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RESEARCH Open Access

Definition of the viral targets of protective
HIV-1-specific T cell responses
Beatriz Mothe1,2,3, Anuska Llano1, Javier Ibarrondo1, Marcus Daniels4, Cristina Miranda2, Jennifer Zamarreño1,
Vanessa Bach1, Rosario Zuniga5, Susana Pérez-Álvarez1,6, Christoph T Berger7, Maria C Puertas1,
Javier Martinez-Picado1,8, Morgane Rolland9, Marilu Farfan5, James J Szinger4, William H Hildebrand10,
Otto O Yang11, Victor Sanchez-Merino12, Chanson J Brumme13, Zabrina L Brumme13,14, David Heckerman15,
Todd M Allen7, James I Mullins16, Guadalupe Gómez16, Philip J Goulder17,18, Bruce D Walker 7,18,19, Jose M Gatell12,
Bonaventura Clotet1,2, Bette T Korber4,20, Jorge Sanchez5 and Christian Brander1,8*

Abstract

Background: The efficacy of the CTL component of a future HIV-1 vaccine will depend on the induction of
responses with the most potent antiviral activity and broad HLA class I restriction. However, current HIV vaccine
designs are largely based on viral sequence alignments only, not incorporating experimental data on T cell
function and specificity.

Methods: Here, 950 untreated HIV-1 clade B or -C infected individuals were tested for responses to sets of 410
overlapping peptides (OLP) spanning the entire HIV-1 proteome. For each OLP, a “protective ratio” (PR) was
calculated as the ratio of median viral loads (VL) between OLP non-responders and responders.

Results: For both clades, there was a negative relationship between the PR and the entropy of the OLP sequence.
There was also a significant additive effect of multiple responses to beneficial OLP. Responses to beneficial OLP
were of significantly higher functional avidity than responses to non-beneficial OLP. They also had superior in-vitro
antiviral activities and, importantly, were at least as predictive of individuals’ viral loads than their HLA class I
genotypes.

Conclusions: The data thus identify immunogen sequence candidates for HIV and provide an approach for T cell
immunogen design applicable to other viral infections.

Keywords: HIV specific CTL, clade B, clade C, HLA, vaccine immunogen design, functional avidity, epitope, entropy,
immune correlate

Background
HIV-1 infection induces strong and broadly directed

HLA class I restricted T cell responses for which speci-

fic epitopes and restricting HLA class I alleles have been

associated with relative in vivo viral control [1]. The

bulk of the anti-viral CTL response appears to be dis-

proportionately HLA-B restricted, but the relative con-

tribution of targeted viral regions and restricting HLA

molecules on the effectiveness of these responses

remains unclear [2-5]. In addition, the impact of HIV-1

sequence diversity on the effectiveness of virus-specific

T cell immunity in vivo is unclear, as functional con-

straints of escape variants, codon-usage at individual

protein positions, T cell receptor (TCR) plasticity and

functional avidity and cross-reactivity potential may all

contribute to the overall antiviral activity of a specific T

cell response [6-13]. Of note, T cell responses to Gag

have most consistently been associated with reduced

viral loads in both clade B and clade C infected cohorts

[14-16]; however, the specific regions in Gag responsible

for this effective control remain poorly defined. In addi-

tion, it is unclear whether the relative benefit of Gag is

due to any other specific characteristic of this protein,

such as rapid antigen-representation upon infection,
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protein expression levels, amino acid composition and/

or inherently greater processability and immunogenicity,

particularly in the context of selected HLA class I alleles

[17,18]. Thus, concerns remain that a purely Gag-based

vaccine might mainly benefit those people with a parti-

cular HLA genotype and will not take advantage of

potentially beneficial targets outside of Gag [4,16,17,19].

In addition, CTL escape and viral fitness studies have

focused largely on Gag-derived epitopes presented in

the context of protective HLA class I alleles such as

HLA-B27 and -B57 [7,20,21], yielding results that may

not be generalizable to the genetically diverse majority

of the human population. Furthermore, many studies

have focused on immunodominant targets only, despite

some studies in HIV-1 and SIV infection demonstrating

a crucial contribution of sub-dominant responses to tar-

gets outside of Gag to the effective in-vivo viral control

[4,22]. Thus, the current view on what may constitute a

protective cellular immune response to HIV-1 is likely

biased towards a immunodominant responses and those

restricted by frequent HLA class I alleles and HLA

alleles associated with superior disease outcome.

To overcome these potential limitations, the design of

an effective and broadly applicable HIV-1 vaccine

should to be based on information gained through com-

prehensive analyses that extend across large portions of

the population’s HLA class I heterogeneity. Here we

focus on three cohorts totaling more than 950

untreated, chronically HIV-1 infected individuals with

clade B and C infections, from which responses to cer-

tain regions of the viral genome and specific T cell

response patterns emerge as correlates of viral control.

Importantly, the analyses identify functional properties

unique to these responses and control for the impact of

HLA class I alleles known to be associated with superior

control of HIV-1 infection, thus providing vaccine

immunogen sequence candidates with potential useful-

ness in a broadly applicable HIV-1 vaccine.

Methods
Cohorts

A HIV clade B infected cohort of 223 chronically

infected, treatment naïve individuals was recruited and

tested at IMPACTA in Lima, Peru. The majority (78%)

of enrollees were male and all recruited individuals con-

sidered themselves to be of a mixed Amerindian ethni-

city [14]. The cohort had a median viral load 37,237

copies/ml (range < 50- > 750,000) and a median CD4

count of 385 cell/ul (range170-1151). A second clade B

infected cohort was established at the HIV-1 outpatient

clinic “Lluita contra la SIDA” at Hospital Germans Trias

i Pujol in Badalona (Barcelona, Spain) consisting of 48

treatment-naïve subjects with viral loads below 10,000

and CD4 cell counts > 350 cells/mm3 ("controllers”, n =

24) or above 50,000 copies/ml and CD4 cell counts <

350 cells/mm3 ("non-controllers”, n = 24). The HIV-1

clade C infected cohort has been described in the past

and consisted of 631 treatment naïve South African with

a median viral load of 37,900 copies/ml (range < 50->

750,000) and a median CD4 count of 393 cells/ul (range

1-1378) [16]. An additional 78 from a recently published

cohort in Boston were included in the analyses of func-

tional avidities [23-29]. HLA typing was performed as

previously described using SSP-PCR [30]. For Hepitope

and FASS analyses, 4digit typing was used for the Lima

cohort and 2-digit typing for the Durban cohort. Proto-

cols were approved in Lima by the IMPACTA Human

Research Committee, in Durban by the Ethical Commit-

tee of the Nelson R. Mandela School of Medicine at the

University of KwaZulu-Natal and in Barcelona by the

Human Research Committee at Hospital Germans Trias

i Pujol. All subjects provided written informed consent.

