+CD16++) by flow cytometry (FACScan, 

Becton Dickinson, Rutherford, NJ, USA) with BD Cell Quest software. 

Monocytes were initially gated using a morphological selection (gate) based 

on forward scatter (FSC, cellular size) and side scatter (SSC, cellular 

complexity) parameters. The subsequent evaluation of CD14 and CD16 

expression was performed by quantification of FL3 (red) and FL2 (orange) 

fluorescence emissions, which represent the specific binding of antibodies 

conjugated to PerCP and PE fluorochromes, respectively. Amplified 

settings for FSC and SSC were used in linear mode and those for 

fluorescence channels were used in logarithmic mode. A threshold was 

fixed on FSC to exclude cellular debris. The analysis of CD14 and CD16 

expression was performed both in PBMC and in purified monocyte 

suspension, with acquisition of 30,000 morphologically gated events per 

tube. The percentage of CD14++CD16-, CD14++CD16+, CD14+CD16++ 

monocyte subsets in the monocyte preparations purified by magnetic 

sorting fully reflected the percentage of the same subpopulations found in 

PBMC (Figure 3). Figure 5 reports the single antibody histograms of a 

representative experiment. The percentages of the single and double 

positive populations were calculated by fluorescence histogram analysis.  

2.4 RNA isolation and microarray hybridization  

For the “early time” series (0, 2, 2.5, 3, 3.5 h) total RNA was extracted from 

monocytes of 3 donors. For the “long time” series (0, 4, 14, 24, 48 h) RNA 

was collected from monocytes of 9 other donors. Extraction was performed 
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using Qiagen miRNeasy kit (Qiagen, Hilden, Germany), according to the 

manufacturer’s protocol. RNA samples were quantified by ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), and 

RNA integrity was checked by microcapillary electrophoresis on Agilent 

2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA) on the basis of 

the ratio between 28S and 18S rRNA peak areas and of the RIN (RNA 

integrity number) index. Only good quality RNA was used (28S/18S ratio  

1.7, RIN index  7). RNA samples were stored at -80°C until use. 

For high-throughput gene expression profiling, RNA samples were 

prepared from 100 ng total RNA using the GeneChip® 3’ IVT Express kit 

(Affymetrix) for “early times” samples, and from 1 µg total RNA using the 

GeneChip® One Cycle cDNA Synthesis kit (Affymetrix) for “long times” 

samples, following the manufacturer’s protocols. Biotinylated cRNAs (15 

µg) were fragmented and hybridized for 16 h at 45°C onto GeneChip® HG-

U133 Plus 2.0 Arrays (Affymetrix). After washing and staining, arrays were 

scanned with the GeneChip® Scanner 3000 7G (Affymetrix) and 

fluorescent images were acquired and analyzed using GCOS software 

(Affymetrix) to generate a total of 60 raw intensity files (CEL files). 

2.5 Data analysis 

Data analysis was performed in R using Bioconductor libraries and R 

statistical packages. Probe level signals were converted to expression 

values using robust multi-array average procedure (RMA; [157]) and HG-

U133 Plus 2.0 custom Chip Definition Files (CDF) based on GeneAnnot 

([158]; CDF Version: 2.2.0, GeneCards Version: 3.04, GeneAnnot Version: 

2.0). Briefly, intensity levels were background-adjusted and normalized 

using quantile normalization, and log2 expression values calculated using 

median polish summarization. Raw data are available with the author. 
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Genes showing different expression profiles along the time-course 

experiments were identified using the microarray Significant Profiles 

method coded in the maSigPro R package [159]. maSigPro first applies a 

least-square technique to estimate the parameters of a general regression 

model for each gene (make.design function) and then uses the regression 

coefficients of the model to identify genes with statistically significant 

changes in their expression profiles (p.vector, T.fit and get.siggenes 

functions). Since the time-course was composed of 9 points, we computed 

a regression fit for each gene using a polynomial with a degree of 3 (cubic 

regression model) and selected those regression models with an 

associated corrected p-value ≤0.05. P-values have been corrected for 

multiple comparisons using the false discovery rate procedure (FDR), i.e. 

setting the parameter Q=0.05 in the p.vector function. Once the statistically 

significant gene models were determined, the regression coefficients were 

used to identify genes showing statistically significant expression changes 

over time. To do this, a second model was constructed using only 

significant genes and applying a variable selection strategy based on 

stepwise regression. Specifically, we selected the backward stepwise 

regression and, at each iteration, retained those variables with a p-value 

≤0.01 (i.e., set the T.fit parameters at step.method=backward and 

alfa=0.01). Finally, we generated the list of significant genes by setting an 

additional selection criterion based on the R-squared value of the second 

regression model (i.e., set the get.siggenes parameters rsq=0.6 and 

vars=all). Results have been visualized clustering genes into k=9 groups, 

using maSigPro k-mean clustering and default value for k. 
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2.6 Collection and processing of publicly available gene expression 

data 

We retrieved datasets of monocytes, macrophages, and dendritic cells 

(DC) from Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo), 

which contains information about cell treatment and gene expression data 

obtained with Affymetrix arrays. Specifically, 24 series comprising 474 

samples of human normal monocytes, macrophages, and DC were 

downloaded from GEO and 303 samples organized in a proprietary 

database using the software A-MADMAN (Supplementary Table S1). A-

MADMAN is an open source web application that allows the automatic 

download and organization of GEO and proprietary raw data and 

annotations, the automatic import of metadata from GEO records into a 

local relational database, the subsequent manual annotation and selection 

of samples through user-defined tags, and the selection of samples to be 

analyzed using a complex logical query on tags [160]. All samples have 

been manually re-annotated and tagged based on the meta-information 

provided by GEO and by the original publications. In particular, we labeled 

62 samples as untreated monocytes and 46 and 20 samples as M1 and M2 

activated monocytes/macrophages, respectively (Supplementary Table 

S2).  

Raw expression data (i.e., CEL files) obtained from different platforms have 

been integrated using an approach inspired by the generation of custom 

Chip Definition Files (CDF; [161]). In custom CDF, probes matching the 

same transcript, but belonging to different probes sets, are aggregated into 

putative custom-probe sets, each one including only those probes with a 

unique and exclusive correspondence with a single transcript. Similarly, 

probes matching the same transcript but located at different coordinates on 

different type of arrays may be merged in custom-probe sets and arranged 

in a virtual platform grid. As for any other microarray geometry, this virtual 

http://www.ncbi.nlm.nih.gov/geo
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grid may be used as a reference to create the virtual-CDF file, containing 

the probes, shared among the platforms of interest, and their coordinates 

on the virtual platform, and the virtual-CEL files containing the intensity data 

of the original CEL files properly re-mapped on the virtual grid. Once 

defined the virtual platform through the creation of its custom-CDF and 

transformed the CEL files into virtual-CEL files, raw data, originally obtained 

from different platforms, are homogeneous in terms of platform and can be 

preprocessed and normalized adopting standard approaches, as RMA or 

GCRMA. Here, expression values were generated from intensity signals 

using the combined HG-U133A/HG-U133Av2/HG-U133 Plus2.0 virtual-

CDF file, the custom definition files for human GeneChips based on 

GeneAnnot, and the transformed virtual-CEL files. Intensity values for a 

total of 12167 meta-probesets were background-adjusted, normalized using 

quantile normalization, and gene expression levels calculated using median 

polish summarization (RMA algorithm; [157]). 

This expression matrix has been analyzed to identify differentially 

expressed genes in the comparisons between subsets of monocytes 

tagged as untreated, M1, and M2 (128 samples, see Supplementary Table 

S2) using the Significance Analysis of Microarray method (SAM; [162]) 

coded in the samr R package (http://cran.r-project.org/web/packages/ 

samr/index.html). Specifically, in the comparison between untreated 

monocytes and samples labeled as M1 (or as M2), we used the two-class 

procedure, estimated the percentage of false positive predictions with 1000 

permutations, and selected those transcripts whose q-value (i.e., False 

Discovery Rate, FDR) was equal to 0. This selection was further refined 

setting the lower limit for fold change induction (or reduction) to 5 and 8, 

when considering the comparison between untreated monocytes and 

samples M1 or untreated monocytes and samples M2, respectively.  

http://cran.r-project.org/web/packages/%20samr/index.html
http://cran.r-project.org/web/packages/%20samr/index.html
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2.7 Over-representation analysis 

Over-representation analysis was performed using Gene Set Enrichment 

Analysis software (GSEA; http://www.broadinstitute.org/gsea/index.jsp; 

[163]) and the gene sets of the Molecular Signatures Database 

(http://www.broadinstitute.org/gsea/msigdb/index.jsp). GSEA was applied 

on log2 expression data of the entire time course. The median expression 

profiles of the 9 groups of genes identified by maSigPro was used as 

continuous phenotype labels, and the Pearson's correlation as the metric to 

select gene sets with expression patterns resembling those encoded in the 

phenotype labels. As gene sets we used KEGG, Biocarta, and Reactome 

lists of the C2: curated gene sets collection. Finally, gene sets were defined 

as significantly enriched if the False Discovery Rate (FDR) was < 5% when 

using Signal2Noise as metric and 1,000 permutations of phenotype labels. 

2.8 Gene expression validation by qPCR   

For gene expression validation by qPCR we used two different methods 

(ΔΔCt and Comparative Quantitation) as described hereafter:  

1. cDNAs were reverse-transcribed from total RNA (100 ng) using High 

Capacity cDNA Archive Kit (Applied Biosystems), according to the 

manufacturer’s instructions. Taqman polymerase chain reaction was 

performed by an ABI PRISM 7900 sequence detection system (Applied 

Biosystems) and using Taqman Universal PCR Master Mix (Applied 

Biosystems) in 50 µl reaction volume. Primers and probes were supplied by 

Applied Biosystems as pre-made solutions, both for targets (IL6, TNFA, 

IL7R, CD163, MMP9, MAFB, KLF4, PPARG, PPARD, C/EBPA) and for 

endogenous control (GAPDH). Each cDNA sample was run in triplicate.  

Thermal cycling was started with an initial denaturation at 50°C for 2 min 

and 95°C for 10 min, followed by 40 thermal cycles of 15 sec at 95°C and 1 

min at 60°C. Statistical analysis of the QRT-PCR signals was performed 

http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp


 

41 

 

using the (2-ΔΔCt) method [164, 165], which calculates relative changes in 

gene expression of the target gene normalized to the endogenous control 

and relative to a calibrator sample (0 h). QRT-PCR reactions were carried 

on six independent samples and then the data obtained were represented, 

in terms of relative quantity (RQ) of mRNA level variations, as mean ± SEM 

value. 

2. cDNAs were reverse transcribed from total RNA (100 ng) according to 

the QuantiTect Reverse Transcription Kit (Qiagen) instructions, with oligo-

dT and random primers, to allow for high cDNA yield. Three separate 

reverse transcriptions were performed for each samples and an identical 

reaction without the reverse transcriptase was run, as negative control. 

Taqman polymerase chain reaction was performed by an Rotor-Gene™ 

3000 (Corbett Research, Doncaster Victoria, Australia), using the 

QuantiTect SYBR Green PCR master Mix (Qiagen). The final reaction 

contained 12.5 μl 2x QuantiTect SYBR Green PCR Master Mix, 0.3 μM of 

each primer and 2.5 μl of cDNA in a total volume of 25 μl. PCR conditions 

were 95°C for 15 min, followed by 45 cycles of 95°C for 15 s, 50-60°C for 

30 s and 72°C for 30 s. Primer sequences were supplied by Qiagen both 

for target (IL1B, IL1RN, IL1R2, IL1F9, IL18 and IL18BP) and housekeeping 

(ACTB) genes. Relative gene expression was calculated using the 

efficiency correction method, which calculates the relative expression ratio 

from the qPCR efficiencies and the Ct between the target gene and the 

endogenous control, relative to a calibrator sample (0 h) [166].  

2.9 Protein detection by ELISA  

IL-6, CXCL8, CCL5, IL-1β, IL-1Ra, sIL-1RII, IL-18, IL-18BP and IL-1F9 

proteins were measured on supernatants collected at different stimulation 

times (4, 14, 24, and 48 h), by enzyme-linked immunosorbent assay 

(ELISA). ELISA kits for IL-6, CXCL8, CCL5, IL-1β, IL-1Ra, sIL-1RII, and IL-
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18BP were purchased from R&D Systems (Minneapolis, USA), while the kit 

for IL-18 was obtained from MBL (Nagoya Aichi, Japan), and two kits for IL-

1F9 were obtained from USCNK Life Science Inc. (Wuhan, China) and from 

Innovative Research (Novi, MI, USA). ELISA assays were performed 

according to the manufacturers’ instructions. Each sample was assayed in 

duplicate, and detection carried out with a JUPITER microplate 

spectrophotometer (Asys Hitech GmbH, Eugendorf, Austria).  

After measuring the concentration of both IL-18 and IL-18BP in each 

sample, the law of mass action was used to calculate free-IL-18 (i.e., the 

fraction of cytokine not bound to its inhibitor IL-18BP) as previously 

described [167, 168]. Briefly, the calculation was based on a 1:1 

stoichiometry in the complex IL-18 and IL-18BP, a molecular weight of 18.4 

kDa for IL-18 and 17.6 kDa for IL-18BP, and a dissociation costant (Kd) of 

0.4 nM [169].  

2.10 Statistical data analysis  

The qPCR and ELISA results are expressed as mean values ± SEM. 

Differences between groups were analyzed using ANOVA and Fisher ‘s 

test. A P value of less than 0.05 was considered to be statistically 

significant. 
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3. RESULTS 

3.1 The in vitro monocyte-based model of inflammation  

To build an in vitro model of inflammation, blood monocytes from 12 

individual healthy donors were exposed in culture to a temporal sequence 

of different micro-environmental conditions that mimic the in vivo 

development of the inflammatory reaction. Monocytes were isolated from 

buffy coats by magnetic selection of CD14+ cells. The recovered cells were 

viable and >98% monocytes, as judged by morphological examination on 

cytosmears and by flow cytometrical analysis of scattering and CD14 

positivity. It should be noted that the percentage of CD14dimCD16+ 

monocytes after magnetic purification fully reflected the percentage of the 

same monocyte subpopulation in total blood and in PBMC (about 8-12% of 

total monocytes, Figure 3). Therefore, the monocyte population we used in 

our experiments is representative of the monocyte heterogeneity as present 

in the circulation. The experimental procedures were carried out in the 

presence of 5% human pooled AB serum (as opposed to autologous serum 

or plasma), in order to avoid a putative source of variability. As shown in 

the Figure 4, freshly isolated monocytes were exposed to the chemokine 

CCL2 for 2 h at 37°C, to represent the CCL2 driven efflux of inflammatory 

monocytes from circulation to the site of inflammation. At 2 h, monocytes 

were exposed to the TLR4 agonist LPS, to mimic the encounter of 

inflammatory monocytes with infectious agents at the tissue site of reaction, 

and the temperature was raised to 39°C (as in an inflamed tissue). Coating 

of tissue culture plates with collagen and fibronectin, to reproduce the 

presence of extracellular matrix in the tissue microenvironment, was 

avoided after preliminary experiments, due to the potent direct macrophage 

activation of the collagen/fibronectin coated plastic surfaces (probably 

“seen” as a foreign entity). The development of the inflammatory reaction 



 

44 

 

was reproduced by keeping the temperature at 39°C until 14 h and by 

adding in sequence TNF-α (at 3 h, representing the tissue/resident cell 

reaction) and IFN- (at 7 h, representing the reaction of the later influx of 

Th1 cells). To reproduce the destruction of the inflammation-inducing 

infectious agent and the resolution of the inflammatory response, at 14 h all 

the inflammatory stimuli were washed off, the temperature was brought 

down to 37°C and fresh medium containing IL-10 was added (representing 

the activation of anti-inflammatory mechanisms). As conclusive phase of 

the resolution, at 24 h monocytes were exposed to TGF-β to reproduce 

macrophage deactivation towards re-establishment of tissue integrity and 

homeostasis.  

Transcriptomic analysis was performed on monocytes from each individual 

donor at five different stages of activation: freshly isolated monocytes (time 

0); cells at the early and late phases of inflammation (collected after 4 h 

and 14 h of culture, respectively), corresponding to different stages of 

classically activated macrophages (M1 polarization; [41, 43]); and cells 

during the resolution of inflammation (collected at 24 and 48 h), 

corresponding to different stages of macrophage “deactivation” (M2c 

polarisation; [45]). In addition, a series of samples were collected at very 

early times (2.0, 2.5, 3.0 and 3.5 h), in order to better analyse the first 

phases of inflammatory activation. 
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Figure 3. Scatter analysis of suface markers CD14 and CD16 on monocyte 
subsets in PBMC (left panel) and after magnetic purification (right panel). Shown is 
a representative staining for identification of monocyte subsets in a blood sample 
from a healthy donor. The percentage of CD14

++
CD16

-
, CD14

++
CD16

+
, 

CD14
dim

CD16
+
 monocytes after magnetic purification fully reflected the percentage 

of the same monocyte subpopulation in PBMC, showing that the monocyte 
population used in our experiments is representative of the monocyte 
heterogeneity as present in the circulation. 
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Figure 4. Graphic representation of the in vitro model of inflammation based on 
human primary monocytes. Freshly isolated monocytes are first exposed to the 
chemokine CCL2 for 2 h at 37°C. At 2 h, monocytes are exposed to LPS and the 
temperature is raised to 39°C. Temperature is then kept at 39°C until 14 h while 
TNF-α and IFN-γ are added at 3 and 7 hours, respectively. At 14 h all the 
inflammatory stimuli are washed off, the temperature brought down to 37°C and 
fresh medium containing IL-10 added. Finally, monocytes are exposed to TGF-β at 
24 hours. 
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3.2 Changes of monocyte subsets during the inflammatory 

reaction 

As previously mentioned, the flow cytometrical analysis shows that the 

monocyte population obtained after magnetic purification fully reflected, in 

terms of heterogeneity of monocyte subpopulations, the heterogeneity of 

monocytes present in total blood and in PBMC preparations (Figure 3, and 

Figure 5 panels A and B). Preliminary data show that during the different 

phases of the inflammatory reaction the CD14++CD16- monocytes were 

reduced starting from late inflammation (14 h) to resolution phases (Figure 

5, right panels C, D, E, F). The CD14++CD16- subset is the monocyte 

subpopulation preferentially recruited by CCL2 to an inflamed tissue soon 

after an infection in vivo [38, 170].  