Peptide test set and ELISpot assay: Previously

described peptide sets matching HLA-clade B and C

consensus sequences were used in all experiments for

which the OLP-specific entropies have been calculated

in the past, based on available sequence datasets [31-33]

and http://www.hiv.lanl.gov/content/immunology/hla-

tem/index.html. The peptides were clade-specific sets of

adapted 18mers, overlapping by 11 residues designed

using the PeptGen tool available at the Los Alamos HIV

database http://www.hiv.lanl.gov/content/sequence/

PEPTGEN/peptgen.html. The individual OLP in the

peptide sets for clade B and clade C had all the same

starting and ending position relative to the source pro-

tein and follow the same numbering across the entire

viral proteome for both clades. Peripheral blood mono-

nuclear cells (PBMCs) were separated from whole blood

by density centrifugation and used directly to test for

CD8+ T cell responses in vitro. IFN-g ELISpot assays

were performed as described previously, using Mabtech

antibodies (Mabtech, Stockholm, Sweden) and a matrix

format that allowed simultaneous testing of all 410 over-

lapping (OLP) peptides in the respective test set [14].

Thresholds for positive responses were defined as:

exceeding 5 spots (50 SFC/106) per well and exceeding

the mean of negative wells plus 3 standard deviation or

three times the mean of negative wells, whichever was

higher. Stimulation with PHA was used as a positive

control in all ELISpot assays.

Definition of functional avidity

Responses targeting 18 mer OLP in HIV-1 Gag p24

were assessed for their functional avidity using OLP-spe-

cific sets of 10 mer peptides overlapping by 9 residues

that span the 18 mer peptide sequence. Functional avid-

ity was defined as the peptide concentration needed to

elicit half maximal response rates in the ELISpot assay
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and was calculated as a sigmoidal dose response curve

fit using GraphPad Prism software [13].

In vitro viral replication inhibition assay

A double mutant virus containing a Nef M20A and

Integrase G140S/Q148H Raltegravir (integrase inhibitor)

resistance mutations was tested for replication in CD4 T

cells in the presence or absence of autologous T cell

lines targeting protective or non-protective OLP. Use of

the Raltegravir-resistant virus allows to prevent potential

replication of autologous virus in the inhibition assays

[28], excludes potential negative impacts on antigen pro-

cessing or CTL functions attributed to protease inhibi-

tors [34] and avoids overlap between the resistance

mutations sites (i.e. G140S/Q148H) and location of ben-

eficial and non-beneficial OLP sequences. In brief, the

p83-10 plasmid containing mutations for a methionine

to alanine substitution at position 20 of the Nef protein

and the p83-2 plasmid engineered to contain the G140S

and Q148H mutations in the integrase were combined

to produce a virus that is replication competent, highly

resistant to Raltegravir and does not downregulate HLA

class I in infected cells [35,36]. Although not entirely

physiological, this approach was chosen to potentially

increase the signal in the in vitro inhibition assay, even

when responses were restricted by Nef-sensitive HLA

class I alleles. Plasmids were co-transfected into MT4

cells and virus was harvested after 7 days [35,37,38].

Autologous CD4 cells were enriched by magnetic beads

isolation (Miltenyi) and expanded for 3 days using a bi-

specific anti-CD3/8 antibody and IL-2 containing med-

ium (50 IU r-IL2) before infecting them at multiplicities

of infection (MOI) between 0.01 and 1. Effector cells

were obtained by stimulating PBMC with either benefi-

cial or non-beneficial OLP for 12 days before isolating

specific OLP-reactive cells by IFN-g capture assay

according to manufacturers’ instructions (Miltenyi, Ber-

gisch Gladbach, Germany). The effector T cells were

analyzed by flow cytometry for the specificity to their

respective targets after capture assay and quantified to

adjust effector-to-target ratios. Since the NL4-3 back-

bone sequence differed in several positions in beneficial

and non-beneficial OLP, the epitope specificity was pre-

dicted based on the HLA class I genotype of the tested

individual and responses confirmed to efficiently recog-

nize variant sequences in the NL4-3 backbone sequence.

Culture supernatant was harvested and replaced by Ral-

tegravir containing medium 0.05 μg/ml after 72 h.

Levels of Gagp24 in the culture supernatant were deter-

mined by ELISA as described [39].

Statistical Analyses

Statistical analyses were performed using Prism Version

5 and R Statistical Language [40]. Results are presented

as median values unless otherwise stated. Tests included

ANOVA, non-parametric Mann-Whitney test (two-

tailed) and Spearman rank test. The significance of dif-

ferences in viral load distribution between OLP-respon-

ders and OLP-non-responders was assessed by a two-

sided Student’s T Test with multiple tests addressed

using, instead of a Bonferroni correction, a q-value

approach to compensate for multiple comparisons [39].

The multivariate analysis was based on a novel multi-

variate combined regression method known as FASS, a

forward selection method combined with all-subsets

regression [41-43]. Briefly, the FASS approach works by

iteratively performing the following procedure: Let ‘V’

be the set of all variables and ‘M’ be the set of variables

included in a model. In the first step, those variables

that are not already in the model are divided into equal-

sized blocks of variables (the last block may have less

than ‘g’ variables). Then, for each block of variables, ‘m’

is a new estimated and evaluated model using the Baye-

sian Information Criterion (BIC). The best model ‘m’

according to its BIC is retained and the procedure starts

all over again until in one step or more the model is not

improved.