On the other hand, the CD14++CD16+ and CD14+CD16++ subsets entirely 

disappeared during the early inflammation (4 h) after stimulation with LPS 

and TNF-α, with CD14++CD16+ monocytes growing back to baseline 

percentage (8.14%), and CD14+CD16++ monocytes increasing over 

baseline (from 2% to 6.19%) during the resolution phase. These findings 

are in agreement with the role in tissue remodeling and angiogenesis 

attributed to CD16+ cells during the resolution of inflammation [26]. Taken 

together these observations could validate: 1. the hypothesis that CD16 

may be a marker of activation among CD14+ monocytes [30]; 2. the direct 

developmental relationship between the three subsets, with CD14+ 

monocytes developing into CD16+ cells [32]. In fact in the model the same 

monocyte population goes through all inflammatory phases and is polarised 

to M2 [31, 33], although there is no evidence of the intermediate subset 

being more closely related to classical or non-classical subsets [27-29].  
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 Figure 5. Fluorescence histogram analysis of the monocyte 
subpopulations observed during the different phases of the inflammatory 
reaction (C, D, E, F).  A and B show the monocyte subpopulations in 
PBMC and in fresh monocytes (after magnetic isolation), respectively. 
Concomitant analysis of expression of CD14 (right) and CD16 (left) was 
performed. The percentage of CD14

++
CD16

-
,
 

CD14
++

CD16
+
, 

CD14
dim

CD16
+ 

monocytes are reported for a single representative 
experiment, although the histograms only show the single stainings. 
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3.3 Transcriptional profiling and cluster analysis identify 

distinct gene signatures during the inflammatory response  

After mRNA isolation and retrotranscription, cRNA corresponding to 

different stages of monocyte activation was hybridized onto Affymetrix 

microarrays to generate gene expression profiles. To investigate the effect 

of the different stimuli on the transcriptional levels along the time-course 

experiment, we started by identifying genes showing statistically significant 

expression changes over time. For this, we used the microarray Significant 

Profiles method coded in the maSigPro R package [159] with default 

parameters. Results of the maSigPro analysis revealed quite dramatic 

changes in gene expression during the different phases of the inflammatory 

reaction, and during the concomitant monocyte-to-macrophage 

differentiation. Indeed, a total of 3995 genes were differentially expressed 

during the course of inflammation at a 95% confidence level (false 

discovery rate procedure (FDR) ≤ 0.05). Crucially, using k-means clustering 

method and maSigPro default parameters (i.e., 9 clusters), significant 

genes were shown to have distinct expression profiles during the 

inflammatory reaction (Supplementary Figure 1). To gain insights into the 

mechanisms by which these genes are linked to the inflammation 

processes, the 9 clusters generated by maSigPro have been merged into 

five major functional groups of genes characterising the different phases of 

inflammation (Figure 6). In particular, we defined as belonging to the 

functional group inflammation genes included in clusters 1 and 2, as early 

anti-inflammation and anti-inflammation genes of clusters 3 to 5, as 

inflammation driven differentiation genes of cluster 6, and as positive and 

negative differentiation genes of cluster 7 and of clusters 8 and 9, 

respectively. 
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The inflammation phase, corresponding to monocyte-to-M1 macrophages 

differentiation, is associated with the modulation of 392 transcripts. Of 

these, 218 are transiently up-regulated during the first four hours of the 

inflammatory process (Supplementary Figure 1, cluster 1), while 174 

remain highly expressed during the late phases, i.e., until 14 h 

(Supplementary Figure 1, cluster 2). In both clusters, transcriptional levels 

decrease during the resolution phase. Genes included in these two groups 

are the typical effectors of classical activation, such as inflammatory 

cytokines (e.g., IL1B, IL6, TNFA, IL12B), chemokines (e.g., CCL4, CCL5, 

CCL20), extracellular mediators (e.g., PTX3, EDN1, APOL2), and enzymes 

(e.g., PTGS2, PLA1A) (Figure 6). The early anti-inflammatory 

(Supplementary Figure 1, cluster 3) and anti-inflammatory clusters 

(Supplementary Figure 1, clusters 4 and 5) contain 850 and 1021 genes, 

respectively, and basically include genes down-regulated in M1 polarized 

monocytes. Their median expression levels rapidly decrease during the 

stimulation with LPS/TNF-α (4 h), increase or remain stably low during the 

stimulation with IFN-γ (14 h), and return to basal level in the resolution 

phase. Early anti-inflammatory and anti-inflammatory include genes coding 

for transcriptional factor such as CCAAT/enhancer binding protein alpha 

(C/EBPA), innate receptors (such as TLR5, TLR7 and TLR8), purinergic 

receptors (e.g., P2RX7), and Fc receptor (e.g., FCER1A, FCRLB). We 

hypothesize that the decreased expression of some receptors involved in 

the inflammatory response may be related to loss of responsiveness 

following activation (similar to tolerance), which is restored at the end of 

inflammatory process when inflammatory monocytes have become tissue-

regulating macrophages and should be ready to respond at a new danger 

signal.  

Moreover, these clusters include genes for the highly conserved metal-

binding proteins metallothioneins (specifically MT1G, MT4, MT1E, MT1M, 
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MT1F, and MT1X) involved in metal homeostasis, detoxification, 

modulation of inflammation, control of the oxidative stress, cell proliferation 

[171] and strongly up-regulated in endotoxin tolerance [172]. 

Genes associated to the inflammation driven differentiation are 

characterized by an expression signal rapidly increasing upon the 

inflammatory reaction and then remaining at elevated levels throughout all 

phases of the reaction (Supplementary Figure 1, cluster 6, 457 genes). This 

group comprises genes needed for the inflammatory response and also 

critical for the process of monocyte differentiation into deactivating and 

tissue-repairing macrophages. Although the cluster includes a number of 

inflammatory genes and M1 polarization markers (e.g., IL7R, CCR7, 

CCL19, CXCL11; [54]) nevertheless they present expression profiles 

markedly different from those of the inflammation or of the positive 

differentiation clusters. Notably, this cluster also includes several genes 

that are allegedly highly expressed in M2c polarization, such as IL10, 

CCL24, and CCL22 [54]. 

The last three clusters group genes that may be important for the 

differentiation of monocytes to macrophages. The positive differentiation 

cluster includes 214 genes (Supplementary Figure 1, cluster 7), which are 

not expressed in fresh monocytes and during the early phases of 

inflammation, but are progressively up-regulated along the time course with 

a transcriptional peak during the repair phase. These include genes for 

transcriptional factors such as MAFB and some extracellular mediators 

(e.g., C1Q, APOE). Conversely, the negative differentiation clusters 

comprise a total of 1061 genes (Supplementary Figure 1, clusters 8 and 9), 

which are highly expressed in fresh monocytes and in the early 

inflammation phase, and then reduce their transcriptional levels during the 

subsequent phases. Among these genes, there are transcription factors of 

the Krüppel-like family (e.g., KLF4) and of the peroxisome proliferation-
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activated receptor family (e.g., PPARG), c-type lectin members (e.g., 

CLEC3B, CLEC7A, CLEC10A, CLEC11A), adhesion (e.g., SELL, ICAM3 

and AMICA1), and signalling molecules (MAP kinases).  

It is possible that these genes may define the state of differentiation of 

monocytes to macrophages independently of the concurring inflammatory 

reaction. Indeed, it should be noted that the fresh monocytes used in these 

experiments are an heterogeneous population as present in the blood and 

could therefore include both “inflammatory” monocytes that differentiate into 

effector cells in the tissue, and “homeostatic” monocytes that replenish the 

pool of tissue macrophages in physiological conditions.  

Finally, the clustering reported in Figure 6 highlights the striking 

homogeneity and reproducibility of the gene expression profiles in the 

different donors at the different time points, thus reinforcing the robustness 

of the model. 
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3.4 Pathway analysis reveals that monocyte activation and 

macrophage differentiation are closely related biological 

processes 

To investigate the biologic role of the genes differentially expressed during 

the development of the inflammatory response, each cluster was subjected 

to Gene Set Enrichment Analysis (GSEA) [163]. GSEA is a computational 

method that determines whether an a priori defined set of genes shows 

statistically significant differences between two biological states. 

Specifically, we searched in the samples of the in vitro model for statistical 

associations between expression profiles of distinct clusters and other gene 

‘signatures’ that register elevated activity of various signalling pathways or 

dysregulated cellular processes derived from KEGG, Biocarta, and 

Reactome. We identified a total of 155, 358, 55, 149, and 66 pathways 

most strongly associated with the median expression profile of the 

inflammatory, early anti- and anti-inflammatory, inflammation driven 

differentiation, positive differentiation and negative differentiation clusters, 

respectively. The most representative gene sets associated with the 

inflammatory and early anti- and anti-inflammatory clusters are listed in 

Table II. The complete lists of pathways for each cluster are reported in the 

Supplementary Table S3. While some of the identified pathways/gene sets 

are not readily interpretable in the context of the specific functional 

activation/differentiation phase, other pathways are clearly related to the 

various phases of the inflammatory process. We found that the majority of 

gene sets associated to the inflammation clusters are classical 

inflammatory pathways involved in innate immune activation as the NFkB, 

MAPK and JAK-STAT signalling, NOD-like receptor and Toll-like receptor 

signalling, cytokine/chemokine receptor interaction, and the IL-1 receptor 

pathway. These typical inflammatory pathways were not found associated 
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to other clusters (with the exception of inflammation driven differentiation, 

see below), and they are mainly involved in type I inflammatory response 

carried out by M1 macrophages [173]. On the other hand, the early anti- 

and anti-inflammatory clusters are enriched in pathways associated to lipid, 

protein, and carbohydrate metabolism, and regulation of gene expression 

(i.e., RNA splicing and miRNA biogenesis), and cell cycle. The modulation 

of genes involved in cellular metabolic activities is a prominent feature of 

M2 macrophage polarization/differentiation [173, 174], and it is conceivable 

that the up-regulation of these pathways occurs during the phases of 

resolution and repair, when major rearrangements of cellular functions are 

required, from inflammation to anti-inflammation and to synthesis of tissue 

repair-promoting factors.  

The inflammation driven differentiation group is associated to signalling 

cascades that are in common with both inflammatory and anti-inflammatory 

phases, while pathways enriched in the positive differentiation and negative 

differentiation clusters are similar to those found during the anti-

inflammatory phase. Moreover, the expression profiles of all these three 

clusters statistically resembles that of pathways associated with cell cycle.   

Globally, the functional enrichment analysis indicates that genes involved in 

inflammatory response and monocytes activation present transcriptional 

profiles that are statistically similar to those of genes involved in the control 

of the different cellular processes (as cell growth/proliferation and 

metabolism) during the monocyte-to-macrophage differentiation in vitro. 

These results establish a transcriptional link between monocyte activation 

and differentiation, inflammation and metabolism on one side and 

inflammation, resolution and cell differentiation on the other. 
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Table II. Most representative gene sets associated with the inflammatory and early 
anti- and anti-inflammatory clusters. KEGG, Biocarta, and Reactome gene sets 
have been obtained from the C2: curated gene sets collection of the Molecular 
Signatures Database. Gene sets were defined as significantly enriched if the False 
Discovery Rate (FDR) was < 5% when using Signal2Noise as metric and 1,000 
permutations of phenotype labels.
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3.5 Monocytes display an M1 gene signature during 

inflammation that develops into an M2 gene signature 

during the resolution phase 

To assess the capacity of the in vitro model of inflammation of representing 

the transition from M1 to M2 phenotype polarization, we merged 24 publicly 

available microarray studies into a meta-dataset using the software A-

MADMAN [160], and extracted gene expression signals for 62 fresh human 

unstimulated monocytes, 46 M1 and 20 M2 polarized macrophages.  

Samples were labeled as M1 if the meta-information provided by GEO or 

by the original publications referred to monocytes treated with either 

LPS/TNF-α or IFN-γ, and as M2 if describing monocytes treated with 

glucocorticoids or IL-10 or TGF-β (M2c). Gene expression signals of the 

meta-dataset were generated using the Virtual-chip approach, which allows 

integrating raw expression data (i.e., CEL files) obtained from different 

Affymetrix arrays. Specifically, expression values were generated from 

intensity signals using the combined HG-U133A/HG-U133Av2/HG-U133 

Plus2.0 virtual-CDF file, the custom definition files for human GeneChips 

based on GeneAnnot [158], and the transformed virtual-CEL files. Intensity 

values for a total of 12167 meta-probesets were background-adjusted, 

normalized using quantile normalization, and gene expression levels 

calculated using median polish summarization (RMA algorithm; [157]). 

The meta-dataset was analyzed by the Significance Analysis of Microarrays 

(SAM; [162]) algorithm to identify a list of genes differentially expressed in 

unstimulated monocytes, M1 and M2 polarized macrophages. The 

statistical comparison returned that monocyte-to-M1 differentiation is 

associated with modulation of 98 genes, of which 85% are highly 

expressed in M1 and 15% in monocytes (Figure 7A; Supplementary Table 

S4), while monocyte-to-M2 differentiation results in 107 genes, 62% highly 
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expressed in M2 and 38% in monocytes (Figure 7B; Supplementary Table 

S5). Transcripts that are up-regulated in M1 cells as compared to 

monocytes included cytokines and chemokines, while those up-regulated in 

M2 cells included enzymes and extracellular mediators. After excluding 

those genes that are modulated in both M1 and M2 vs. monocytes, the two 

signatures of M1 and M2 polarization were used to cluster samples of the in 

vitro model of inflammation. As shown in the Figure 7 (panels C and D), 

these signatures recapitulate the behavior of monocytes during the 

development of the in vitro inflammatory response. Fresh monocytes in 

panel C show a gene expression profile fully overlapping with that of the 

fresh monocytes in the meta-database, i.e., they express the M1-like 

expression profile during the inflammatory phases, to return to a monocyte-

like profile in the resolution phase (panel C). On the other hand, when 

considering the gene set that distinguish monocytes from M2 cells, fresh 

monocytes have the same profile as monocytes from the meta-database, 

this profile gradually changing during the progression of inflammation, to 

become comparable to the profile of M2 cells during the end (48 h) of 

resolution phase (panel D). 

Moreover, when comparing the list of genes differentially expressed during 

the entire inflammation process (Figure 6) with the list of genes differentially 

expressed in monocytes vs. M1 (Figure 7A), the majority of genes 

expressed in M1 cells (34%) belong to inflammation cluster, i.e. their 

expression signals rapidly grow during the inflammatory process, are 

steady during the late inflammation, and return to basal levels thereafter. 

Some of these transcripts correspond to cytokines (e.g., IL12B, TNF, IL6) 

and chemokines (e.g., CCL4, CCL20), signalling molecules (e.g., NFKB1), 

and extracellular proteins functionally related to the innate inflammatory 

response (e.g., PTX3) (Table III). On the other hand, the comparison 

between the list of genes differentially expressed during the inflammatory 
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process and those differentially expressed in monocytes vs. M2 (Figure 7B) 

indicates that 21% of genes expressed in M2 cells belongs to the cluster 

termed positive differentiation and are expressed only during the resolution 

phase. Among these transcripts there are extracellular mediators such as 

APOE, APOC1 (Table III). In both comparisons, the majority of genes up-

regulated in fresh monocytes and in common with genes of Figure 6 

belongs to the anti-inflammation cluster (26%) for monocytes vs. M1, and to 

negative differentiation cluster (51%) for monocytes vs. M2. The negative 

differentiation cluster includes genes that are up-regulated in fresh 

monocytes and during inflammation, and down-regulated during the 

resolution phase, and some of them are involved in immune response (e.g., 

FCER1A, NLRP3) and in cell adhesion (e.g., ICAM3, VCAN) (Table III). 