Results
HIV-1-specific T cell responses targeting conserved

regions are associated with lower viral loads

In a first analysis, HIV-1-specific T cell responses were

assessed in a cohort of 223 HIV-1 clade B infected indi-

viduals recruited in Lima, Peru using IFNg ELISpot

assays and a previously described set of 410 clade B

overlapping peptides (OLP) [14,31]. For each OLP, a

protective ratio (PR) was calculated as the ratio of the

median viral loads between OLP non-responders and

OLP responders, such that OLP with PR > 1 were

reflective of OLP predominantly targeted by individuals

with reduced viral loads. OLP-specific PR were a) com-

pared between OLP spanning the different viral proteins

and b) correlated with the viral sequence heterogeneity

in the region covered by the OLP. The data showed

highest median PR values for OLP spanning the Gag

protein sequence, whereas Nef, Env and Tat had the

lowest median PR values (Figure 1A, p < 0.0001,

ANOVA). A protein-subunit-breakdown of PR values

showed the p15 subunit of Gag and RT in Pol to score

less favorable than the remainder of the respective pro-

teins (Figure 1B, p = 0.0032 and p = 0.0025, respec-

tively). While these data confirm the association

between HIV-1 Gag-specific responses and lower viral

loads, it is important to note that all proteins contained

OLP with PR > 1, suggesting that some beneficial

responses can be located outside of Gag; data that has

not emerged from any of the previous studies linking

Gag responses to relative viral control. At the same
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Figure 1 Localization and conservation of beneficial and non-beneficial OLP in HIV-1 clade B and C cohorts. Total HIV-1-specific T cell
responses were assessed in a cohort of 223 chronically HIV clade B infected, untreated individuals in Lima, Peru (graphs A-C) and in 631
chronically HIV clade C infected, untreated individuals in Durban, South Africa (graphs D-F) using peptide test sets of 410 18 mer overlapping
peptides (OLP) spanning the consensus B and C sequences, respectively [2,31]. For each OLP, the protective ratio (PR, defined as “the ratio of the
log median viral load in OLP non-responders divided by log median viral load in OLP responders”) was determined. Each symbol represents an
individual OLP, grouped either by (A, D) proteins or (B, E) protein-subunits for OLP located in Gag, Pol and Env (p-values in A, D based on
ANOVA, in B, E on Mann-Whitney by pariwise comparing the different protein subunits, red lines indicating median PR values). In (C and F), the
OLP-specific entropy (a measure of the viral diversity in the region the OLP spans) is compared to the OLP-specific PR and shows an inverse
association between the sequence conservation and PR (Spearman rank).
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time, all proteins contained OLP with PR < 1, indicating

that proteins considered overall beneficial may contain

non-beneficial regions as well. In addition, when the

OLP-specific PR was compared to the sequence entropy

of the region spanned by the individual OLP, a signifi-

cant negative correlation between PR and entropy was

observed (p = 0.0028, r = -0.15; Figure 1C). Although

rarely targeted OLP may have introduced statistically

less robust data points in this comparison and caused a

wide scatter of data points, the results show a relative

absence of OLP with high entropy and high PR values,

suggesting that responses to more variable regions are

less effective in mediating in vivo viral control.

To assess whether the above observations would also

hold true outside of clade B infection, the same analyses

were conducted in a cohort of 631 clade C HIV-1

infected subjects enrolled in Durban, South Africa and

tested for responses against a clade C consensus OLP

sequence as described previously [33]. As in clade B

infection, the OLP specific PR values were highest for

OLP spanning Gag without any significant differences

between the Gag and Pol protein subunits (Figure 1D

and 1E). As in the clade B cohort, the PR values were

negatively correlated with the OLP-specific entropy (p =

0.0323, Figure 1F), confirming the findings in the clade

B cohort and further pointing towards the importance

of targeting conserved segments of the viral proteome

for effective in vivo viral control.

Identification of individual beneficial OLP sequences in

clade B and C infection

In order to identify individual OLP that were signifi-

cantly more frequently targeted in individuals with rela-

tive viral control and to compare the beneficial OLP in

clade B and C infection, the viral load distribution in

OLP-responders and non-responders was analyzed indi-

vidually for each OLP. For the clade B cohort in Peru,

the analyses yielded 43 OLP sequences for which the

median viral load differed between the two groups with

an uncorrected p-value of < 0.05. Of these 43 OLP, 26

were OLP with a PR > 1 (referred to as “beneficial”

OLP), and 17 OLP with a PR < 1 ("non-beneficial” OLP,

Table 1). The distribution of OLP with PR > 1 among

viral proteins was biased towards Gag and Pol, while

Env produced exclusively OLP with PR < 1 (Figure 2A).

The same analyses were repeated for the clade C cohort

in Durban, which due to its larger size allowed to apply

more stringent statistical criteria to identify beneficial

and non-beneficial OLP. To compensate for multiple sta-

tistical comparisons, we employed a previously described

false-discovery rate approach [39], resulting in the identi-

fication of 33 clade C OLP with q-values of < 0.2 (i.e.

OLP with significantly different viral load distributions

between OLP-responders and non-responders with a

false positive discovery rate (q-value) of 20%). The 33

OLP identified were comprised of 22 beneficial OLP and

11 non-beneficial OLP, with the beneficial OLP being

again located in Gag, Pol and Vif, similar to what was

seen in the clade B cohort (Figure 2B).

In both cohorts, the total breadth and magnitude of

responses did not correlate with viral loads as reported

for parts of these cohorts in the past [14,16]. The OLP

with significant differences in median viral loads (43

OLP in clade B and 33 OLP in clade C, Tables 1 and 2,

respectively, i.e. “scoring OLP”), were more often tar-

geted in their respective cohort than OLP that did not

score with a significant difference in viral loads (p =

0.0015 Lima; p < 0.0001 Durban). However, beneficial

and non-beneficial OLP were equally frequently targeted

in either cohort. Also, there was no difference in the

median magnitude of the OLP-specific responses,

regardless whether it was a beneficial, non-beneficial or

not-scoring OLP (all p > 0.7, data not shown). Finally,

there was no correlation between the number of total

OLP responses (against all 410 OLP) and the magnitude

of responses to beneficial OLP in either cohort, indicat-

ing that the strength of beneficial OLP responses was

not diminished by other responses to the rest of the

viral proteome.

In the clade B cohort, the 26 beneficial and 17 non-

beneficial OLP showed a significant difference in their

median entropy (p = 0.0327, Figure 2C), in line with the

overall negative association between higher PR and

lower sequence entropy seen in the comprehensive

screening including the entire 410 OLP set (Figure 1C).

While this comparison was not significant in clade C

infection, a detailed look at Gag showed that beneficial

Gag clade C OLP had a lower entropy values than the

rest of the Gag OLP, suggesting that targeting of the

most conserved regions even in Gag provided particular

benefits for viral control (Figure 2D, p = 0.0172). These

beneficial OLP were also more frequently targeted

(median of 36 responders) compared to the rest of Gag

OLP (median 12 responders, p = 0.0099), likely reflect-

ing the high epitope density in these regions [33,44].