Moreover, among genes related to both M1 and M2 polarization, some 

belong to the inflammation driven differentiation cluster (14% and 20% 

respectively). In this cluster, we find genes encoding for chemokines and 

chemokine receptors (e.g., CXCL1, CCL2, CCL13, CCR7) (Table III). The 

notion that this cluster is apparently related to both M1 and M2c 

polarization suggests that inflammatory activation is strictly connected to 

M2c development and eventual macrophage differentiation. 
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Figure 7. Heat-map representing the fold-expression levels of gene lists identified by 
SAM as statistically down-regulated (green) or up-regulated (red) in M1 and in M2 
samples once compared to fresh unstimulated monocytes. A. Fold-expression levels 
of 98 genes associated to monocyte to M1 differentiation in unstimulated monocytes 
and M1 samples. B. Fold-expression levels of 107 genes associated to monocyte to 
M2 differentiation in unstimulated monocytes and M2 samples. C. Fold-expression of 
the 98 genes associated to monocyte to M1 differentiation in samples of the in vitro 
model of inflammation. D. Fold-expression of the 107 genes associated to monocyte to 
M2 differentiation in samples of the in vitro model of inflammation.    
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Table III. Association of genes differentially expressed in the comparisons between 
fresh monocytes and M1 and M2 samples to the functional groups defined from the 
analysis of the in vitro model of inflammation. 
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3.6 Validation of gene expression by qPCR 

In order to quantitatively validate the microarray results, a total of ten genes 

were examined by qPCR, employing the same RNA used to hybridize the 

Affymetrix arrays. These genes included five transcription factors (C/EBPA, 

KLF4, PPARD, PPARG, MAFB) as markers of monocyte differentiation, 

and five inflammation-related factors (IL7R, IL6, TNFA, CD163, MMP9) as 

markers of monocyte activation, and were selected within each functional 

group of Figure 6. The data from qPCR matched the patterns emerged 

from the microarray analysis (Figure 6 and Supplementary Figure 1). In 

particular, genes belonging to the inflammation cluster (i.e., PPARG, IL6, 

TNFA) are up-regulated during the early phase (4 h) while IL7R during the 

late phase of inflammation (14 h; Figure 8). CD163, belonging to the early 

anti-inflammation group is highly up-regulated during the beginning of 

resolution phase (precisely during the stimulation with IL-10) while the 

transcription factor C/EBPA, belonging to anti-inflammation cluster, is up-

regulated during the end of resolution phase (precisely during the 

stimulation with TGF-β). The levels of PPARD, belonging to inflammation 

driven differentiation, increase during the late inflammation (14 h) and, 

although a slight decrease, remain elevate during the resolution.  MAFB 

and MMP9 associated to positive differentiation are up-regulated during the 

resolution phase. Finally, the transcriptional factor KLF4, belonging the 

negative differentiation group and highly expressed in fresh monocytes, 

decreases its expression level during the inflammation and resolution 

phases.  

Since CD163 expression significantly increases at 24 h and decreases at 

48 h, while genes for MMP9 and C/EBPA are maximally expressed at 48 h, 

we hypothesize that CD163 expression might be induced by IL-10, while 

expression of MMP9 and C/EBPA could be induced by TGF-β.  
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The gene expression pattern of inflammatory-related factors during the 

progress of the inflammatory reaction also reflect the polarization towards 

the functional M1 program when monocytes were stimulated with LPS/TNF-

α/IFN-γ (with inflammation-dependent up-regulation of expression of the M1 

markers IL7R, IL6 and TNFA; [54]), and towards the functional M2 program 

when stimulated with IL-10/TGF-β (with up-regulation of the M2 markers 

CD163 and MMP9; [41, 54]). 

Our data confirm that the expression pattern of the transcription factor 

MAFB, a known myeloid differentiation marker, correlates with the 

expression patterns of its candidate target genes CD163 and MMP9 [117], 

which increased during the resolution phases (M2c functional 

differentiation). 

The expression of the transcription factors PPARG and PPARD are 

strongly increased during early (4 h) and late (14 h) inflammation 

respectively, with PPARD maintaining a high expression level also during 

the resolution phases.  

Taken together, these results highlight that, while transcription factors may 

contribute in different manner to macrophage polarization, down-regulation 

of PPARG and KLF4 in parallel to up-regulation of MAFB seem to be 

critical for monocyte to M2c macrophage differentiation. 
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3.7 Kinetics of pro-inflammatory cytokine IL-6 and chemokines 

CXCL8 and CCL5 production during inflammatory reaction  

To follow the progress of inflammatory reaction, protein production of pro-

inflammatory mediator IL-6 and M1 polarization-associated chemokines 

CXCL8 (IL-8) and CCL5 was evaluated (Figure 9). IL-6 is one of cytokines 

mainly produced by monocytes/macrophages for initiating and driving acute 

inflammatory response [175]. So it is not surprising that in the model IL-6 

was abundantly produced during the inflammatory phase, especially at 14 

h, and it is completely absent during the resolution.  

Also CXCL8 and CCL5 both significantly increased during the inflammation 

following TLR- and IFNγ-dependent induction, and were reduce after that 

the inflammation was turned off by an M2-inducing signal, such as IL-10, 

which generally inhibits the expression of M1 chemokines [42] (Figure 9).  

Moreover, unlike CXCL8, CCL5 already increases at 2 h, after stimulation 

with CCL2 and before stimulation with inflammatory stimuli. This is in 

agreement with CCL2 signalling per se able to mediate the recruitment of 

monocytes from the blood to the tissue inducing the production of other 

chemokines, such as CCL5 [170]. 
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3.8 The modulation of IL-1 family members during the 

inflammatory reaction reflect the macrophage differentiation 

We further focused on the study of gene expression (by qPCR) and protein 

production (by ELISA) of the members of IL-1 family that have important 

roles in innate immune response. In particular, we studied the inflammatory 

cytokine IL-1β (and its gene IL1B), and its two natural inhibitors, the IL-1 

receptor antagonist (IL-1Ra, and its gene IL1RN) and the IL-1 receptor type 

II (in its soluble form sIL-1RII; and its gene IL1R2). In addition, we have 

examined the inflammatory cytokine IL-18 (gene IL8) and its inhibitor IL-18 

binding protein (IL-18BP; gene IL18BP), and the orphan cytokine IL-1F9 

(gene IL1F9). Referring to the functional groups depicted in Figure 6,  IL1B, 

IL1RN, IL1F9 and IL18 are included in the inflammation cluster, while 

IL18BP and IL1R2 belong to the early anti-inflammation and the positive 

differentiation cluster, respectively. 

The exposure to inflammatory stimuli (LPS and TNF-α) induced an early (4 

h) increase in gene expression of both inflammatory cytokines IL-1β and IL-

18, while they were down-regulated during the late phase of inflammation 

(at 14 h, after the addiction of IFN-γ in culture). The expression of both 

cytokines returned to basal levels during the resolution phase (Figure 10, 

upper panels). 

The expression of IL-1Ra was reduced at 14 h and remained unchanged 

thereafter, while IL-1RII was readily induced only at the end of resolution 

after treatment/stimulation with TGF-β (Figure 10, upper panels). The 

expression level of IL-18 inhibitor, IL-18BP, was induced in the late 

inflammation by IFN-γ as expected [176]. Despite the absence of IFN-γ 

after 14 h, the transcription of IL-18BP tends to remain high even after the 

addition of IL-10 and TGF-β (24 h and 48 h), cytokines involved in the 

resolution phase of the inflammatory response (Figure 10, upper panels). 
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The protein production reported as the velocity of production (pg or 

ng/hr/million cells), confirmed the inflammatory role of IL-1β highlighting its 

abundant presence during the full (14 h) development of the inflammatory 

response, with a significant decrease in the later phases (Figure 10, bottom 

panels). A constant high protein level was observed for the production of its 

receptor antagonist IL-1Ra until 24 h, i.e., during the resolution phase 

(Figure 10, bottom panels). About sIL-1RII, the other IL-1 inhibitor, the 

maximal velocity of production was at 4 h while decreasing thereafter. This 

means that the cytokine is not absent but is not further produced. In fact, 

after the initial high production, the level of cytokine remained almost 

constant throughout the entire inflammatory reaction (data not shown).  

The velocity of production of the IL-18 protein was calculated as the 

amount of biologically active cytokine, i.e., that is not bound to its inhibitor 

IL-18BP (free IL-18), by concomitantly assessing the levels of both IL-18 

and IL-18BP proteins. Free IL-18 is strongly increased in the initial phase of 

inflammation (4 h) and then diminished to almost disappear in the phase of 

resolution (48 h) (Figure 10, bottom panels).  

The increase of IL-18 and IL-1β during the inflammatory phase and their 

decrease with the progress of the reaction is expected in a normal 

inflammatory response, in which the inflammatory factors must be depleted 

or neutralised after the elimination of the pathogen, to avoid tissue damage. 

In parallel, the increase of the IL-18 inhibitor IL-18BP and of the IL-1 

inhibitors IL-1Ra and sIL-1RII respond to the same need to turn off the 

acute reaction to proceed to the stage of restoration of homeostasis. 

Moreover, the observed data of IL-1β expression and production, of IL-1Ra 

production, and IL-1RII expression also reflect what is expected in the 

process of macrophage polarization, which predicts low levels of IL-1β and 

high levels of IL-1RN and IL-1RII in M2 macrophages and the opposite 

trend in M1 [40, 42]. 
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In addition, we have focused particular attention on the study of gene 

expression and protein production of a novel member of IL-1 signalling 

system, IL-1F9, a cytokine that appears to have pro-inflammatory activities 

though its physiological function remains unknown. The reason for our 

interest arises from the observation that IL1F9 is one of genes differentially 

expressed during the inflammatory phase (belonging to inflammation 

cluster) and it appears among genes up-regulated in M1 polarization as 

detected by the comparison described in paragraph 3.5. This would 

suggest IL-1F9 as new candidate M1 marker. As shown in Figure 11, IL1F9 

was not expressed in fresh monocytes while it was significantly expressed 

in response to inflammatory stimulation, being maximal during the late 

phase of inflammation (14h) and during the first resolution phase (24h). The 

gene was completely down-regulated during late resolution. With regard to 

protein production, two different ELISA kits were used to detect the protein. 

Both assays had low sensitivity (lower detection limits were 78 and 15.6 

pg/ml). We have observed (data not shown) that the protein seemed to be 

produced only during the inflammatory phase, but unfortunately it was not 

possible to obtain an accurate measure of the cytokine due to of the 

uncertain reliability of the kits.  
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Figure 11. IL-1 family member IL-1F9. Gene 
expression of IL-1 family cytokine IL-1F9 during 
the different phases of inflammatory reaction in 
vitro. The mean production values ± SEM of 
triplicates from one representative donor are 
reported. Statistical significance was calculated 
with ANOVA followed by Fisher’s test for 
significant differences between two consecutive 
experimental time points. 
* P < 0.05 ; ** P < 0.001 ; ***P < 0.0001.  
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4. DISCUSSION AND CONCLUSION 

The aim of this work was to build a reliable and representative in vitro 

model, based on human primary cells, that simulates the in vivo 

development of the inflammatory reaction during its entire course, from 

recruitment of inflammatory monocytes to the site of inflammation, to the 

onset and development of the inflammatory reaction, until resolution of 

inflammation and re-establishment of tissue homeostasis.   

During infection or under other inflammatory conditions, monocytes 

transmigrate the activated endothelium of blood vessels in response to 

chemotactic stimuli released by the underlying inflamed tissue [43, 47]. The 

monocyte chemoattractant protein CCL2 (previously known as MCP-1) is 

the most important chemokine for monocyte recruitment in vivo, even if its 

mechanism of action remains unclear [36]. CCL2 can be secreted by 

stromal cells (e.g., mast cells, fibroblasts, resident macrophages, vascular 

smooth muscle cells, and endothelial cells) and mediates the influx of 

monocytes from blood to sites of injury or infection [177]. Thus, in the in 

vitro model human monocytes were at first exposed at CCL2 to simulate 

the recruitment to the site of infection.  

After extravasation3, the differentiation of monocytes into activated 

macrophages is mediated by exposure to pathogen-associated molecular 

pattern (PAMPs) from microorganisms or damage-associated molecular 

patter (DAMPs) from dying parenchymal cells, which trigger the 

inflammatory response by activating pathogen recognition receptor (PRR) 

on monocytes [178, 179, 180]. DAMPs have also been implicated in 

inflammatory and autoimmune diseases (e.g. rheumatoid arthritis and 

                                                           
3
 After transmigration, monocytes encounter the ECM molecules with which they certainly 

interact. However, in the in vitro model the coating of the culture vessel with collagen and 
fibronectin provided a non-natural surface that immediately activated the naïve monocytes. 
Thus, it was chosen to avoid ECM coating, also in light of the notion that these molecules do 
not play a crucial role on the polarization of macrophages in vitro [183].  
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systemic lupus erythematosus) where excessive and persistent 

inflammation plays a key role in pathogenesis [179].  Being the goal of our 

model to reproduce the sequence of phases of the inflammatory reaction, 

we have chosen to mimic a bacterial infection in the tissue by means of a 

typical activation of TLR4 with bacterial lipopolysaccharide (LPS), which is 

a major activator of monocytes [181]. Soon afterwards, monocytes were 

exposed to TNF-, a key cytokine in the innate immune response, in order 

to simulate the early inflammatory reaction by other tissue cells, which in 

fact produce and release inflammatory cytokines in response to injury [182].  

Monocytes at the inflammatory site achieve full inflammatory activation 

upon interaction with IFN-, a Th1-type cytokine. IFN- can be produced by 

natural killer cells (NK), achieving a significant but transient activation of 

monocytes, or by adaptive immune cells (Th1 cells), usually necessary to 

maintain activated macrophages [47]. Thus, few hours after exposure to 

TNF-α, monocytes in culture were exposed also to IFN-, to reproduce the 

late inflammatory phase that in vivo involves T lymphocyte infiltration. As 

consequence of stimulation with LPS and IFN-, monocytes undergo 

“classical” M1 activation [44]. Throughout the inflammatory phase, the cells 

were maintained at 39°C to simulate the temperature increase in the 

inflammatory microenvironment during an infection [184]. 

The inflammatory reaction resolves spontaneously when the pathogen is 

destroyed or the inflammatory stimulus is eliminated. This requires a series 

of tuned events, from macrophage transition from an acute inflammatory 

into a deactivated state, to up-regulation of anti-inflammatory cytokines, 

and to epigenetic changes in chromatin [185, 186]. Furthermore, the 

microenvironmental changes due to apoptosis of activated neutrophils and 

T cells, and the modulation of macrophage activation upon enhanced 

phagocytic activity, induce macrophages to release anti-inflammatory and 

immune-regulatory cytokines such as IL-10 and TGF-β [187, 188]. The 
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phenotype of macrophages exposed in vitro to TGF-β and IL-10 (referred to 

as M2c type) shares similarities with anti-inflammatory macrophages [44, 

47], despite there are no in vitro studies that use apoptotic cells as a 

stimulus of macrophage differentiation [189]. Moreover, the presence of 

anti-inflammatory cytokines such as IL-10 and TGF-β is one of mechanisms 

that account for macrophage deactivation as illustrated by inhibition of LPS-

induced TNF-α production [82, 190], and both these cytokines are 

responsible of attenuation of the inflammatory response [190]. 

Thus, in order to simulate the inflammatory resolution and to induce M2 

polarization, we removed the inflammatory stimuli, brought the temperature 

back to 37°C, and exposed cells to the anti-inflammatory cytokine IL-10 first 

and, after removal of IL-10, to TGF-β. We have sequentially separated the 

exposure to IL-10 and TGF-β, because the former is the most important 

anti-inflammatory cytokine responsible of the deactivation of monocytes 

[173], while the latter is the cytokines most involved in the tissue repair 

phases [191].  

In this in vitro model of inflammation, blood monocytes from 12 individual 

healthy donors were used. The use of individual healthy donors has 

allowed us to study the mechanisms of innate immune system in a normal 

population exposed to a variable environment, avoiding all issues of 

representativeness related to the use of inbred models and supporting the 

relevance of directing laboratory-based immunology towards wild 

immunology [140]. We also wanted to avoid using an animal model, such 

as mouse, which has important differences from man in the immune system 

in general [137] and in the innate effector cells in particular [141]. It is 

important to acknowledge that, after a half-century of mouse-dominated 

research, now human immunology is both advancing and providing insights 

into basic biology [192].  
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Another very important aspect of this model, as compared to other models 

based on human primary cells, is that it allows us to follow the changes 

within the same cell population during the entire course of the inflammatory 

reaction, from the initial polarization towards an effector inflammatory 

program to the subsequent re-polarization to the deactivation program. In 

the isolated monocytes used in the model, the percentage of the three 

different monocyte subsets (CD14++CD16-, CD14++CD16+, CD14dimCD16+) 

fully reflected the percentage of the same monocyte subpopulations in the 

blood, indicating that the monocyte population we use in our experiments 

fully represent the monocyte heterogeneity as present in the circulation in 

vivo.  