Finally, the two cohorts showed a partial overlap in

the targeted beneficial and non-beneficial OLP, despite

the vastly different HLA genetics in these two popula-

tions [4,31,45,46]. As Gag was enriched in beneficial

OLP scattered throughout the entire protein sequence,

we used the available reverse transcriptase (RT) protein

structure to assess whether beneficial responses were

targeting structurally related regions of the protein, even

though the linear position of beneficial OLP did not

precisely match between the two clades. Indeed, super-

imposing the locations of beneficial OLP in the RT pro-

tein indicates that in both clades, beneficial OLP fell in

structurally related domains of the RT protein (Figure
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Table 1 Beneficial and non-beneficial OLP identified in Lima clade B cohort (p < 0.05)

OLP # Protein Sub-unit OLP clade B
consensus
sequence

Median viral
load in OLP
responders

Median viral
load in OLP

non-responders

Protective Ratio
(PR)*

p-value

3 Gag p17 EKIRLRPGGKKKYKLKHI 22947 39014 1.053 0.037

6 Gag p17 ASRELERFAVNPGLL 15380 43189 1.107 0.001

7 Gag p17 ERFAVNPGLLETSEGCR 25939 38974 1.040 0.049

10 Gag p17 QLQPSLQTGSEELRSLY 16285 37237 1.085 0.031

12 Gag p17 SLYNTVATLYCVHQRIEV 23855 37113 1.044 0.037

23 Gag p24 AFSPEVIPMFSALSEGA 22947 37113 1.048 0.036

31 Gag p24 IAPGQMREPRGSDIA 3563 35483 1.281 0.028

34 Gag p24 STLQEQIGWMTNNPPIPV 6127 37360 1.207 0.002

48 Gag p24 ACQGVGGPGHKARVLAEA 12975 35755 1.107 0.041

60 Gag p15 GKIWPSHKGRPGNFLQSR 16266 36434 1.083 0.044

75 Nef - WLEAQEEEEVGFPVRPQV 13407 37360 1.108 0.026

76 Nef - EVGFPVRPQVPLRPMTYK 59618 29855 0.937 0.001

84 Nef - NYTPGPGIRYPLTFGWCF 55402 30538 0.945 0.006

85 Nef - RYPLTFGWCFKLVPV 69890 29903 0.924 0.002

90 Nef - SLHGMDDPEKEVLVWKF 89687 32650 0.911 0.042

159 Pol Pro KMIGGIGGFIKVRQYDQI 14736 36434 1.094 0.020

160 Pol Pro FIKVRQYDQILIEICGHK 3682 35755 1.277 0.031

161 Pol Pro QILIEICGHKAIGTVLV 9117 35483 1.149 0.050

163 Pol Pro LVGPTPVNIIGRNLLTQI 25965 45637 1.055 0.007

171 Pol RT LVEICTEMEKEGKISKI 1865 35483 1.391 0.014

181 Pol RT LDVGDAYFSVPLDKDFRK 65858 32871 0.937 0.041

195 Pol RT LRWGFTTPDKKHQKEPPF 5624 37113 1.219 0.006

196 Pol RT DKKHQKEPPFLWMGYELH 10103 35483 1.136 0.044

210 Pol RT EIQKQGQGQWTYQIY 18155 35483 1.068 0.045

222 Pol RT PPLVKLWYQLEKEPIVGA 412599 34640 0.808 0.030

230 Pol RT IHLALQDSGLEVNIV 85102 34117 0.919 0.030

237 Pol RT VYLAWVPAHKGIGGNEQV 85102 34117 0.919 0.029

240 Pol RT SAGIRKVLFLDGIDKA 116902 32761 0.891 0.019

269 Pol Int TKELQKQITKIQNFRVYY 6629 35755 1.192 0.030

270 Pol Int TKIQNFRVYYRDSRDPLW 18171 37360 1.073 0.019

271 Pol Int YYRDSRDPLWKGPAKLLW 25939 35755 1.032 0.043

276 Pol Int KIIRDYGKQMAGDDCVA 6629 35755 1.192 0.021

279 Vpr - GPQREPYNEWTLELLEEL 60222 32650 0.944 0.042

307 Env Gp120 DLNNNTNTTSSSGEKMEK 179419 34117 0.863 0.044

311 Env Gp120 IRDKVQKEYALFYKLDVV 179419 32871 0.860 0.008

314 Env Gp120 YRLISCNTSVITQACPKV 58206 31273 0.943 0.008

315 Env Gp120 SVITQACPKVSFEPIPIH 61011 32871 0.944 0.034

320 Env Gp120 TNVSTVQCTHGIRPVV 341587 34640 0.820 0.034

355 Env Gp120 VAPTKAKRRVVQREKRAV 161602 34117 0.870 0.042

399 Env Gp41 VIEVVQRACRAILHIPRR 388089 34640 0.812 0.026

405 Vif - VKHHMYISGKAKGWFYRH 16458 37237 1.084 0.021

406 Vif - GKAKGWFYRHHYESTHPR 16458 37237 1.084 0.022

424 Vif - TKLTEDRWNKPQKTKGHR 10319 36434 1.137 0.014

* PR values in bold indicate PR > 1, i.e. OLP-responses seen more frequently in individuals with reduced viral loads
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Figure 2 Genome distribution, entropy and RT localization of OLP with significant impact on viral loads in HIV-1 clade B and C

infection: The distribution of OLP with significantly elevated or reduced PR across the viral proteome is shown in A) for clade B infection (cut-
off uncorrected p-value of p < 0.05) and in B) for clade C infection (cut-off q < 0.2). The entropy of beneficial and non-beneficial clade B OLP is
compared in C) while in D), the entropy of beneficial OLP in HIV clade C Gag is compared to the remainder of Gag OLP (p-values based on
Mann Whitney, red lines indicating median sequence entropies). In E and F, protein structures for HIV-1 reverse transcriptase (Protein databank
structure ID 3IG1) were loaded into the Los Alamos HIV Database “protein feature accent” tool http://www.hiv.lanl.gov/content/sequence/
PROTVIS/html/protvis.html and locations of beneficial RT OLP identified in clade B (Table 1) and in clade C (Table 2) marked by red highlights.

Mothe et al. Journal of Translational Medicine 2011, 9:208

http://www.translational-medicine.com/content/9/1/208

Page 7 of 20

http://www.hiv.lanl.gov/content/sequence/PROTVIS/html/protvis.html
http://www.hiv.lanl.gov/content/sequence/PROTVIS/html/protvis.html


2E and 2F). This suggests that despite differences in

response patterns between ethnicities and clades, viruses

from both clades may be vulnerable to responses target-

ing the same structural regions of at least some of their

viral proteins.