An issue not yet resolved regards the plasticity of the phenotypic and 

functional commitment of monocyte subpopulations, i.e. if they are 

terminally differentiated (excluding the possibility to switch from one 

subpopulation to another), or if they maintain a certain level of plasticity that 

allows them to transdifferentiate from one subpopulation to another 

depending on the physiological vs. pathological microenvironmental 

conditions. Our observations (decrease of the CD14+ subpopulation and 

increase of the CD16+ subpopulation) indicate that during the inflammatory 

reaction there is a direct relationship between the three subsets, with 

CD14+ monocytes that probably become CD16+ [32], although it is not clear 

if the intermediate subset is more closely related to the classical or non-

classical subsets [27-29]. Moreover, we have observed that the CD16+ 

subset entirely disappeared during the early inflammation after stimulation 

with LPS and TNF-α. This could support the hypothesis that CD16 may be 

a marker of activation among CD14+ monocytes [30], and confirms the 

need to identify new markers to better discriminate between different 

monocyte subsets [21]. These observations are therefore worth of further 

investigation.  
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We observed that a total of almost 4000 genes were differentially 

expressed during the course of inflammation, and during the concomitant 

monocyte-to-macrophage differentiation, consistent with the complexity of 

these processes. Supervised hierarchical clustering revealed six broad 

clusters comprising genes with a distinct behaviour that well describe the 

different phases of inflammation: Inflammation, Early Anti-inflammation, 

Anti-inflammation, Inflammation driven differentiation, Positive 

differentiation, and Negative differentiation. 

The Inflammation phase, corresponding to monocyte-to-M1 differentiation, 

includes genes for the typical effectors of classical activation, such as the 

inflammatory cytokines IL1B, IL6, and TNFA, the chemokines CXCL8 and 

CCL5, soluble innate immune mediator such as PTX3, and enzymes such 

as PTGS2 and PLA1A [54]. The early anti-inflammation and anti-

inflammation clusters include the genes down-regulated in M1 polarized 

cells. These include transcription factors such as CCAAT/enhancer binding 

protein alpha (C/EBPA), receptors such as TLR5, TLR7 and TLR8, 

purinergic receptors (e.g., P2RX7), Fc receptor (e.g., FCER1A, FCRLB). 

We reasoned that the decreased expression of some receptors involved in 

inflammatory response may be related to loss of responsiveness following 

activation (similar to tolerance), which is restored at the end of inflammatory 

process when inflammatory monocytes have become tissue-regulating 

macrophages and should be ready to respond at a new dangerous signal.  

Moreover, to these clusters belong the highly conserved metal-binding 

proteins metallothioneins (e.g., MT1G, MT4, MT1E). These are involved in 

metal homeostasis, detoxification, modulation of inflammation, control of 

the oxidative stress, cell proliferation [171], and are strongly up-regulated in 

endotoxin tolerance that represents a distinctive state of alternative 

polarization [172]. 
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A cluster that we have defined inflammation driven differentiation included 

genes whose expression rapidly increased as soon as the inflammatory 

reaction began and remained up-regulated throughout all the phases of the 

reaction, therefore we reasoned that they may represent genes needed for 

the inflammatory response and also critical for the process of monocyte 

differentiation into deactivating and tissue-repairing macrophages. In fact, 

this cluster includes both a number of inflammatory genes and M1 

polarization markers and genes that are allegedly highly expressed in M2c 

polarization. Positive and negative differentiation clusters identify genes 

that are important for the differentiation of monocytes to macrophages such 

as transcription factors MAFB, KLF4 and PPARG, and c-type lectin 

members, adhesion and signalling molecules.   

It is possible that these genes may define the state of differentiation of 

monocytes to macrophages independently of the concurring inflammatory 

reaction. Indeed, it should be noted that the fresh monocytes used in these 

experiments are an heterogeneous population as present in the blood and 

could therefore include both “inflammatory” monocytes that differentiate into 

effector cells in the tissue, and “homeostatic” monocytes that replenish the 

pool of tissue macrophages in physiological conditions.  

When investigating the biological role of the genes that are differentially 

expressed during the development of the inflammatory response, GSEA 

analysis has shown that the majority of pathways belonging to the 

inflammation cluster are classical inflammatory pathways mainly involved in 

innate immune activation and in type I inflammatory response carried out 

by M1 macrophages (e.g., NFkB, MAPK and JAK-STAT signalling, NOD-

like receptor and TLR signalling, cytokine/chemokine receptor interaction, 

IL-1 receptor pathway [173]). On the other hand, the early anti- and anti-

inflammation clusters are enriched in pathways associated to lipid (fatty 

acid oxidation), protein, and carbohydrate metabolism (oxidative glucose 
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metabolism), and regulation of gene expression (i.e., RNA splicing and 

miRNA biogenesis) and cell cycle. The same pathways were found in the 

positive differentiation cluster. The modulation of genes involved in these 

cellular metabolic activities is a prominent feature of M2 macrophage 

polarization/differentiation [58, 173, 174], and it is conceivable that the up-

regulation of these pathways occurs during the phases of resolution and 

repair, when major rearrangements of cellular functions are required, from 

inflammation to anti-inflammation and to synthesis of tissue repair-

promoting factors. Moreover, the observed enrichment of pathways 

associated with cell cycle agrees with the fact that macrophages involved in 

the resolution of inflammation showed up-regulation of several genes 

related to cell cycle and proliferation [193]. Proliferation seems to emerge 

as an important property of M2-polarized macrophages [194], although its 

in vivo relevance needs further investigation. 

By comparing the lists of differentially expressed gene between monocytes 

vs. M1 and vs. M2 macrophages, extracted from the meta-database, it is 

evident that monocytes treated in vitro in our model of inflammation 

resemble the M1 transcriptome during the inflammatory phase and that of 

M2 during the resolution phase. In addition, by comparing the list of genes 

differentially expressed during the entire inflammatory process with the list 

of genes differentially expressed during monocytes vs. M1 differentiation, 

and monocytes vs. M2 differentiation, it can be observed that most of the 

genes expressed in M1 cells belong to the inflammation cluster, while those 

in M2 cells belong to the positive differentiation cluster. Moreover, among 

genes related with M1 and M2 polarization, several belong to the cluster 

inflammation driven differentiation. The notion that this cluster is apparently 

related to both polarizations suggests that the inflammatory activation is a 

process strictly connected to macrophages differentiation, considering that 
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in the model the same monocytes differentiate into M1 then to M2 in 

response to inflammatory and anti-inflammatory stimuli, respectively. 

Thus, the fact that the genes involved in inflammatory monocyte activation 

belong at the same biological pathways involved in the control of different 

cellular processes (such as cell growth/proliferation and metabolism) during 

monocyte-to-macrophage differentiation in vitro establishes a connection 

between monocyte activation and differentiation, inflammation and 

metabolism at the transcriptional level. Therefore, the resolution of 

inflammation is strictly connected to the progress of cell differentiation in 

the tissue. 

Taken together, all these findings (supervised hierarchical clustering, 

GSEA, comparison between model and database) demonstrate that 

monocytes entering an inflammatory environment first polarized into M1 in 

presence of LPS/TNF-α/IFN-γ, and then switch to M2-polarized 

macrophages in presence of IL-10/TGF-β. The fact that, in this in vitro 

model, the same monocyte population (which however is heterogeneous) 

goes thought all the phases of the inflammatory process by changing its 

phenotype and function, and eventually polarize into M2, was never before 

demonstrated for human cells, and only suggested by mouse studies [31, 

32, 33]. Thus, our results demonstrate that the phenotype of polarized 

human M1 and M2 macrophages can change, and reverse in vitro [75].   

The M1 and M2 polarization of monocytes has been validated by data of 

quantitative gene expression and protein production. A series of 

inflammation-related factors and chemokines, chosen as M1 markers or 

monocyte activation markers, such as IL-6, TNF-α, IL-7R, IL-1β, IL-18, IL-

1F9, CXCL8, CCL5 were found to be expressed, and their gene products 

synthesized, during the inflammatory phases (4 and 14 h), while those 

chosen as M2 markers, such as CD163, MMP9, IL-1Ra, sIL-1RII, IL-18BP 

were expressed during the resolution phases (24 and 48 h). Regarding the 



 

80 

 

IL-1 family, we have focused our attention on a less known member, IL-

1F9, since we observed that IL1F9 is one of the genes differentially 

expressed during the inflammatory phase and appears among genes up-

regulated in M1, thus appearing as a good candidate as a new M1 marker. 

We have confirmed by real-time PCR its mRNA expression only during the 

inflammatory reaction, but we could not detect the protein. Thus, either the 

protein detection methods are not sensitive enough for detection, or mRNA 

up-regulation is not followed by significant protein production and it 

represent a non-functional signal of monocytes activation, a sort of 

“predisposing” condition favouring subsequent responsiveness to 

inflammatory challenges.  

In addition, a series of transcription factors were examined as markers of 

monocyte/macrophage differentiation, all being factors involved both in 

monocyte differentation and macrophage polarization. Our data confirm 

that the expression pattern of the transcription factor gene MAFB, a known 

myeloid differentiation marker, correlated with the expression patterns of its 

candidate target genes CD163 and MMP9 [117] which increase during the 

resolution phases. Expression of PPARG and PPARD increased during the 

inflammation phases and only PPARD maintained an high expression level 

also during the resolution phases, confirming their role in inflammation 

[195], and in the control of monocyte-to-macrophage differentiation [101, 

102], respectively. Moreover, we observed that the transcription factors 

KLF4 and C/EBPA, both critical regulators of monocyte differentiation, 

seem to have an opposite gene expression profile, the former being 

significantly down-regulated during all phases of inflammatory reaction, 

while the latter showing a strong increase during the repair phase.  

The observed expression profile of PPARG and KLF4 does not seem to be 

in agreement with the fact that these transcription factors appear to be 

linked to M2 polarization [196, 197]. However, it should be underlined that 
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the present study is exclusively focused on M2c polarization, while those 

relating PPARG and KLF4 to M2 were addressing M2a polarization, which 

is functionally very different. 

Taken together, these results highlight that, while transcriptional factors 

may contribute in different manner to macrophage polarization, down-

regulation of PPARG and KLF4 in parallel to up-regulation of MAFB seem 

to be critical for monocyte to M2c differentiation. 

The up-regulation or down-regulation of transcriptional factors is important 

for determining macrophage differentiation, and the same transcriptional 

factors might drive the expression of genes involved in monocyte activation. 

For this reason, the transcriptional factors can become the connecting link 

between the two processes.  

In conclusion, the transcriptional data and the kinetical analysis of 

production of inflammatory and anti-inflammatory factors validate the 

proposed in vitro model of the inflammatory response, thus allowing us to 

describe the time-dependent and coordinated sequence of inflammation-

related events. This model could therefore open the possibility of accurately 

characterize the development and regulation of human 

monocyte/macrophage differentiation and polarization. 
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6. SUPPLEMENTARY DATA AND TABLES 

Table S1: Complete list of the datasets used in this study and their 
sources. Genome-wide expression levels and meta-information of 303 
samples were organized in a proprietary database using A-MADMAN. 

 GEO series Platform 
Total samples 

in series 

Samples 
used in this 

study 
Reference 

GSE4984 HG-U133 Plus2.0 12 6 Fulcher et al., 2006 
GSE5099 HG-U133A 30 14 Martinez et al., 2006 
GSE5547 HG-U133 Plus2.0 24 6 Humphrey et al., 2007 
GSE6965 HG-U133 Plus2.0 4 4 Mezger et al., 2008 
GSE7509 HG-U133 Plus2.0 26 26 Dhodapkar et al., 2007 
GSE7568 HG-U133 Plus2.0 25 25 Gratchev et al., 2008 
GSE7807 HG-U133 Plus2.0 8 4 Woszczek et al., 2008 
GSE8286 HG-U133A 9 9 Liu et al., 2008 
GSE8515 HG-U133A 15 15 Jura et al., 2008 
GSE8608 HG-U133 Plus2.0 6 1 Hofer et al., 2008 
GSE8658 HG-U133 Plus2.0 63 30 Szatmari et al., 2007 
GSE9080 HG-U133Av2 6 3 --- 
GSE9874 HG-U133A 60 11 Hägg et al., 2008 
GSE9946 HG-U133A 12 12 Popov et al., 2008 
GSE9988 HG-U133 Plus2.0 62 58 Dower et al., 2008 
GSE10856 HG-U133 Plus2.0 4 4 Chang et al., 2008 
GSE11393 HG-U133Av2 9 3 Llaverias et al., 2008 
GSE11430 HG-U133 Plus2.0 10 10 Maouche et al., 2008 
GSE11864 HG-U133 Plus2.0 10 10 Hu et al., 2008 
GSE12108 HG-U133 Plus2.0 14 13 Butchar et al., 2008 
GSE12773 HG-U133 Plus2.0 10 5 Rate et al., 2009 
GSE12837 HG-U133A 24 3 Coppe et al., 2009 
GSE13762 HG-U133 Plus2.0 15 15 Széles et al., 2009 
GSE14419 HG-U133Av2 16 16 --- 
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Table S2: Complete list of 128 samples labeled as untreated monocytes 
and as M1 and M2 activated monocytes and their sources. 
 

GEO series Platform GEO samples 

Untreated monocytes 

GSE5099 HG-U133A 
GSM115051; GSM115046; GSM115047; GSM115048; 
GSM115049; GSM115050 

GSE7807  HG-U133 Plus2.0 GSM189447; GSM189448; GSM189449; GSM189450 

GSE8286  HG-U133A 
GSM205587; GSM205588; GSM205590; GSM205591; 
GSM205592; GSM205594 

GSE8658  HG-U133 Plus2.0 
GSM214749; GSM214734; GSM214737; GSM214738; 
GSM214739; GSM214740; GSM214741; GSM214742; 
GSM214743; GSM214744; GSM214745; GSM214746 

GSE9080  HG-U133Av2 GSM230145; GSM230149; GSM230147 

GSE9988  HG-U133 Plus2.0 
GSM252476; GSM252478; GSM252479; GSM252480; 
GSM252481; GSM252484; GSM252485 

GSE11393  HG-U133Av2 GSM287664; GSM287665; GSM287666 

GSE11430  HG-U133 Plus2.0 
GSM257664; GSM257666; GSM257668; GSM257670; 
GSM257672 

GSE11864  HG-U133 Plus2.0 GSM299556; GSM299557; GSM299561; GSM299562 

GSE12108  HG-U133 Plus2.0 
GSM305434; GSM305436; GSM305438; GSM305440; 
GSM305430; GSM305432 

GSE12837  HG-U133A GSM15431; GSM321582; GSM15430 
GSE13762  HG-U133 Plus2.0 GSM346564; GSM346577; GSM346553 

M1 activation 

GSE5099 HG-U133A GSM115055; GSM115057 

GSE9988  HG-U133 Plus2.0 

GSM252423; GSM252424; GSM252425; GSM252427; 
GSM252428; GSM252429; GSM252431; GSM252432; 
GSM252433; GSM252434; GSM252435; GSM252436; 
GSM252437; GSM252438; GSM252439; GSM252440; 
GSM252441; GSM252442; GSM252443; GSM252444; 
GSM252445; GSM252447; GSM252448; GSM252449; 
GSM252450; GSM252451; GSM252453; GSM252454; 
GSM252455; GSM252456; GSM252457; GSM252458; 
GSM252459; GSM252460; GSM252461; GSM252462; 
GSM252463; GSM252464; GSM252430; GSM252426 

GSE14419  HG-U133Av2 GSM360141; GSM360145; GSM360184; GSM360188 
M2 activation 

GSE7568  HG-U133 Plus2.0 

GSM183464; GSM183465; GSM183466; GSM183467; 
GSM183482; GSM183483; GSM183484; GSM183485; 
GSM183486; GSM183487; GSM183217; GSM183305; 
GSM183306; GSM183315; GSM183316; GSM183392; 
GSM183393; GSM183394; GSM183462; GSM183463 

 
 
 
 
 
 

 

 

 
 



 

109 

 

 

 

Figure 1. Data visualization by cluster analysis. Nine separated clusters are show. 