Increased breadth of responses against beneficial OLP is

associated with decreasing viral loads, independent of

Gag-specificity or the presence of protective HLA class I

alleles

To assess whether individuals targeting more than one

beneficial OLP profit from a greater breadth of

responses to these targets, subjects in both cohorts were

stratified by the number of responses to beneficial OLP

and their viral loads compared. In both cohorts, negative

correlations between the number of responses to benefi-

cial OLP and viral loads were observed (p < 0.0001, r =

-0.33 for Lima; p < 0.0001, r = 0.-25 for Durban; data

not shown), suggesting that there is a cumulative benefit

of responses to these particularly effective targets. Simi-

larly, when individuals in the clade C cohort were

grouped based on mounting 1-2, 3-4 or five and more

beneficial OLP responses, a gradual reduction in median

viral loads was seen. This reduction was close to 20-fold

when 5 or more of the 22 beneficial OLP were targeted

(median viral load 5,210 copies/ml) compared to indivi-

duals without a response (98,800 copies/ml, Figure 3A).

Importantly, this observation was not driven only by

individuals expressing HLA class I alleles associated

with relative control of viral replication (including HLA-

Table 2 Beneficial and non-beneficial OLP identified in Durban clade C cohort (q < 0.2)

OLP # Protein Sub-unit OLP clade C
consensus
sequence

Median viral
load in OLP
responders

Median viral
load in OLP

non-responders

Protective Ratio
(PR)*

p-value Q-value

3 Gag p17 EKIRLRPGGKKHYMLKHL 18,700 45,100 1.09 0.0002 0.0006

6 Gag p17 ASRELERFALNPGLL 6,570 44,100 1.22 0.0000 0.0000

7 Gag p17 ERFALNPGLLETSEGCK 5,270 43,900 1.25 0.0000 0.0000

22 Gag p24 WVKVIEEKAFSPEVIPMF 8,360 42,850 1.18 0.0000 0.0000

25 Gag p24 GATPQDLNTMLNTVGGH 24,450 45,200 1.06 0.0021 0.0263

26 Gag p24 NTMLNTVGGHQAAMQMLK 5,310 39,600 1.23 0.0061 0.0766

27 Gag p24 GGHQAAMQMLKDTINEEA 9,715 42,100 1.16 0.0015 0.0170

29 Gag p24 AAEWDRLHPVHAGPIA 19,700 40,900 1.07 0.0045 0.0544

31 Gag p24 IAPGQMREPRGSDIA 6,480 38,950 1.20 0.0146 0.1478

33 Gag p24 SDIAGTTSTLQEQIAWM 11,650 40,900 1.13 0.0025 0.0318

37 Gag p24 WIILGLNKIVRMYSPVSI 9,360 44,100 1.17 0.0004 0.0018

39 Gag p24 SILDIKQGPKEPFRDYV 2,630 38,250 1.34 0.0182 0.1838

41 Gag p24 YVDRFFKTLRAEQATQDV 22,150 44,100 1.07 0.0020 0.0263

42 Gag p24 LRAEQATQDVKNWMTDTL 16,480 40,900 1.09 0.0078 0.0935

55 Gag p15 HIARNCRAPRKKGCWK 7,550 39,700 1.19 0.0092 0.1047

59 Gag p15 RQANFLGKIWPSHKGR 9,840 42,200 1.16 0.0046 0.0539

60 Gag p15 GKIWPSHKGRPGNFLQSR 6,130 39,700 1.21 0.0066 0.0799

63 Gag p15 TAPPAESFRFEETTPAPK 6,040 38,950 1.21 0.0093 0.1020

116 Tat Tat TKGLGISYGRKKRRQRRS 109,000 36,700 0.91 0.0033 0.0410

178 Pol RT FWEVQLGIPHPAGLKKKK 258,000 37,300 0.84 0.0033 0.0384

181 Pol RT LDVGDAYFSVPLDEDFRK 7,100 38,950 1.19 0.0186 0.1832

190 Pol RT RAQNPEIVIYQYMDDLYV 84,900 34,700 0.92 0.0043 0.0555

199 Pol RT TVQPIQLPEKDSWTVNDI 6,700 38,300 1.20 0.0198 0.1926

216 Pol RT QKIAMESIVIWGKTPKFR 18,150 43,000 1.09 0.0026 0.0317

239 Pol RT QVDKLVSSGIRKVLFL 373,200 37,700 0.82 0.0205 0.1937

253 Pol Int PAETGQETAYFILKLAGR 92,800 35,400 0.92 0.0082 0.0954

265 Pol Int AVFIHNFKRKGGIGGYSA 63,650 33,800 0.94 0.0178 0.1826

283 Vpr - GLGQYIYETYGDTWTGV 78,000 35,600 0.93 0.0126 0.1302

284 Vpr - ETYGDTWTGVEALIRIL 85,050 35,200 0.92 0.0099 0.1034

312 Env Gp120 YALFYRLDIVPLNENNSSEY 270,000 37,700 0.84 0.0208 0.1915

365 Env Gp41 GIKQLQTRVLAIERYLK 151,000 34,700 0.88 0.0001 0.0002

393 Env Gp41 LLGRSSLRGLQRGWEALKYL 750,000 37,450 0.78 0.0007 0.0041

417 Vif - CFADSAIRKAILGHIV 1,110 38,200 1.50 0.0178 0.1891

* PR values in bold indicate PR > 1, i.e. OLP-responses seen more frequently in individuals with reduced viral loads
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Figure 3 Increased breadth of responses to beneficial OLP results in gradually reduced viral loads and is independent of cohort and

HLA-B27, -57, -B58, -B81 and -B63. (A) The number of responses to beneficial OLP in the clade C cohort in Durban was determined for each
individual and compared to viral loads. An increased breadth of responses to the 22 beneficial OLP was associated with reduced viral loads
(ANOVA, p < 0.0001). (B) This association remained equally stable after removing all individuals expressing known beneficial HLA allele (HLA-B27,
-B57, -B5801, -B63, -B81) from the analysis (ANOVA, p < 0.0001). (C) The set of 26 beneficial and 17 non-beneficial OLP identified in the clade B
infected cohort in Lima, Peru was tested in a second clade B infected cohort in Barcelona. HIV controllers showed a significantly higher focus of
responses on the 22 beneficial OLP (61% of all responses to the 43 OLP) while non-controllers reacted predominantly with the non-beneficial
OLP (only 29% of all responses targeting beneficial OLP). The Barcelona cohort did not included subject expressing any HLA allele previously
associated with relative control of HIV-1 (p = 0.0011, Mann Whitney).
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B27, -B57, -B*5801, -B63 and -B81) as their exclusion

still showed a strong association between increased

breadth of responses to beneficial OLP and a gradual

suppression of viremia (Figure 3B). This was further

supported when translating the clade B data from Peru

to a second clade B infected cohort in Barcelona, Spain

where HIV-1 controllers also mounted a significantly

greater proportion of their responses to the beneficial

Peruvian OLP compared to the HIV-1 non-controllers

(61% vs. 29%, p = 0.0011; Figure 3C); this despite the

fact that the Barcelona cohort was genetically different

and excluded individuals expressing HLA-B27, -B57,

-B58 and B63. Thus, despite the frequent targeting of

Gag and the inclusion of individuals expressing HLA

alleles such as HLA-B*5701 and -B*5801 in the two lar-

ger clade B and C cohorts, the present data identify

regions of the viral genome that serve as the targets of

an effective host T cell response, largely independent of

the presence of HLA alleles known to influence HIV-1

viral replication.

PR-values are mediated by individuals with broad HLA

heterogeneity

To further assess the contribution of specific HLA class

I alleles on the PR of individual OLP, the statistically

significant OLP in the clade C cohort were further ana-

lyzed. In a first step, median viral loads in the OLP-

responder and non-responder groups were compared

after excluding individuals with specific HLA class I

alleles. If the statistical significance of the comparison

was lost, the excluded HLA class I allele was assumed

to have significantly contributed to the initially observed

elevated or reduced PR value and to restrict a potential

CTL epitope in that OLP. In a second step, a “Hepitope”

analyses http://www.hiv.lanl.gov/content/immunology/

hepitopes was conducted to identify HLA class I alleles

overrepresented in the OLP responder group; providing

an alternative approach to identify specific epitopes that

may contribute to relative viral control. Together, the

two strategies permit to estimate the HLA diversity in

the OLP responders and to identify the most likely

alleles that restrict the epitope-specific responses to the

OLP. Both are important measures when determining

the relative usefulness of a selected beneficial OLP in a

potential immunogen sequence as it should provide

broad HLA coverage. The data from these analyses are

summarized for beneficial and non-beneficial OLP in

Table 3 and 3, respectively. The results demonstrate

that with a few exceptions, for each OLP, several HLA

alleles appeared to be mediating the observed effects as

their removal caused the statistical significance to be

lost. However, for the most frequent HLA class I alleles,

the loss of significance may be due to a reduction in

sample size rather than the actual allele, since the

exclusion of many allele carriers could reduce the num-

ber of OLP responders (and non-responders) sufficiently

to lose statistical power. The “Hepitope” analysis con-

trolled for this effect and confirmed the obtained results,

strongly indicating that responses to beneficial OLP

were mediated by responder populations with heteroge-

neous HLA allele distributions.

Effects of T cell specificity on in vivo viral load are at

least as strong as those associated with host HLA

genetics

To assess whether specific response patterns and/or

HLA combinations could be identified that mediated

synergistic or superior control of viral infection in clades

B and C, multivariate combined regression analysis was

conducted on either OLP only, HLA only or the combi-

nation of OLP and HLA variables [41-43]. The OLP-

only analysis for Lima identified 7 OLP of which 4 were

associated with lower median viral loads and 3 with

increases in viral loads, respectively (Table 4). Targeting

at least one of these beneficial clade B OLP was asso-

ciated with significantly reduced viral loads (median 11,

079 copies/ml) compared to the subjects who did not

target any of these four OLP (median 52, 178 copies/ml;

p < 0.0001, Figure 4A). As seen in the univariate analy-

sis (Figure 2C), the four beneficial OLP emerging from

the Lima FASS analysis were more conserved than the

rest of the OLP (median entropy 0.0759 vs. 0.1649, p =

0.0267) or the three non-beneficial OLP (0.0759 vs.

0.1228, p = 0.0571, data not shown). In contrast to

OLP-only FASS analysis, only one HLA allele (HLA-

C04) emerged from the HLA-only multivariate analysis.

The analysis for the combined variables (OLP and HLA)

controlled for the potential bias in this result due to

more OLP variables (n = 389) than HLA (n = 146)

being included in the statistical tests; yet still identified

more OLP variables (n = 9) than HLA class I alleles (n

= 3). In addition, the relative co-efficients of these asso-

ciations were stronger for the OLP than the HLA vari-

ables, suggesting that T cell specificity influenced viral

loads to at least the same degree as host HLA class I

genetics. Of note, the identified OLP and HLA variables

did not reflect responses to known optimal CTL epi-

topes, as none of the OLP contained described epitope

(s) restricted by any of the identified HLA alleles [44].

Results from the clade C cohort in Durban confirmed

the clade B findings in Lima as the FASS analyses iden-

tified 16 OLP but only 8 HLA variables that had an

impact on the individual viral loads. As in Lima, the

impact of OLP specificity was at least as strong than

HLA genotype (trend for higher coefficients for OLP

than HLA; data not shown, p > 0.05). In addition, tar-

geting at least one of the eight beneficial OLP in Durban

was associated with strongly reduced viral loads (p <
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Table 3 Impact of HLA alleles on the statistical significance of observed PR values (clade C OLP)

A) Beneficial OLP (PR > 1)