Solid red lines have been drawn joining the average value of gene expression at 

each time point for each donor (dots). In the text the clusters are reported as 

follows: 1 and 2 as Inflammation (218 and 174 genes, respectively), 3 as Early-

anti-inflammation (850 genes), 4 and 5 as Anti-inflammation (445 and 576 genes 

respectively), 6 as Inflammation driven differentiation (457 genes), 7 as Positive 

Differentiation (234 genes), 8 and 9 as Negative Differentiation (680 and 381 

genes, respectively). The complete list of the genes differentially expressed is 

available with the author. 
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Table S3: Complete list of the Gene sets identified by GSEA as correlated 
with the expression profiles of clusters 
 
Cluster                                                                                                        FDR q-val 
 

Cluster 1       

 
BIOCARTA_IL1R_PATHWAY 

 
0,00955 

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0 

KEGG_RIBOSOME 0 

KEGG_OLFACTORY_TRANSDUCTION 0 

KEGG_MAPK_SIGNALING_PATHWAY 0 

KEGG_CALCIUM_SIGNALING_PATHWAY 0,00473 

KEGG_HEDGEHOG_SIGNALING_PATHWAY 0,00506 

KEGG_ECM_RECEPTOR_INTERACTION 0,00887 

KEGG_FOCAL_ADHESION 0,00813 

KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG 0,00873 

KEGG_PATHWAYS_IN_CANCER 0,00803 

KEGG_NOTCH_SIGNALING_PATHWAY 0,01536 

KEGG_SMALL_CELL_LUNG_CANCER 0,01408 

KEGG_BASAL_CELL_CARCINOMA 0,01684 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0,01637 

KEGG_TIGHT_JUNCTION 0,01585 

KEGG_WNT_SIGNALING_PATHWAY 0,01886 

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 0,02123 

KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 0,02955 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES 0,03132 

KEGG_CELL_ADHESION_MOLECULES_CAMS 0,03723 

KEGG_NITROGEN_METABOLISM 0,04622 

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 0,04816 

REACTOME_GPCR_LIGAND_BINDING 0 

REACTOME_GTP_HYDROLYSIS_AND_JOINING_OF_THE_60S_RIBOSOMAL_ 
SUBUNIT 

0 

REACTOME_FORMATION_OF_A_POOL_OF_FREE_40S_SUBUNITS 0 

REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT 0 

REACTOME_OLFACTORY_SIGNALING_PATHWAY 0 

REACTOME_PEPTIDE_CHAIN_ELONGATION 0 

REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS 0 

REACTOME_NUCLEAR_RECEPTOR_TRANSCRIPTION_PATHWAY 0 

REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLS 0 

REACTOME_G_ALPHA_S_SIGNALLING_EVENTS 0 

REACTOME_CLASS_B2_SECRETIN_FAMILY_RECEPTORS 0,00060 

REACTOME_VIRAL_MRNA_TRANSLATION 0,00086 

REACTOME_AMINE_LIGAND_BINDING_RECEPTORS 0,00090 

REACTOME_TRANSLATION 0,00100 

REACTOME_DOWNSTREAM_EVENTS_IN_GPCR_SIGNALING 0,00118 

REACTOME_TRANSLATION_INITIATION_COMPLEX_FORMATION 0,00120 

REACTOME_AMINE_COMPOUND_SLC_TRANSPORTERS 0,00165 
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REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS 0,00189 

REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_ 
THE_43S_COMPLEX 

0,00187 

REACTOME_NCAM1_INTERACTIONS 0,00311 

REACTOME_G_ALPHA_I_SIGNALLING_EVENTS 0,00310 

REACTOME_PHOSPHOLIPASE_CMEDIATED_CASCADE 0,00302 

REACTOME_GAP_JUNCTION_ASSEMBLY 0,01105 

REACTOME_ACTIVATION_OF_BH3_ONLY_PROTEINS 0,01232 

REACTOME_SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT 0,01221 

REACTOME_ADHERENS_JUNCTIONS_INTERACTIONS 0,01365 

REACTOME_G_ALPHA_Q_SIGNALLING_EVENTS 0,01320 

REACTOME_NEUROTRANSMITTER_RELEASE_CYCLE 0,01510 

REACTOME_FRS2MEDIATED_CASCADE 0,01486 

REACTOME_NA_CL_DEPENDENT_NEUROTRANSMITTER_TRANSPORTERS 0,01446 

REACTOME_GLUCOSE_AND_OTHER_SUGAR_SLC_TRANSPORTERS 0,01407 

REACTOME_SHCMEDIATED_CASCADE 0,01509 

REACTOME_FGFR_LIGAND_BINDING_AND_ACTIVATION 0,01505 

REACTOME_CELL_CELL_ADHESION_SYSTEMS 0,01654 

REACTOME_CELL_JUNCTION_ORGANIZATION 0,01721 

REACTOME_INTRINSIC_PATHWAY_FOR_APOPTOSIS 0,01901 

REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES 0,02268 

REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH 0,02424 

REACTOME_XENOBIOTICS 0,02757 

REACTOME_MYOGENESSIS 0,03350 

REACTOME_INORGANIC_CATION_ANION_SLC_TRANSPORTERS 0,03516 

REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_ACTIVITY_BY_ 
INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS 

0,03538 

REACTOME_PHASE_1_FUNCTIONALIZATION_OF_COMPOUNDS 0,04208 

REACTOME_PHASE_1_FUNCTIONALIZATION 0,04527 

  

Cluster 2  

 
BIOCARTA_TNFR2_PATHWAY 

 
0,00193 

BIOCARTA_NFKB_PATHWAY 0,00379 

BIOCARTA_RELA_PATHWAY 0,00480 

BIOCARTA_NTHI_PATHWAY 0,00380 

BIOCARTA_IL10_PATHWAY 0,01368 

BIOCARTA_IL1R_PATHWAY 0,01404 

BIOCARTA_DEATH_PATHWAY 0,01580 

BIOCARTA_INFLAM_PATHWAY 0,02143 

BIOCARTA_HIVNEF_PATHWAY 0,02317 

BIOCARTA_TID_PATHWAY 0,02365 

BIOCARTA_CD40_PATHWAY 0,03357 

BIOCARTA_AMI_PATHWAY 0,04390 

BIOCARTA_CYTOKINE_PATHWAY 0,04493 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0 

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 0 

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0 

KEGG_ECM_RECEPTOR_INTERACTION 0,00109 
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KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 0,00087 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES 0,00319 

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0,00567 

KEGG_GRAFT_VERSUS_HOST_DISEASE 0,00521 

KEGG_PATHWAYS_IN_CANCER 0,00738 

KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY 0,00833 

KEGG_JAK_STAT_SIGNALING_PATHWAY 0,01130 

KEGG_SMALL_CELL_LUNG_CANCER 0,01215 

KEGG_FOCAL_ADHESION 0,01392 

KEGG_TYPE_I_DIABETES_MELLITUS 0,01332 

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 0,01458 

KEGG_MAPK_SIGNALING_PATHWAY 0,01530 

KEGG_PROTEASOME 0,01614 

KEGG_NOTCH_SIGNALING_PATHWAY 0,01530 

KEGG_APOPTOSIS 0,01543 

KEGG_TIGHT_JUNCTION 0,01563 

KEGG_BASAL_CELL_CARCINOMA 0,01910 

KEGG_ALLOGRAFT_REJECTION 0,02005 

KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION 0,02176 

KEGG_LINOLEIC_ACID_METABOLISM 0,02290 

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 0,03234 

KEGG_AUTOIMMUNE_THYROID_DISEASE 0,04691 

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 0 

REACTOME_GPCR_LIGAND_BINDING 0 

REACTOME_OLFACTORY_SIGNALING_PATHWAY 0,00098 

REACTOME_AMINE_LIGAND_BINDING_RECEPTORS 0,00150 

REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS 0,00138 

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS 0,00416 

REACTOME_RNA_POLYMERASE_I_PROMOTER_OPENING 0,00565 

REACTOME_AMINO_ACID_AND_OLIGOPEPTIDE_SLC_TRANSPORTERS 0,00596 

REACTOME_PACKAGING_OF_TELOMERE_ENDS 0,00606 

REACTOME_CELL_JUNCTION_ORGANIZATION 0,00606 

REACTOME_AMINO_ACID_TRANSPORT_ACROSS_THE_PLASMA_MEMBRANE 0,00568 

REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_ACTIVITY_BY_ 
INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS 

0,00521 

REACTOME_CELL_CELL_ADHESION_SYSTEMS 0,00671 

REACTOME_SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT 0,00630 

REACTOME_SCF_SKP2_MEDIATED_DEGRADATION_OF_P27_P21 0,00640 

REACTOME_G_ALPHA_I_SIGNALLING_EVENTS 0,00649 

REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_ 0,00697 

REACTOME_CLASS_B2_SECRETIN_FAMILY_RECEPTORS 0,00679 

REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE 0,00707 

REACTOME_XENOBIOTICS 0,00947 

REACTOME_INORGANIC_CATION_ANION_SLC_TRANSPORTERS 0,01158 

REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G 0,01182 

REACTOME_NCAM1_INTERACTIONS 0,01135 

REACTOME_AMINE_COMPOUND_SLC_TRANSPORTERS 0,01285 

REACTOME_NA_CL_DEPENDENT_NEUROTRANSMITTER_TRANSPORTERS 0,01257 
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REACTOME_G_ALPHA_S_SIGNALLING_EVENTS 0,01243 

REACTOME_REGULATION_OF_APC_ACTIVATORS_BETWEEN_G1_S_AND_EARLY_ 
ANAPHASE 

0,01219 

REACTOME_CDC20_PHOSPHO_APC_MEDIATED_DEGRADATION_OF_CYCLIN_A 0,01186 

REACTOME_ADHERENS_JUNCTIONS_INTERACTIONS 0,01303 

REACTOME_TOLL_LIKE_RECEPTOR_3_CASCADE 0,01458 

REACTOME_GLUCOSE_AND_OTHER_SUGAR_SLC_TRANSPORTERS 0,01436 

REACTOME_P53_INDEPENDENT_DNA_DAMAGE_RESPONSE 0,01479 

REACTOME_FORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC 0,01581 

REACTOME_STEROID_HORMONES 0,01648 

REACTOME_DOWNSTREAM_EVENTS_IN_GPCR_SIGNALING 0,02319 

REACTOME_RNA_POLYMERASE_I_PROMOTER_CLEARANCE 0,02369 

REACTOME_CYTOCHROME_P450_ARRANGED_BY_SUBSTRATE_TYPE 0,02387 

REACTOME_TRAF6_MEDIATED_INDUCTION_OF_THE_ANTIVIRAL_CYTOKINE_IFN_ 
ALPHA_BETA_CASCADE 

0,02403 

REACTOME_STABILIZATION_OF_P53 0,02418 

REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1 0,02610 

REACTOME_APOPTOSIS 0,02850 

REACTOME_PHASE_1_FUNCTIONALIZATION_OF_COMPOUNDS 0,03593 

REACTOME_GAP_JUNCTION_ASSEMBLY 0,03712 

REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 0,03665 

REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH 0,04031 

REACTOME_UNFOLDED_PROTEIN_RESPONSE 0,04171 

REACTOME_AXON_GUIDANCE 0,04109 

REACTOME_ZINC_TRANSPORTATION 0,04317 

REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX 0,04418 

  

Cluster 3  

 
BIOCARTA_PROTEASOME_PATHWAY 

 
0,00103 

BIOCARTA_ATRBRCA_PATHWAY 0,00104 

BIOCARTA_FAS_PATHWAY 0,01474 

BIOCARTA_RAC1_PATHWAY 0,01183 

BIOCARTA_CASPASE_PATHWAY 0,01013 

BIOCARTA_TNFR1_PATHWAY 0,01006 

KEGG_PROTEASOME 0 

KEGG_LYSOSOME 0 

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 0 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 0,00082 

KEGG_DNA_REPLICATION 0,00066 

KEGG_STEROID_BIOSYNTHESIS 0,00113 

KEGG_MISMATCH_REPAIR 0,00225 

KEGG_N_GLYCAN_BIOSYNTHESIS 0,00197 

KEGG_BASE_EXCISION_REPAIR 0,00175 

KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS 0,00376 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0,00385 

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 0,00484 

KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION 0,00725 

KEGG_PEROXISOME 0,00712 
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KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM 0,00664 

KEGG_SELENOAMINO_ACID_METABOLISM 0,00960 

KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 0,00965 

KEGG_HOMOLOGOUS_RECOMBINATION 0,01115 

KEGG_PROPANOATE_METABOLISM 0,01244 

KEGG_VIBRIO_CHOLERAE_INFECTION 0,01293 

KEGG_PYRIMIDINE_METABOLISM 0,01384 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0,01574 

KEGG_PYRUVATE_METABOLISM 0,02247 

KEGG_RNA_DEGRADATION 0,02247 

KEGG_PENTOSE_PHOSPHATE_PATHWAY 0,02263 

KEGG_OXIDATIVE_PHOSPHORYLATION 0,03021 

KEGG_CITRATE_CYCLE_TCA_CYCLE 0,03171 

KEGG_PROTEIN_EXPORT 0,04312 

KEGG_VASOPRESSIN_REGULATED_WATER_REABSORPTION 0,04457 

REACTOME_SYNTHESIS_OF_DNA 0 

REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX 0 

REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G 0 

REACTOME_P53_INDEPENDENT_DNA_DAMAGE_RESPONSE 0 

REACTOME_S_PHASE 0 

REACTOME_DNA_REPLICATION_PRE_INITIATION 0 

REACTOME_STABILIZATION_OF_P53 0 

REACTOME_CELL_CYCLE_CHECKPOINTS 0 

REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 0 

REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1_APC 0 

REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE 0 

REACTOME_SCF_SKP2_MEDIATED_DEGRADATION_OF_P27_P21 0 

REACTOME_CDC20_PHOSPHO_APC_MEDIATED_DEGRADATION_OF_CYCLIN_A 0 

REACTOME_M_G1_TRANSITION 0 

REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1 0 

REACTOME_DNA_REPAIR 0 

REACTOME_REGULATION_OF_APC_ACTIVATORS_BETWEEN_G1_S_AND_EARLY_ 
ANAPHASE 

0 

REACTOME_CELL_CYCLE_MITOTIC 0 

REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_ 0 

REACTOME_SIGNALING_BY_WNT 0 

REACTOME_G1_S_TRANSITION 0 

REACTOME_MITOTIC_M_M_G1_PHASES 0 

REACTOME_LAGGING_STRAND_SYNTHESIS 0 

REACTOME_DNA_STRAND_ELONGATION 0 

REACTOME_GLOBAL_GENOMIC_NER 0 

REACTOME_DOUBLE_STRAND_BREAK_REPAIR 0 

REACTOME_HIV_INFECTION 0 

REACTOME_APOPTOSIS 0 

REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS 0 

REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS 0,00004 

REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX 0,00004 

REACTOME_TELOMERE_MAINTENANCE 0,00004 
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REACTOME_G2_M_CHECKPOINTS 0,00004 

REACTOME_NUCLEOTIDE_EXCISION_REPAIR 0,00015 

REACTOME_MEMBRANE_TRAFFICKING 0,00015 

REACTOME_CENTROSOME_MATURATION 0,00026 

REACTOME_REPAIR_SYNTHESIS_OF_PATCH_27_30_BASES_LONG_BY_DNA_ 
POLYMERASE 

0,00025 

REACTOME_EXTENSION_OF_TELOMERES 0,00045 

REACTOME_DUAL_INCISION_REACTION_IN_GG_NER 0,00047 

REACTOME_LOSS_OF_NLP_FROM_MITOTIC_CENTROSOMES 0,00077 

REACTOME_TRANSCRIPTION_COUPLED_NER 0,00085 

REACTOME_G2_M_TRANSITION 0,00135 

REACTOME_FANCONI_ANEMIA_PATHWAY 0,00150 

REACTOME_MICRORNA_BIOGENESIS 0,00153 

REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION 0,00175 

REACTOME_CLATHRIN_DERIVED_VESICLE_BUDDING 0,00236 

REACTOME_CHOLESTEROL_BIOSYNTHESIS 0,00307 

REACTOME_SYNTHESIS_OF_GPI_ANCHORED_PROTEINS 0,00317 

REACTOME_SYNTHESIS_OF_GLYCOSYLPHOSPHATIDYLINOSITOL 0,00313 

REACTOME_PEROXISOMAL_LIPID_METABOLISM 0,00409 

REACTOME_BRANCHED_CHAIN_AMINO_ACID_CATABOLISM 0,00619 

REACTOME_GOLGI_ASSOCIATED_VESICLE_BIOGENESIS 0,00609 

REACTOME_BASE_EXCISION_REPAIR 0,00660 

REACTOME_MITOTIC_PROMETAPHASE 0,00929 

REACTOME_METABOLISM_OF_AMINO_ACIDS 0,01074 

REACTOME_TOLL_LIKE_RECEPTOR_9_CASCADE 0,01077 

REACTOME_LYSOSOME_VESICLE_BIOGENESIS 0,01148 

REACTOME_MITOCHONDRIAL_TRNA_AMINOACYLATION 0,01231 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION_INITIATION 0,01224 

REACTOME_PHOSPHORYLATION_OF_THE_APC 0,01224 

REACTOME_HIV_LIFE_CYCLE 0,01208 

REACTOME_FORMATION_OF_THE_EARLY_ELONGATION_COMPLEX 0,01237 

REACTOME_MRNA_PROCESSING 0,01315 

REACTOME_PACKAGING_OF_TELOMERE_ENDS 0,01369 

REACTOME_HIV1_TRANSCRIPTION_INITIATION 0,01487 

REACTOME_ACTIVATED_AMPK_STIMULATES_FATTY_ACID_OXIDATION_IN_ 
MUSCLE 

0,01542 

REACTOME_POST_CHAPERONIN_TUBULIN_FOLDING_PATHWAY 0,01554 

REACTOME_APCDC20_MEDIATED_DEGRADATION_OF_CYCLIN_B 0,01604 

REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE 0,01706 

REACTOME_INACTIVATION_OF_APC_VIA_DIRECT_INHIBITION_OF_THE_AP_ 
COMPLEX 

0,01843 

REACTOME_RNA_POL_II_CTD_PHOSPHORYLATION_AND_INTERACTION_WITH_CE 0,02147 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 0,02177 

REACTOME_CONVERSION_FROM_APC_CDC20_TO_APC_CDH1_IN_LATE_ 
ANAPHASE 

0,02190 

REACTOME_ACTIVATED_TLR4_SIGNALLING 0,02939 

REACTOME_METABOLISM_OF_CARBOHYDRATES 0,03284 

REACTOME_TRNA_AMINOACYLATION 0,03315 

REACTOME_RNA_POLYMERASE_I_III_AND_MITOCHONDRIAL_TRANSCRIPTION 0,03526 
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REACTOME_REGULATION_OF_LIPID_METABOLISM_BY_PEROXISOME_PROLIFERA
TOR_ACTIVATED_RECEPTOR_ALPHA 