OLP Protein PR Removed HLA allele(s) abolishing statistical
significance1

Alleles over-represented in the OLP
responder group2

3 Gag 1.09 A30, B42, C17 A30, B08, A03, A74, C17, A43, B42, B07

6 Gag 1.22 B15 B49, B82, C14

7 Gag 1.25 - B42, C17, B49, A30

22 Gag 1.18 B57, C07 B57, A74, B45, C07, C16, B13

25 Gag 1.06 A30, B15, C04, C07 B42, C17, B81, B39, A01, C12, C18, A30, B67

26 Gag 1.23 A02, A23, A68, B07, B14, B58, C07, C08 C03, B15, A68

27 Gag 1.16 B15, C07 B15, A68, C03, C08

29 Gag 1.07 A68, B15, B58, C02, C03, C06, C12 B35, B39, C12, B40, B07, C04

31 Gag 1.2 A02, A11, A23, A29, A32, A34, A68, B07, B13, A29, C06, A11

B13, B15, B42, B44, B58, C04, C06, C07, C17

33 Gag 1.13 A02, A23, B44, B57, B58, C07 B58, B57, A02, C07, C03, A68

37 Gag 1.17 A30, B42, B58, C17 C18, B42, C17, A01, B81

39 Gag 1.34 A02, A03, A23, A29, A30, A68, A74, B08, B15, A02

B18, B42, B45, B53, B57, B58, C02, C03, C06,

C07, C08, C16, C17

41 Gag 1.07 A23, C06 C03, B14, A68, C08, B15

42 Gag 1.09 A23, A30, B08, B15, B42, B53, B58, C03, C04, C07 B53, C03

55 Gag 1.19 A02, A24, A29, A30, B07, B15, B39, B42, B44, B42, B08, C17

B58, C02, C06, C07, C17

59 Gag 1.16 A02, A30, B08, B42, B44, B58, C04, C07, C17 A02, B13, A29

60 Gag 1.21 A02, A30, B42, B58, C06, C07, C17 A02, B41, C07, C17

63 Gag 1.21 A02, A23, A29, A30, A68, B08, B15, B44, B58, A23

C02, C03, C06, C07

181 Pol 1.19 A01, A23, A29, A30, A34, A68, A74, B14, B15, B57, C18

B18, B35, B44, B45, B57, B58, C02, C03, C04,

C06, C07, C08, C16

199 Pol 1.2 A02, A03, A23, A24, A26, A30, A31, A34, A36, A66, A68, B53, A23, C04

A80, B08, B13, B15, B18, B35, B40, B41, B42, B44, B45,

B49, B50, B51, B53, B57, B58, B81, C01, C02, C03,
C04,

C05, C06, C07, C08, C15, C16, C17

216 Pol 1.09 A02, A30, B58, C07, C17 B53, B58, C07, B57

417 Vif 1.5 A03, A23, A30, A34, A36, A68, B08, B14, B15, B14, C08, A36

B44, B53, B58, C03, C04, C06, C08

B) Non-beneficial OLP (PR
< 1)

116 Tat 0.91 A02, A34, B15, C04 B15, C02

178 Pol 0.84 A03, A68, B15, B58, C04, C06, C07 A68, C06, B58, B82, A03

190 Pol 0.92 A03, A30, A66, B18, B42, B45, B58, C06, C07 A02, B18, B35, C05, C16, B45, A80, C12, B67, B39

239 Pol 0.82 - C05, A03

253 Pol 0.92 A03, A68, B15, B39, B42, B44, B58, C02, C04, C06, C08, A68, C03, B15, B07, C15, B41

C17, C18

265 Pol 0.94 A02, A03, A23, A24, A26, A29, A30, A31, A33, B15, C02, A43, A74

A34, A66, A68, B07, B08, B14, B15, B27, B40, B41, B42,

B44, B53, B54, B55, B57, B81, C01, C02, C04, C06, C07,

C12, C17, C18

283 Vpr 0.93 A02, A03, A23, A30, A66, A68, A74, B07, B14, B18, B39, A68, C03, B07, C17, B41

B41, B42, B45, B57, C02, C04, C07, C08, C15, C17

284 Vpr 0.92 A03, A23, A30, A66, A68, A74, B07, B14, B18, B39, B42, A68, C03

B45, B57, C07, C08, C15, C17
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0.0001, Figure 4B). This effect was, as in the univariate

analysis, additive for more than one response (p <

0.0001, Figure 4C) and included OLP that were, aside

from Gag, located in Pol and Vif. Also, the combined

(OLP and HLA) analysis suggests the effect of OLP spe-

cificity on viral loads to be at least as strong as HLA

genetics as 8 OLP and 7 HLA variables were identified.

This especially since among the 7 HLA alleles, two

(HLA-B57 and HLA-A74) are expressed in linkage dise-

quilibrium [47], further reducing the number of HLA

variables with a significant impact on viral loads.

Responses to beneficial OLP are of higher functional

avidity and suppress viral replication in vitro more

effective than responses to non-beneficial OLP

Functional avidity and the ability to suppress in vitro

viral replication have emerged as two potentially crucial

parameters of an effective CTL response against HIV-1

[23-29]. To assess this potential functional characteristic

of beneficial CTL populations, we determined the func-

tional avidity of responses to the four beneficial OLP

located in Gag p24, a region that has been most consis-

tently associated with eliciting relatively protective CTL

responses. As 18 mer peptides are suboptimal test pep-

tides to determine functional avidity, 10 mer overlapping

peptide sets were synthesized to cover the four benefi-

cial OLP and all detected responses were titrated. The

SD50% was determined for a comparable numbers of

responses detected in controllers (n = 21 responses) and

non-controllers (n = 24 responses) and showed a statis-

tically significant difference between the two groups

(median 3, 448 ng/ml vs. 25, 924 ng/ml, p = 0.0051, Fig-

ure 5A). This reduced avidity in HIV non-controllers to

beneficial OLP could possibly explain why HIV-1 non-

controllers did not control their in vivo viral replication

despite targeting these regions in some instances and

with responses of comparable magnitude as HIV con-

trollers (278 SFC vs 305 SFC/106 PBMC, p = 0.55, data

not shown).

To more directly assess whether responses to benefi-

cial OLP were of particularly high functional avidity,

regardless of HIV controller status, we determined

SD50% of responses to 17 optimal epitopes from benefi-

cial, neutral and non-beneficial OLP (Figure 5B). Med-

ian epitope-specific SD50% were determined from an

average of 7 titrations per epitope and compared to the

OLP specific PR. A strongly significant, negative associa-

tion between the PR and the SD50% was noted (p =

0.002, r = -0.69), indicating that beneficial OLP are tar-

geted by high-avidity responses. To control for inter-

individual differences due to disease status and viral

load, we identified 10 individuals who targeted optimal

epitopes in beneficial and non-beneficial OLP and deter-

mined their functional avidity. As in the cross-sectional

analysis before, this matched comparisons showed in all

cases a higher functional avidity for the epitopes located

in the beneficial OLP compared to the responses target-

ing non-beneficial OLP (Figure 5C, p = 0.0020). Lastly,

to relate the higher functional avidity to potential super-

ior anti-viral effects in vivo, the ability to inhibit in vitro

viral replication was assessed in three individuals who

mounted robust responses against both beneficial and

non-beneficial OLP. The in vitro inhibition assay first

developed by Yang et al [48], was modified so that the

NL4-3 based test virus contained a single nucleotide

mutation in Nef (M20A) that blocks the Nef-mediated

down-regulation of HLA class I molecules as well as

two mutations in the integrase gene that mediate Ralte-

gravir-resistance to permit the suppression of potentially

replicating autologous virus in the assay. Indeed, CTL

specific for the beneficial OLP(s) were up to 2 logs

more effective inhibiting viral replication than CTL tar-

geting non-beneficial OLP (Figure 5D), in line with

recent data demonstrating different suppressive ability

of HIV-1 specific CTL populations targeting Gag and

Env-derived epitopes [24]. Although the in vitro inhibi-

tion assays were limited to few individuals with suitable

response patterns, these data together with the results

from the extensive titration assays in Figure 5B and 5C

indicate that responses to beneficial OLP are of particu-

larly high functional avidity and inhibit in vitro viral

replication more effectively than responses to non-bene-

ficial OLP. Of note, higher avidity responses to benefi-

cial OLP compared to non-beneficial OLP were seen in

all 10 tested individuals, ruling out that inter-individual

variability in viral loads, duration of infection and HIV

disease status could have biased the analyses.