0,03749 

REACTOME_TRANSCRIPTION_OF_THE_HIV_GENOME 0,03873 

REACTOME_ENERGY_DEPENDENT_REGULATION_OF_MTOR_BY_LKB1_AMPK 0,03980 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION 0,03995 

REACTOME_TOLL_LIKE_RECEPTOR_4_CASCADE 0,04292 

REACTOME_CHAPERONIN_MEDIATED_PROTEIN_FOLDING 0,04544 

REACTOME_DUAL_INCISION_REACTION_IN_TC_NER 0,04883 

REACTOME_GLUCOSE_METABOLISM 0,04923 

REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION 0,04997 

REACTOME_GLUCOSE_TRANSPORT 0,04966 

  

Cluster 4  

 
BIOCARTA_ATRBRCA_PATHWAY 

 
0,00300 

BIOCARTA_MCM_PATHWAY 0,00200 

BIOCARTA_CREB_PATHWAY 0,03000 

BIOCARTA_RAC1_PATHWAY 0,04500 

KEGG_LYSOSOME 0 

KEGG_OXIDATIVE_PHOSPHORYLATION 0 

KEGG_DNA_REPLICATION 0 

KEGG_PARKINSONS_DISEASE 0 

KEGG_BASE_EXCISION_REPAIR 0 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 0 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0 

KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS 0 

KEGG_PROPANOATE_METABOLISM 0 

KEGG_PEROXISOME 0 

KEGG_HUNTINGTONS_DISEASE 0 

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 0 

KEGG_PYRIMIDINE_METABOLISM 0 

KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM 0 

KEGG_ALZHEIMERS_DISEASE 0 

KEGG_MISMATCH_REPAIR 0 

KEGG_CITRATE_CYCLE_TCA_CYCLE 0 

KEGG_RNA_DEGRADATION 0 

KEGG_PENTOSE_PHOSPHATE_PATHWAY 0 

KEGG_N_GLYCAN_BIOSYNTHESIS 0,00100 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0,00100 

KEGG_PYRUVATE_METABOLISM 0,00200 

KEGG_RNA_POLYMERASE 0,00400 

KEGG_LYSINE_DEGRADATION 0,00600 

KEGG_HOMOLOGOUS_RECOMBINATION 0,01300 

KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 0,01300 

KEGG_FATTY_ACID_METABOLISM 0,01400 

KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 0,02200 

KEGG_RIBOFLAVIN_METABOLISM 0,02300 

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 0,02200 

KEGG_SELENOAMINO_ACID_METABOLISM 0,03600 
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KEGG_GLYCOSAMINOGLYCAN_DEGRADATION 0,03600 

KEGG_VASOPRESSIN_REGULATED_WATER_REABSORPTION 0,04900 

REACTOME_ELECTRON_TRANSPORT_CHAIN 0 

REACTOME_DNA_REPAIR 0 

REACTOME_NUCLEOTIDE_EXCISION_REPAIR 0 

REACTOME_DNA_STRAND_ELONGATION 0 

REACTOME_GLOBAL_GENOMIC_NER 0 

REACTOME_LAGGING_STRAND_SYNTHESIS 0 

REACTOME_GLUCOSE_REGULATION_OF_INSULIN_SECRETION 0 

REACTOME_SYNTHESIS_OF_DNA 0 

REACTOME_EXTENSION_OF_TELOMERES 0 

REACTOME_TRANSCRIPTION_COUPLED_NER 0 

REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX 0 

REACTOME_CELL_CYCLE_MITOTIC 0 

REACTOME_S_PHASE 0 

REACTOME_INTEGRATION_OF_ENERGY_METABOLISM 0 

REACTOME_BASE_EXCISION_REPAIR 0 

REACTOME_CENTROSOME_MATURATION 0 

REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS 0 

REACTOME_BRANCHED_CHAIN_AMINO_ACID_CATABOLISM 0 

REACTOME_REPAIR_SYNTHESIS_OF_PATCH_27_30_BASES_LONG_BY_DNA_ 
POLYMERASE 

0 

REACTOME_DUAL_INCISION_REACTION_IN_GG_NER 0 

REACTOME_PEROXISOMAL_LIPID_METABOLISM 0 

REACTOME_G2_M_CHECKPOINTS 0 

REACTOME_PYRUVATE_METABOLISM_AND_TCA_CYCLE 0 

REACTOME_DNA_REPLICATION_PRE_INITIATION 0 

REACTOME_REGULATION_OF_INSULIN_SECRETION 0 

REACTOME_CELL_CYCLE_CHECKPOINTS 0 

REACTOME_SYNTHESIS_OF_GPI_ANCHORED_PROTEINS 0 

REACTOME_LOSS_OF_NLP_FROM_MITOTIC_CENTROSOMES 0 

REACTOME_SYNTHESIS_OF_GLYCOSYLPHOSPHATIDYLINOSITOL 0 

REACTOME_MITOTIC_M_M_G1_PHASES 0 

REACTOME_METABOLISM_OF_CARBOHYDRATES 0 

REACTOME_MICRORNA_BIOGENESIS 0 

REACTOME_FANCONI_ANEMIA_PATHWAY 0,00100 

REACTOME_CITRIC_ACID_CYCLE 0,00100 

REACTOME_GLYCOGEN_BREAKDOWN_GLYCOGENOLYSIS 0,00100 

REACTOME_GLUCOSE_METABOLISM 0,00100 

REACTOME_G2_M_TRANSITION 0,00100 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION_INITIATION 0,00100 

REACTOME_DOUBLE_STRAND_BREAK_REPAIR 0,00100 

REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX 0,00100 

REACTOME_HIV_INFECTION 0,00100 

REACTOME_METABOLISM_OF_RNA 0,00100 

REACTOME_HIV_LIFE_CYCLE 0,00100 

REACTOME_M_G1_TRANSITION 0,00100 

REACTOME_G1_S_TRANSITION 0,00100 
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REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION 0,00200 

REACTOME_MITOCHONDRIAL_TRNA_AMINOACYLATION 0,00200 

REACTOME_FORMATION_OF_THE_EARLY_ELONGATION_COMPLEX 0,00200 

REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION 0,00200 

REACTOME_METABOLISM_OF_MRNA 0,00200 

REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 0,00200 

REACTOME_DUAL_INCISION_REACTION_IN_TC_NER 0,00300 

REACTOME_STABILIZATION_OF_P53 0,00400 

REACTOME_TOLL_LIKE_RECEPTOR_9_CASCADE 0,00400 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION_INITIATION_FROM_TYPE_2_ 
PROMOTER 

0,00400 

REACTOME_MITOTIC_PROMETAPHASE 0,00500 

REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE 0,00500 

REACTOME_TELOMERE_MAINTENANCE 0,00600 

REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION 0,00700 

REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS 0,00700 

REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1_APC 0,00700 

REACTOME_TRNA_AMINOACYLATION 0,00800 

REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G 0,00900 

REACTOME_GLUCONEOGENESIS 0,01000 

REACTOME_ABORTIVE_ELONGATION_OF_HIV1_TRANSCRIPT_IN_THE_ABSENCE_ 
OF_TAT 

0,01100 

REACTOME_RNA_POL_II_CTD_PHOSPHORYLATION_AND_INTERACTION_WITH_CE 0,01100 

REACTOME_HIV1_TRANSCRIPTION_INITIATION 0,01200 

REACTOME_ACTIVATED_AMPK_STIMULATES_FATTY_ACID_OXIDATION_IN_ 
MUSCLE 

0,01200 

REACTOME_NEP_NS2_INTERACTS_WITH_THE_CELLULAR_EXPORT_MACHINERY 0,01300 

REACTOME_SNRNP_ASSEMBLY 0,01500 

REACTOME_ENERGY_DEPENDENT_REGULATION_OF_MTOR_BY_LKB1_AMPK 0,01500 

REACTOME_MYD88_CASCADE 0,01500 

REACTOME_CDC20_PHOSPHO_APC_MEDIATED_DEGRADATION_OF_CYCLIN_A 0,01600 

REACTOME_CLATHRIN_DERIVED_VESICLE_BUDDING 0,01900 

REACTOME_REV_MEDIATED_NUCLEAR_EXPORT_OF_HIV1_RNA 0,02000 

REACTOME_DIABETES_PATHWAYS 0,02100 

REACTOME_P53_INDEPENDENT_DNA_DAMAGE_RESPONSE 0,02100 

REACTOME_LYSOSOME_VESICLE_BIOGENESIS 0,02100 

REACTOME_MTOR_SIGNALLING 0,02200 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION_INITIATION_FROM_TYPE_3_ 
PROMOTER 

0,02300 

REACTOME_SIGNALING_BY_WNT 0,02300 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 0,02300 

REACTOME_VPR_MEDIATED_NUCLEAR_IMPORT_OF_PICS 0,02300 

REACTOME_GLUCOSE_TRANSPORT 0,02600 

REACTOME_TRANSCRIPTION_OF_THE_HIV_GENOME 0,02800 

REACTOME_HIV1_TRANSCRIPTION_ELONGATION 0,03100 

REACTOME_NUCLEAR_IMPORT_OF_REV_PROTEIN 0,03100 

REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE 0,03100 

REACTOME_CELL_DEATH_SIGNALLING_VIA_NRAGE_NRIF_AND_NADE 0,03100 

REACTOME_PYRUVATE_METABOLISM 0,03200 
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REACTOME_TOLL_LIKE_RECEPTOR_4_CASCADE 0,03400 

REACTOME_ACTIVATED_TLR4_SIGNALLING 0,03700 

REACTOME_MEMBRANE_TRAFFICKING 0,04000 

REACTOME_RHO_GTPASE_CYCLE 0,04300 

REACTOME_TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_ 
NUCLEUS 

0,04300 

REACTOME_GOLGI_ASSOCIATED_VESICLE_BIOGENESIS 0,04400 

REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1 0,04400 

REACTOME_MRNA_PROCESSING 0,04300 

REACTOME_SCF_SKP2_MEDIATED_DEGRADATION_OF_P27_P21 0,04700 

  

Cluster 5  

 
KEGG_OXIDATIVE_PHOSPHORYLATION 

 
0 

KEGG_PARKINSONS_DISEASE 0 

KEGG_DNA_REPLICATION 0 

KEGG_ALZHEIMERS_DISEASE 0 

KEGG_HUNTINGTONS_DISEASE 0 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0 

KEGG_BASE_EXCISION_REPAIR 0 

KEGG_PROPANOATE_METABOLISM 0 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 0 

KEGG_CITRATE_CYCLE_TCA_CYCLE 0 

KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM 0 

KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS 0 

KEGG_SPLICEOSOME 0 

KEGG_LYSINE_DEGRADATION 0,00063 

KEGG_LYSOSOME 0,00076 

KEGG_PYRIMIDINE_METABOLISM 0,00076 

KEGG_PENTOSE_PHOSPHATE_PATHWAY 0,00082 

KEGG_PEROXISOME 0,00092 

KEGG_RNA_DEGRADATION 0,00175 

KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 0,00171 

KEGG_PYRUVATE_METABOLISM 0,00183 

KEGG_RIBOSOME 0,00187 

KEGG_MISMATCH_REPAIR 0,00276 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0,00321 

KEGG_N_GLYCAN_BIOSYNTHESIS 0,00347 

KEGG_BUTANOATE_METABOLISM 0,00378 

KEGG_FATTY_ACID_METABOLISM 0,01352 

KEGG_GLYCEROPHOSPHOLIPID_METABOLISM 0,01400 

KEGG_RIBOFLAVIN_METABOLISM 0,01794 

KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 0,01898 

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 0,01938 

KEGG_STARCH_AND_SUCROSE_METABOLISM 0,02426 

KEGG_ONE_CARBON_POOL_BY_FOLATE 0,03324 

KEGG_CYSTEINE_AND_METHIONINE_METABOLISM 0,04505 

KEGG_MTOR_SIGNALING_PATHWAY 0,04863 

KEGG_INSULIN_SIGNALING_PATHWAY 0,04903 
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REACTOME_ELECTRON_TRANSPORT_CHAIN 0 

REACTOME_GLUCOSE_REGULATION_OF_INSULIN_SECRETION 0 

REACTOME_INTEGRATION_OF_ENERGY_METABOLISM 0 

REACTOME_REGULATION_OF_INSULIN_SECRETION 0 

REACTOME_DNA_STRAND_ELONGATION 0 

REACTOME_PYRUVATE_METABOLISM_AND_TCA_CYCLE 0 

REACTOME_NUCLEOTIDE_EXCISION_REPAIR 0 

REACTOME_EXTENSION_OF_TELOMERES 0 

REACTOME_DNA_REPAIR 0 

REACTOME_LAGGING_STRAND_SYNTHESIS 0 

REACTOME_GLOBAL_GENOMIC_NER 0 

REACTOME_TRANSCRIPTION_COUPLED_NER 0 

REACTOME_BRANCHED_CHAIN_AMINO_ACID_CATABOLISM 0 

REACTOME_CITRIC_ACID_CYCLE 0 

REACTOME_METABOLISM_OF_CARBOHYDRATES 0 

REACTOME_GLUCOSE_METABOLISM 0 

REACTOME_REPAIR_SYNTHESIS_OF_PATCH_27_30_BASES_LONG_BY_DNA_ 
POLYMERASE 

0,00067 

REACTOME_DIABETES_PATHWAYS 0,00064 

REACTOME_BASE_EXCISION_REPAIR 0,00092 

REACTOME_FORMATION_OF_A_POOL_OF_FREE_40S_SUBUNITS 0,00129 

REACTOME_DUAL_INCISION_REACTION_IN_GG_NER 0,00133 

REACTOME_TRANSLATION 0,00178 

REACTOME_GLYCOGEN_BREAKDOWN_GLYCOGENOLYSIS 0,00196 

REACTOME_PEPTIDE_CHAIN_ELONGATION 0,00252 

REACTOME_METABOLISM_OF_RNA 0,00319 

REACTOME_ELONGATION_AND_PROCESSING_OF_CAPPED_TRANSCRIPTS 0,00349 

REACTOME_PEROXISOMAL_LIPID_METABOLISM 0,00366 

REACTOME_GLUCONEOGENESIS 0,00365 

REACTOME_SYNTHESIS_OF_GPI_ANCHORED_PROTEINS 0,00369 

REACTOME_HIV_LIFE_CYCLE 0,00409 

REACTOME_FORMATION_AND_MATURATION_OF_MRNA_TRANSCRIPT 0,00412 

REACTOME_METABOLISM_OF_PROTEINS 0,00402 

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 0,00402 

REACTOME_MITOCHONDRIAL_TRNA_AMINOACYLATION 0,00568 

REACTOME_VIRAL_MRNA_TRANSLATION 0,00679 

REACTOME_MRNA_SPLICING 0,00904 

REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION 0,00916 

REACTOME_MRNA_SPLICING_MINOR_PATHWAY 0,01004 

REACTOME_CENTROSOME_MATURATION 0,00996 

REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX 0,01109 

REACTOME_METABOLISM_OF_MRNA 0,01096 

REACTOME_GTP_HYDROLYSIS_AND_JOINING_OF_THE_60S_RIBOSOMAL_ 
SUBUNIT 

0,01269 

REACTOME_PYRUVATE_METABOLISM 0,01439 

REACTOME_GENE_EXPRESSION 0,01555 

REACTOME_DUAL_INCISION_REACTION_IN_TC_NER 0,01643 

REACTOME_SNRNP_ASSEMBLY 0,01643 

REACTOME_SYNTHESIS_OF_GLYCOSYLPHOSPHATIDYLINOSITOL 0,01781 
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REACTOME_TRNA_AMINOACYLATION 0,01869 

REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_ 
THE_43S_COMPLEX 

0,02172 

REACTOME_INFLUENZA_LIFE_CYCLE 0,02391 

REACTOME_TAT_MEDIATED_HIV1_ELONGATION_ARREST_AND_RECOVERY 0,02356 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION 0,02476 

REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE 0,02657 

REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS 0,03094 

REACTOME_G2_M_CHECKPOINTS 0,03039 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION_INITIATION 0,03359 

REACTOME_PI3K_AKT_SIGNALLING 0,03461 

REACTOME_DEADENYLATION_OF_MRNA 0,03441 

REACTOME_MICRORNA_BIOGENESIS 0,03972 

REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION 0,03909 

REACTOME_CELL_CYCLE_MITOTIC 0,03903 

REACTOME_FORMATION_OF_THE_EARLY_ELONGATION_COMPLEX 0,03971 

REACTOME_TRANSLATION_INITIATION_COMPLEX_FORMATION 0,04106 

REACTOME_MTOR_SIGNALLING 0,04235 

  

Cluster 6  

 
BIOCARTA_PROTEASOME_PATHWAY 

 
0 

BIOCARTA_NFKB_PATHWAY 0,02000 

BIOCARTA_RELA_PATHWAY 0,01500 

BIOCARTA_INFLAM_PATHWAY 0,03900 

BIOCARTA_DEATH_PATHWAY 0,04800 

BIOCARTA_IL10_PATHWAY 0,04300 

KEGG_PROTEASOME 0 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0 

KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 0,00200 

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 0,00200 

KEGG_JAK_STAT_SIGNALING_PATHWAY 0,00200 

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0,00300 

KEGG_STEROID_BIOSYNTHESIS 0,00200 

KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION 0,00800 

KEGG_ALLOGRAFT_REJECTION 0,00900 

KEGG_GRAFT_VERSUS_HOST_DISEASE 0,01000 

KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY 0,01000 

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 0,01500 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 0,01800 

KEGG_ALPHA_LINOLENIC_ACID_METABOLISM 0,02800 

KEGG_ECM_RECEPTOR_INTERACTION 0,02800 

REACTOME_CDC20_PHOSPHO_APC_MEDIATED_DEGRADATION_OF_CYCLIN_A 0 

REACTOME_REGULATION_OF_APC_ACTIVATORS_BETWEEN_G1_S_AND_EARLY_ 
ANAPHASE 

0 

REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1_APC 0 

REACTOME_P53_INDEPENDENT_DNA_DAMAGE_RESPONSE 0 

REACTOME_SCF_SKP2_MEDIATED_DEGRADATION_OF_P27_P21 0 

REACTOME_STABILIZATION_OF_P53 0 
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REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1 0 

REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 0 

REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX 0 

REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G 0 

REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_ 0 

REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE 0 

REACTOME_M_G1_TRANSITION 0 

REACTOME_SIGNALING_BY_WNT 0 

REACTOME_SYNTHESIS_OF_DNA 0 

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 0 

REACTOME_CELL_CYCLE_CHECKPOINTS 0 

REACTOME_DNA_REPLICATION_PRE_INITIATION 0 

REACTOME_APOPTOSIS 0 

REACTOME_S_PHASE 0,00100 

REACTOME_PACKAGING_OF_TELOMERE_ENDS 0,00100 

REACTOME_G1_S_TRANSITION 0,00600 

REACTOME_CHOLESTEROL_BIOSYNTHESIS 0,00600 

REACTOME_MITOTIC_M_M_G1_PHASES 0,00900 

REACTOME_AMINO_ACID_AND_OLIGOPEPTIDE_SLC_TRANSPORTERS 0,00900 

REACTOME_AMINO_ACID_TRANSPORT_ACROSS_THE_PLASMA_MEMBRANE 0,01100 

REACTOME_RNA_POLYMERASE_I_PROMOTER_OPENING 0,01100 

REACTOME_METAL_ION_SLC_TRANSPORTERS 0,03300 

REACTOME_MEMBRANE_TRAFFICKING 0,03400 

REACTOME_RNA_POLYMERASE_I_PROMOTER_CLEARANCE 0,03800 

REACTOME_STEROID_HORMONES 0,04200 

REACTOME_METABOLISM_OF_AMINO_ACIDS 0,04100 

REACTOME_FORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC 0,04200 

REACTOME_STEROID_METABOLISM 0,04100 

  

Cluster 7  

 
BIOCARTA_MCM_PATHWAY 

 
0,00069 

BIOCARTA_ATRBRCA_PATHWAY 0,00209 

BIOCARTA_PROTEASOME_PATHWAY 0,01733 

BIOCARTA_COMP_PATHWAY 0,02160 

KEGG_LYSOSOME 0 

KEGG_DNA_REPLICATION 0 

KEGG_OXIDATIVE_PHOSPHORYLATION 0 

KEGG_BASE_EXCISION_REPAIR 0 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 0 

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 0 

KEGG_PROPANOATE_METABOLISM 0 

KEGG_N_GLYCAN_BIOSYNTHESIS 0 

KEGG_PARKINSONS_DISEASE 0 

KEGG_MISMATCH_REPAIR 0 

KEGG_PYRIMIDINE_METABOLISM 0 

KEGG_PEROXISOME 0 
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KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0 

KEGG_PROTEASOME 0 

KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM 0 

KEGG_RNA_DEGRADATION 0 

KEGG_CITRATE_CYCLE_TCA_CYCLE 0 

KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS 0,00055 

KEGG_PYRUVATE_METABOLISM 0,00062 

KEGG_SELENOAMINO_ACID_METABOLISM 0,00099 

KEGG_HOMOLOGOUS_RECOMBINATION 0,00104 

KEGG_HUNTINGTONS_DISEASE 0,00116 

KEGG_PENTOSE_PHOSPHATE_PATHWAY 0,00135 

KEGG_FATTY_ACID_METABOLISM 0,00137 

KEGG_ALZHEIMERS_DISEASE 0,00239 

KEGG_RNA_POLYMERASE 0,00295 

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 0,00291 

KEGG_RIBOFLAVIN_METABOLISM 0,00552 

KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 0,00628 

KEGG_GLUTATHIONE_METABOLISM 0,00746 

KEGG_VIBRIO_CHOLERAE_INFECTION 0,00990 

KEGG_SPHINGOLIPID_METABOLISM 0,00977 

KEGG_BETA_ALANINE_METABOLISM 0,01098 

KEGG_STEROID_BIOSYNTHESIS 0,01538 

KEGG_CYSTEINE_AND_METHIONINE_METABOLISM 0,01779 

KEGG_GLYCOSAMINOGLYCAN_DEGRADATION 0,01731 

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 0,02031 

KEGG_LYSINE_DEGRADATION 0,02257 

KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION 0,02627 

KEGG_HISTIDINE_METABOLISM 0,03284 

REACTOME_DNA_REPAIR 0 

REACTOME_SYNTHESIS_OF_DNA 0 

REACTOME_DNA_STRAND_ELONGATION 0 

REACTOME_S_PHASE 0 

REACTOME_LAGGING_STRAND_SYNTHESIS 0 

REACTOME_ELECTRON_TRANSPORT_CHAIN 0 

REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX 0 

REACTOME_DNA_REPLICATION_PRE_INITIATION 0 

REACTOME_EXTENSION_OF_TELOMERES 0 

REACTOME_CELL_CYCLE_CHECKPOINTS 0 

REACTOME_CELL_CYCLE_MITOTIC 0 

REACTOME_GLOBAL_GENOMIC_NER 0 

REACTOME_NUCLEOTIDE_EXCISION_REPAIR 0 

REACTOME_REPAIR_SYNTHESIS_OF_PATCH_27_30_BASES_LONG_BY_DNA_ 
POLYMERASE 

0 

REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX 0 

REACTOME_M_G1_TRANSITION 0 

REACTOME_G2_M_CHECKPOINTS 0 

REACTOME_TRANSCRIPTION_COUPLED_NER 0 

REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 0 
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REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS 0 

REACTOME_MITOTIC_M_M_G1_PHASES 0 

REACTOME_STABILIZATION_OF_P53 0 

REACTOME_G1_S_TRANSITION 0 

REACTOME_BASE_EXCISION_REPAIR 0 

REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G 0 

REACTOME_CDC20_PHOSPHO_APC_MEDIATED_DEGRADATION_OF_CYCLIN_A 0 

REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1_APC 0 

REACTOME_P53_INDEPENDENT_DNA_DAMAGE_RESPONSE 0 

REACTOME_METABOLISM_OF_RNA 0 

REACTOME_FANCONI_ANEMIA_PATHWAY 0 

REACTOME_MICRORNA_BIOGENESIS 0 

REACTOME_GLUCOSE_REGULATION_OF_INSULIN_SECRETION 0 

REACTOME_SNRNP_ASSEMBLY 0 

REACTOME_DOUBLE_STRAND_BREAK_REPAIR 0 

REACTOME_REGULATION_OF_APC_ACTIVATORS_BETWEEN_G1_S_AND_EARLY_ 
ANAPHASE 

0 

REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE 0 

REACTOME_PYRUVATE_METABOLISM_AND_TCA_CYCLE 0 

REACTOME_CLATHRIN_DERIVED_VESICLE_BUDDING 0 

REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1 0 

REACTOME_HIV_INFECTION 0 

REACTOME_PEROXISOMAL_LIPID_METABOLISM 0 

REACTOME_CENTROSOME_MATURATION 0 

REACTOME_BRANCHED_CHAIN_AMINO_ACID_CATABOLISM 0,00056 

REACTOME_HIV_LIFE_CYCLE 0,00054 

REACTOME_METABOLISM_OF_CARBOHYDRATES 0,00062 

REACTOME_SCF_SKP2_MEDIATED_DEGRADATION_OF_P27_P21 0,00060 

REACTOME_TRNA_AMINOACYLATION 0,00059 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION_INITIATION 0,00070 

REACTOME_SYNTHESIS_OF_GLYCOSYLPHOSPHATIDYLINOSITOL 0,00071 

REACTOME_DUAL_INCISION_REACTION_IN_GG_NER 0,00086 

REACTOME_MITOTIC_PROMETAPHASE 0,00087 

REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS 0,00085 

REACTOME_MEMBRANE_TRAFFICKING 0,00084 

REACTOME_INTEGRATION_OF_ENERGY_METABOLISM 0,00093 

REACTOME_SIGNALING_BY_WNT 0,00096 

REACTOME_NEP_NS2_INTERACTS_WITH_THE_CELLULAR_EXPORT_MACHINERY 0,00100 

REACTOME_GLUCONEOGENESIS 0,00105 

REACTOME_MITOCHONDRIAL_TRNA_AMINOACYLATION 0,00103 

REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION 0,00111 

REACTOME_TELOMERE_MAINTENANCE 0,00111 

REACTOME_SYNTHESIS_OF_GPI_ANCHORED_PROTEINS 0,00119 

REACTOME_GOLGI_ASSOCIATED_VESICLE_BIOGENESIS 0,00117 

REACTOME_REV_MEDIATED_NUCLEAR_EXPORT_OF_HIV1_RNA 0,00132 

REACTOME_NUCLEAR_IMPORT_OF_REV_PROTEIN 0,00141 

REACTOME_VPR_MEDIATED_NUCLEAR_IMPORT_OF_PICS 0,00152 

REACTOME_G2_M_TRANSITION 0,00154 
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REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE 0,00164 

REACTOME_GLUCOSE_METABOLISM 0,00162 

REACTOME_TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_ 
NUCLEUS 

0,00234 

REACTOME_LOSS_OF_NLP_FROM_MITOTIC_CENTROSOMES 0,00249 

REACTOME_PYRUVATE_METABOLISM 0,00264 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 0,00292 

REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION 0,00288 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION 0,00456 

REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_ 0,00491 

REACTOME_DUAL_INCISION_REACTION_IN_TC_NER 0,00534 

REACTOME_REGULATION_OF_INSULIN_SECRETION 0,00577 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION_INITIATION_FROM_TYPE_2_ 
PROMOTER 

0,00582 

REACTOME_GLUCOSE_TRANSPORT 0,00628 

REACTOME_REGULATION_OF_GLUCOKINASE_BY_GLUCOKINASE_REGULATORY_ 
PROTEIN 

0,00637 

REACTOME_INITIAL_TRIGGERING_OF_COMPLEMENT 0,00688 

REACTOME_TRANSPORT_OF_THE_SLBP_INDEPENDENT_MATURE_MRNA 0,00716 

REACTOME_METABOLISM_OF_AMINO_ACIDS 0,00736 

REACTOME_METABOLISM_OF_MRNA 0,00828 

REACTOME_HIV1_TRANSCRIPTION_INITIATION 0,00826 

REACTOME_CITRIC_ACID_CYCLE 0,00859 

REACTOME_RNA_POLYMERASE_III_TRANSCRIPTION_INITIATION_FROM_TYPE_3_
PROMOTER 

0,00897 

REACTOME_REGULATION_OF_LIPID_METABOLISM_BY_PEROXISOME_ 
PROLIFERATOR_ACTIVATED_RECEPTOR_ALPHA 

0,00901 

REACTOME_TOLL_LIKE_RECEPTOR_9_CASCADE 0,01016 

REACTOME_LYSOSOME_VESICLE_BIOGENESIS 0,01055 

REACTOME_FORMATION_OF_THE_EARLY_ELONGATION_COMPLEX 0,01047 

REACTOME_ABORTIVE_ELONGATION_OF_HIV1_TRANSCRIPT_IN_THE_ABSENCE_ 
OF_TAT 

0,01765 

REACTOME_TOLL_LIKE_RECEPTOR_4_CASCADE 0,01764 

REACTOME_APCDC20_MEDIATED_DEGRADATION_OF_CYCLIN_B 0,02139 

REACTOME_GLYCOLYSIS 0,02216 

REACTOME_ACTIVATED_AMPK_STIMULATES_FATTY_ACID_OXIDATION_IN_ 
MUSCLE 

0,02250 

REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS_VIA_7ALPHA_ 
HYDROXYCHOLESTEROL 

0,03006 

REACTOME_COMPLEMENT_CASCADE 0,03900 

REACTOME_RNA_POL_II_CTD_PHOSPHORYLATION_AND_INTERACTION_WITH_CE 0,03879 

REACTOME_INACTIVATION_OF_APC_VIA_DIRECT_INHIBITION_OF_THE_AP_ 
COMPLEX 

0,04023 

REACTOME_MRNA_PROCESSING 0,04046 

REACTOME_ACTIVATED_TLR4_SIGNALLING 0,04354 

REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION 0,04775 

REACTOME_PHOSPHORYLATION_OF_THE_APC 0,04758 

  

Cluster 8  

 
BIOCARTA_EIF_PATHWAY 

 
0,00200 

KEGG_RIBOSOME 0 



 

126 

 

KEGG_SPLICEOSOME 0 

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0,00100 

KEGG_OLFACTORY_TRANSDUCTION 0,00100 

KEGG_CALCIUM_SIGNALING_PATHWAY 0,04100 

KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG 0,03800 

REACTOME_PEPTIDE_CHAIN_ELONGATION 0 

REACTOME_GTP_HYDROLYSIS_AND_JOINING_OF_THE_60S_RIBOSOMAL_ 
SUBUNIT 

0 

REACTOME_FORMATION_OF_A_POOL_OF_FREE_40S_SUBUNITS 0 

REACTOME_TRANSLATION 0 

REACTOME_VIRAL_MRNA_TRANSLATION 0 

REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION 0 

REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLS 0 

REACTOME_TRANSLATION_INITIATION_COMPLEX_FORMATION 0 

REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_T
HE_43S_COMPLEX 

0 

REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT 0 

REACTOME_GENE_EXPRESSION 0 

REACTOME_INSULIN_SYNTHESIS_AND_SECRETION 0 

REACTOME_INFLUENZA_LIFE_CYCLE 0 

REACTOME_METABOLISM_OF_PROTEINS 0 

REACTOME_MRNA_SPLICING 0 

REACTOME_ELONGATION_AND_PROCESSING_OF_CAPPED_TRANSCRIPTS 0 

REACTOME_FORMATION_AND_MATURATION_OF_MRNA_TRANSCRIPT 0 

REACTOME_OLFACTORY_SIGNALING_PATHWAY 0,00100 

REACTOME_G_ALPHA_S_SIGNALLING_EVENTS 0,00100 

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 0,00300 

REACTOME_NUCLEAR_RECEPTOR_TRANSCRIPTION_PATHWAY 0,00800 

REACTOME_AMINE_LIGAND_BINDING_RECEPTORS 0,01000 

REACTOME_MRNA_3_END_PROCESSING 0,01400 

REACTOME_GPCR_LIGAND_BINDING 0,01600 

REACTOME_PHOSPHOLIPASE_CMEDIATED_CASCADE 0,01600 

REACTOME_CLASS_B2_SECRETIN_FAMILY_RECEPTORS 0,03200 

  

Cluster 9  

 
KEGG_RIBOSOME 

 
0 

KEGG_PARKINSONS_DISEASE 0 

KEGG_OXIDATIVE_PHOSPHORYLATION 0 

KEGG_SPLICEOSOME 0,00100 

KEGG_ALZHEIMERS_DISEASE 0,00100 

KEGG_HUNTINGTONS_DISEASE 0,00200 

KEGG_CARDIAC_MUSCLE_CONTRACTION 0,01200 

REACTOME_PEPTIDE_CHAIN_ELONGATION 0 

REACTOME_FORMATION_OF_A_POOL_OF_FREE_40S_SUBUNITS 0 

REACTOME_GTP_HYDROLYSIS_AND_JOINING_OF_THE_60S_RIBOSOMAL_ 
SUBUNIT 

0 

REACTOME_TRANSLATION 0 

REACTOME_VIRAL_MRNA_TRANSLATION 0 
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REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLS 0 

REACTOME_TRANSLATION_INITIATION_COMPLEX_FORMATION 0 

REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT 0 

REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_ 
THE_43S_COMPLEX 

0 

REACTOME_ELECTRON_TRANSPORT_CHAIN 0 

REACTOME_GLUCOSE_REGULATION_OF_INSULIN_SECRETION 0 

REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION 0 

REACTOME_REGULATION_OF_INSULIN_SECRETION 0 

REACTOME_METABOLISM_OF_PROTEINS 0 

REACTOME_INTEGRATION_OF_ENERGY_METABOLISM 0 

REACTOME_GENE_EXPRESSION 0 

REACTOME_DIABETES_PATHWAYS 0 

REACTOME_ELONGATION_AND_PROCESSING_OF_CAPPED_TRANSCRIPTS 0,00200 

REACTOME_MRNA_SPLICING 0,00200 

REACTOME_INSULIN_SYNTHESIS_AND_SECRETION 0,00300 

REACTOME_GLYCOGEN_BREAKDOWN_GLYCOGENOLYSIS 0,00500 

REACTOME_FORMATION_AND_MATURATION_OF_MRNA_TRANSCRIPT 0,00600 

REACTOME_PYRUVATE_METABOLISM_AND_TCA_CYCLE 0,00700 

REACTOME_INFLUENZA_LIFE_CYCLE 0,00700 

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 0,00800 

REACTOME_CITRIC_ACID_CYCLE 0,01400 
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Table S4: Complete list of the genes differentially expressed between 
untreated monocytes and M1 macrophages, extracted from database 
 
Gene Id Symbol Description 

GC08P019841_at LPL lipoprotein lipase 
GC04P089115_at SPP1 secreted phosphoprotein 1 
GC08P081561_at ZBTB10 zinc finger and BTB domain containing 10 

GC05M158674_at IL12B 
interleukin 12B (natural killer cell stimulatory factor 2, 
cytotoxic lymphocyte maturation factor 2, p40) 

GC08P086563_at CA2 carbonic anhydrase II 
GC08M105570_at LRP12 low density lipoprotein-related protein 12 
GC19M006615_at TNFSF14 tumor necrosis factor (ligand) superfamily, member 14 
GC05M147184_at SPINK1 serine peptidase inhibitor, Kazal type 1 
GC09M116591_at TNFSF15 tumor necrosis factor (ligand) superfamily, member 15 
GC11M102146_at MMP10 matrix metallopeptidase 10 (stromelysin 2) 

GC04P074974_at CXCL1 
chemokine (C-X-C motif) ligand 1 (melanoma growth 
stimulating activity, alpha) 

GC12M010202_at OLR1 oxidized low density lipoprotein (lectin-like) receptor 1 
GC05P149320_at SLC26A2 solute carrier family 26 (sulfate transporter), member 2 
GC12P027288_at STK38L serine/threonine kinase 38 like 
GC12M088484_at ATP2B1 ATPase, Ca++ transporting, plasma membrane 1 
GC19P054067_at PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A 
GC03P158637_at PTX3 pentraxin-related gene, rapidly induced by IL-1 beta 
GC20M043387_at SDC4 syndecan 4 
GC11M002906_at PHLDA2 pleckstrin homology-like domain, family A, member 2 

GC01P239781_at KMO 
kynurenine 3-monooxygenase (kynurenine 3-
hydroxylase) 

GC02P187163_at ITGAV 
integrin, alpha V (vitronectin receptor, alpha polypeptide, 
antigen CD51) 

GC01P078182_at DNAJB4 DnaJ (Hsp40) homolog, subfamily B, member 4 

GC06P012120_at HIVEP1 
human immunodeficiency virus type I enhancer binding 
protein 1 

GC02P191222_at NAB1 NGFI-A binding protein 1 (EGR1 binding protein 1) 
GC03M195606_at ATP13A3 ATPase type 13A3 
GC07P065308_at TPST1 tyrosylprotein sulfotransferase 1 
GC01M094706_at F3 coagulation factor III (thromboplastin, tissue factor) 

GC01M177339_at ABL2 
v-abl Abelson murine leukemia viral oncogene homolog 
2 (arg, Abelson-related gene) 

GC07M041695_at INHBA inhibin, beta A 
GC17P031421_at CCL4 chemokine (C-C motif) ligand 4 
GC02P113591_at IL1RN interleukin 1 receptor antagonist 

GC07P100558_at SERPINE1 
serpin peptidase inhibitor, clade E (nexin, plasminogen 
activator inhibitor type 1), member 1 

GC17P029621_at CCL7 chemokine (C-C motif) ligand 7 
GC08M095330_at GEM GTP binding protein overexpressed in skeletal muscle 
GC12M074707_at PHLDA1 pleckstrin homology-like domain, family A, member 1 
GC11M008960_at NRIP3 nuclear receptor interacting protein 3 

GC16M086421_at SLC7A5 
solute carrier family 7 (cationic amino acid transporter, 
y+ system), member 5 

GC09P101623_at NR4A3 nuclear receptor subfamily 4, group A, member 3 
GC0XP149282_at MAMLD1 mastermind-like domain containing 1 
GC06P031652_at TNF tumor necrosis factor (TNF superfamily, member 2) 
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GC07P022732_at IL6 interleukin 6 (interferon, beta 2) 
GC16P082737_at LRRC50 leucine rich repeat containing 50 
GC09P000461_at KANK1 KN motif and ankyrin repeat domains 1 
GC08M080838_at HEY1 hairy/enhancer-of-split related with YRPW motif 1 
GC02P228386_at CCL20 chemokine (C-C motif) ligand 20 
GC02M113247_at IL1A interleukin 1, alpha 
GC11M064376_at EHD1 EH-domain containing 1 
GC22P022997_at ADORA2A adenosine A2a receptor 
GC19P010247_at ICAM1 intercellular adhesion molecule 1 
GC01P037712_at ZC3H12A zinc finger CCCH-type containing 12A 

GC06M143114_at HIVEP2 
human immunodeficiency virus type I enhancer binding 
protein 2 

GC04P103641_at NFKB1 
nuclear factor of kappa light polypeptide gene enhancer 
in B-cells 1 

GC09M122704_at TRAF1 TNF receptor-associated factor 1 
GC02P151922_at TNFAIP6 tumor necrosis factor, alpha-induced protein 6 
GC08M072916_at MSC musculin (activated B-cell factor-1) 
GC17P071890_at SPHK1 sphingosine kinase 1 
GC20M055657_at PMEPA1 prostate transmembrane protein, androgen induced 1 
GC01M207854_at LAMB3 laminin, beta 3 

GC06M002832_at SERPINB9 
serpin peptidase inhibitor, clade B (ovalbumin), member 
9 

GC16M065513_at RRAD Ras-related associated with diabetes 
GC01P190871_at RGS13 regulator of G-protein signaling 13 
GC01P160797_at UAP1 UDP-N-acteylglucosamine pyrophosphorylase 1 
GC20M010566_at JAG1 jagged 1 (Alagille syndrome) 
GC04M100046_at EIF4E eukaryotic translation initiation factor 4E 

GC17P065677_at KCNJ2 
potassium inwardly-rectifying channel, subfamily J, 
member 2 

GC12P100795_at DRAM damage-regulated autophagy modulator 
GC14M050170_at SAV1 salvador homolog 1 (Drosophila) 
GC04M122332_at TNIP3 TNFAIP3 interacting protein 3 
GC04P160409_at RAPGEF2 Rap guanine nucleotide exchange factor (GEF) 2 
GC02P113451_at IL1F9 interleukin 1 family, member 9 
GC10P027027_at PDSS1 prenyl (decaprenyl) diphosphate synthase, subunit 1 

GC04M139304_at SLC7A11 
solute carrier family 7, (cationic amino acid transporter, 
y+ system) member 11 

GC04M103401_at SLC39A8 solute carrier family 39 (zinc transporter), member 8 
GC01M094066_at GCLM glutamate-cysteine ligase, modifier subunit 
GC05M077816_at LHFPL2 lipoma HMGIC fusion partner-like 2 
GC17P029606_at CCL2 chemokine (C-C motif) ligand 2 
GC17P015788_at ADORA2B adenosine A2b receptor 

GC22P036922_at MAFF 
v-maf musculoaponeurotic fibrosarcoma oncogene 
homolog F (avian) 

GC08M029249_at DUSP4 dual specificity phosphatase 4 
GC06P151653_at AKAP12 A kinase (PRKA) anchor protein 12 
GC19M044913_at CLC Charcot-Leyden crystal protein 
GC01P158975_at SLAMF7 SLAM family member 7 
GC17M035963_at CCR7 chemokine (C-C motif) receptor 7 
GC01M024044_at FUCA1 fucosidase, alpha-L- 1, tissue 
GC07M149953_at GIMAP6 GTPase, IMAP family member 6 
GC01M097255_at DPYD dihydropyrimidine dehydrogenase 
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GC14M059132_at RTN1 reticulon 1 

GC06P088239_at SLC35A1 
solute carrier family 35 (CMP-sialic acid transporter), 
member A1 

GC04M164668_at MA01 membrane-associated ring finger (C3HC4) 1 
GC01M016821_at CROCCL1 ciliary rootlet coiled-coil, rootletin-like 1 
GC13M047884_at P2RY5 purinergic receptor P2Y, G-protein coupled, 5 

 
GC13M047962_at 

 
RCBTB2 

 
regulator of chromosome condensation (RCC1) and BTB 
(POZ) domain containing protein 2 

GC07M076662_at FGL2 fibrinogen-like 2 

GC11M059695_at MS4A6A 
membrane-spanning 4-domains, subfamily A, member 
6A 

GC03M152526_at P2RY13 purinergic receptor P2Y, G-protein coupled, 13 
GC01P156416_at CD1D CD1d molecule 
GC08M048812_at CEBPD CCAAT/enhancer binding protein (C/EBP), delta 
GC14P074815_at FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 
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Table S5: Complete list of the genes differentially expressed between 
untreated monocytes and M2 macrophages, extracted from database 
 
Gene Id Symbol Description 

GC08P024297_at ADAMDEC1 ADAM-like, decysin 1 
GC03M058153_at DNASE1L3 deoxyribonuclease I-like 3 
GC12M045755_at AMIGO2 adhesion molecule with Ig-like domain 2 
GC01M160219_at OLFML2B olfactomedin-like 2B 
GC01M111827_at ADORA3 adenosine A3 receptor 
GC05M042835_at SEPP1 selenoprotein P, plasma, 1 
GC0XM065158_at VSIG4 V-set and immunoglobulin domain containing 4 
GC17M015073_at PMP22 peripheral myelin protein 22 
GC14M092239_at LGMN legumain 
GC19P040465_at HAMP hepcidin antimicrobial peptide 
GC14P092720_at C14orf109 chromosome 14 open reading frame 109 
GC06M003667_at C6orf145 chromosome 6 open reading frame 145 
GC18M019365_at NPC1 Niemann-Pick disease, type C1 
GC11M033681_at CD59 CD59 molecule, complement regulatory protein 
GC05M039408_at DAB2 disabled homolog 2, mitogen-responsive 

phosphoprotein (Drosophila) 
GC19M011546_at ACP5 acid phosphatase 5, tartrate resistant 
GC07M024704_at DFNA5 deafness, autosomal dominant 5 
GC07P023252_at GPNMB glycoprotein (transmembrane) nmb 
GC06M041234_at TREM2 triggering receptor expressed on myeloid cells 2 
GC12M009103_at A2M alpha-2-macroglobulin 
GC01P158063_at SLAMF8 SLAM family member 8 
GC19P018358_at GDF15 growth differentiation factor 15 
GC08M082553_at FABP4 fatty acid binding protein 4, adipocyte 
GC02M216516_at MREG melanoregulin 
GC12M026165_at BHLHE41 basic helix-loop-helix family, member e41 
GC11P059804_at MS4A4A membrane-spanning 4-domains, subfamily A, member 

4 
GC02M188039_at TFPI tissue factor pathway inhibitor (lipoprotein-associated 

coagulation inhibitor) 
GC0XM154158_at CLIC2 chloride intracellular channel 2 
GC04M157902_at PDGFC platelet derived growth factor C 
GC16M028457_at NUPR1 nuclear protein, transcriptional regulator, 1 
GC12M067531_at CPM carboxypeptidase M 
GC05M101597_at SLCO4C1 solute carrier organic anion transporter family, member 

4C1 
GC11P047236_at NR1H3 nuclear receptor subfamily 1, group H, member 3 
GC01M056671_at PPAP2B phosphatidic acid phosphatase type 2B 
GC04P166468_at SC4MOL sterol-C4-methyl oxidase-like 
GC14P060517_at SLC38A6 solute carrier family 38, member 6 
GC09P019281_at DENND4C DENN/MADD domain containing 4C 
GC07M091579_at CYP51A1 cytochrome P450, family 51, subfamily A, polypeptide 1 
GC05P036642_at SLC1A3 solute carrier family 1 (glial high affinity glutamate 

transporter), member 3 
GC11M061323_at FADS1 fatty acid desaturase 1 
GC17P019378_at SLC47A1 solute carrier family 47, member 1 
GC14P058174_at DACT1 dapper, antagonist of beta-catenin, homolog 1 

(Xenopus laevis) 
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GC19P050100_at APOE apolipoprotein E 
GC19P050109_at APOC1 apolipoprotein C-I 
GC01M055027_at DHCR24 24-dehydrocholesterol reductase 
GC02P238432_at RAMP1 receptor (G protein-coupled) activity modifying protein 1 
GC03P053855_at IL17RB interleukin 17 receptor B 
GC17P031415_at CCL18 chemokine (C-C motif) ligand 18 (pulmonary and 

activation-regulated) 
GC0XP043400_at MAOA monoamine oxidase A 
GC10P102096_at SCD stearoyl-CoA desaturase (delta-9-desaturase) 
GC20M043960_at PLTP phospholipid transfer protein 
GC16P022732_at HS3ST2 heparan sulfate (glucosamine) 3-O-sulfotransferase 2 
GC13P097593_at FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin domain 

protein 1 (chondrocyte-derived) 
GC15P078232_at FAH fumarylacetoacetate hydrolase (fumarylacetoacetase) 
GC01P022835_at C1QA complement component 1, q subcomponent, A chain 
GC17P029707_at CCL13 chemokine (C-C motif) ligand 13 
GC17M031364_at CCL23 chemokine (C-C motif) ligand 23 
GC17P007883_at ALOX15B arachidonate 15-lipoxygenase, type B 
GC16P029597_at QPRT quinolinate phosphoribosyltransferase 
GC17M075513_at TBC1D16 TBC1 domain family, member 16 
GC01P022852_at C1QB complement component 1, q subcomponent, B chain 
GC0XM037893_at SRPX sushi-repeat-containing protein, X-linked 
GC11M087666_at CTSC cathepsin C 
GC01M149035_at CTSK cathepsin K 
GC11P086427_at TMEM135 transmembrane protein 135 
GC18M019996_at OSBPL1A oxysterol binding protein-like 1A 
GC11M005203_at HBB hemoglobin, beta 
GC04M084507_at HPSE heparanase 
GC01P157526_at FCER1A Fc fragment of IgE, high affinity I, receptor for; alpha 

polypeptide 
GC02M229597_at PID1 phosphotyrosine interaction domain containing 1 
GC15P037660_at THBS1 thrombospondin 1 
GC07M141273_at CLEC5A C-type lectin domain family 5, member A 
GC04M075092_at PPBP pro-platelet basic protein (chemokine (C-X-C motif) 

ligand 7) 
GC01M032573_at MARCKSL1 MARCKS-like 1 
GC04M075086_at PF4 platelet factor 4 
GC22M036290_at LGALS2 lectin, galactoside-binding, soluble, 2 
GC01P078858_at IFI44L interferon-induced protein 44-like 
GC03M173706_at TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 
GC11P000303_at IFITM1 interferon induced transmembrane protein 1 (9-27) 
GC05P137829_at EGR1 early growth response 1 
GC12M009796_at CD69 CD69 molecule 
GC01M151629_at S100A8 S100 calcium binding protein A8 
GC06M112089_at FYN FYN oncogene related to SRC, FGR, YES 
GC03P144320_at CHST2 carbohydrate (N-acetylglucosamine-6-O) 

sulfotransferase 2 
GC04P074845_at IL8 interleukin 8 
GC04P075470_at EREG epiregulin 
GC12M088244_at DUSP6 dual specificity phosphatase 6 
GC20M023008_at CD93 CD93 molecule 
GC19P006838_at EMR1 egf-like module containing, mucin-like, hormone 
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receptor-like 1 
GC14P020493_at RNASE2 ribonuclease, RNase A family, 2 (liver, eosinophil-

derived neurotoxin) 
GC02M156889_at NR4A2 nuclear receptor subfamily 4, group A, member 2 
GC21M043659_at SIK1 salt-inducible kinase 1 
GC19P050663_at FOSB FBJ murine osteosarcoma viral oncogene homolog B 
GC16P083412_at CRISPLD2 cysteine-rich secretory protein LCCL domain containing 

2 
GC01P065970_at PDE4B phosphodiesterase 4B, cAMP-specific 

(phosphodiesterase E4 dunce homolog, Drosophila) 
GC02P069995_at MXD1 MAX dimerization protein 1 
GC05P082804_at VCAN versican 
GC06M133106_at VNN2 vanin 2 
GC18P055718_at PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 
GC09M136940_at FCN1 ficolin (collagen/fibrinogen domain containing) 1 
GC01P245648_at NLRP3 NLR family, pyrin domain containing 3 
GC01M159066_at CD244 CD244 molecule, natural killer cell receptor 2B4 
GC01M167926_at SELL selectin L 
GC04M084305_at PLAC8 placenta-specific 8 
GC19M010305_at ICAM3 intercellular adhesion molecule 3 
GC01M151612_at S100A12 S100 calcium binding protein A12 
GC01P191044_at RGS2 regulator of G-protein signaling 2, 24kDa 
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