Conclusions
Defining functional correlates of HIV-1 immune control

is critical to the design of effective immunogens. T cell

responses to specific HIV-1 proteins and protein-

Table 3 Impact of HLA alleles on the statistical significance of observed PR values (clade C OLP) (Continued)

312 Env 0.84 - B08, C07

365 Env 0.88 B58, C06 C06, B58, A43, B45, C16, A66

393 Env 0.78 A30, B58, C06 A31, C06, B45

1) in italics HLA alleles that do not emerge from the Hepitope analysis 2) cut-off in Hepitope analyses for p < 0.05, alleles sorted according to strength of

association
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Table 4 Multivariate analysis of OLP and HLA variables for clade B and C cohorts

OLP variables only (Lima, clade B) OLP variables only (Durban, clade C)

change viral load (co-efficient) * p-value change viral load (co-efficient) * p-value

Beneficial Beneficial

OLP.6 -0.4591 0.0008 OLP.7 -0.6256 0

OLP.31 -1.4055 0.0002 OLP.21 -0.6663 0

OLP.171 -2.5981 0 OLP.22 -0.4926 0.0006

OLP.276 -1.127 0.0007 OLP.25 -0.2822 0.0002

OLP.27 -0.4719 0.0053

Non-beneficial OLP.33 -0.3396 0.0024

OLP.76 0.2486 0.0067 OLP.398 -1.8179 0.0027

OLP.306 3.2968 0.0001 OLP.417 -1.6535 0.0008

OLP.411 1.3329 0.012

Non-beneficial

OLP.38 0.9045 0.0022

OLP.84 0.1947 0.0091

OLP.116 0.6156 0.0039

OLP.183 0.661 0.0013

OLP.224 0.2508 0.0036

OLP.265 0.5782 0

OLP.365 0.4911 0.0009

OLP.393 1.2624 0.0013

HLA variables only (Lima, clade B) HLA variables only (Durban, clade C)

Non-beneficial Beneficial

HLA-C0401 0.35652 0.00024 HLA-A74 -0.3553 0.0025

HLA-B13 -0.6443 0.0004

HLA-B57 -0.5195 0.0007

HLA-B81 -0.3619 0.0015

HLA-C12 -0.6544 0.0001

Non-beneficial

HLA.B.15 0.2506 0.0012

HLA.B.18 0.5521 0.0005

HLA.C.6 0.3958 0

HLA and OLP variables together (Lima) HLA and OLP variables together (Durban)

Beneficial Beneficial

OLP.6 -0.5792 0 OLP.6 -0.4798 0.0023

OLP.31 -1.1607 0.0005 OLP.7 -0.4528 0.0015

OLP.171 -2.7948 0 OLP.27 -0.4676 0.0049

OLP.276 -0.9609 0.0011 OLP.59 -0.4196 0.0115

OLP.417 -1.387 0.0041

Non-beneficial Non-beneficial

OLP.2 0.3945 0.018 OLP.148 2.5215 0.0029

OLP.237 0.7211 0.0035 OLP.183 0.6108 0.0023

OLP.288 1.5537 0.0016 OLP.393 1.1442 0.0023

OLP.311 0.7197 0.0091

OLP.411 1.5306 0.0024 Beneficial

HLA-A74 -0.3744 0.0007

Beneficial HLA-B57 -0.4887 0.0007

HLA-B1502 -1.4688 0.0164 HLA-B81 -0.3859 0.0004

HLA-C12 -0.6003 0.0002

Non-beneficial Non-beneficial

HLA-B0801 0.66 0.0049 HLA-B15 0.2797 0.0001

HLA-C0401 0.2894 0.0006 HLA-B18 0.5316 0.0003

HLA-B49 0.9713 0.0007

* negative co-efficient values indicate reduction in median viral loads
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Figure 4 Responses to OLP identified in multi-variate analysis are associated with reduced viral loads: Response patterns and HLA class I
genetics in the clade B cohort in Lima and clade C cohort in Durban were subjected to FASS multivariat analysis [41-43]. Viral loads in
individuals mounting zero vs. at least one response to beneficial OLP identified by the FASS multi-variate analysis were compared for (A) the
Lima clade B cohort and the (B) Durban clade C cohort. The larger data set for the clade C cohort allowed for a further stratification of the
responder group by increasing numbers of targeted OLP emerging from the FASS analysis (C). A gradually declining median viral load in relation
to an increasing breadth of these responses was seen (ANOVA, p < 0.0001).
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subunits have been associated before with relatively

superior viral control in vivo [14,16,49], but evidence

from recent clinical trials suggests that including maxi-

mal immunogen content into various vectors does not

necessarily induce more effective CTL responses [50,51].

In fact, it has been argued that the existence of potential

“decoy” epitopes may divert an effective CTL response

towards variable and possibly less effective targets in the

viral genome [52]. Thus, the definition of a minimal yet

sufficient immunogen sequence that can elicit CTL

responses in a broad HLA context is urgently needed.

Thereby, focusing vaccine responses on conserved

regions could help induce responses towards mutation-

ally constrained targets and provide the basis for protec-

tion from heterologous viral challenge.

We present here the results of an extensive analysis

that included more than 950 HIV-1 infected individuals

with diverse HLA genotypes, from three different conti-

nents and including clade B and C infections. In both,

the analysis in clade B in Lima and clade C in Durban,
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Figure 5 Responses to beneficial OLP are of higher functional avidity and suppress in vitro viral replication more effectively. (A)
Responses to the four beneficial OLP located in HIV-1 clade B Gag p24 were retested using a peptide set of 10 mers overlapping by 9 residues.
A total of 21 responses in HIV-1 controllers and 24 responses in HIV-1 non-controllers were titrated and the SD50% compared between the two
groups, showing a significantly higher functional avidity in the controllers (p = 0.0051, Mann Whitney). (B) Responses to 17 different optimally
defined CTL epitopes located in beneficial, neutral and non-beneficial OLP were titrated in samples from 78 HIV infected individuals with variable
viral load and disease status. The median SD50% (ng/ml) was defined for each epitope and compared to the OLP-specific protective ratio
(Spearman Rank test, p = 0.0020). (C) Ten individuals who mounted responses to well-defined optimal CTL epitopes located in beneficial as well
as in non-beneficial clade B OLP were identified and their responses titrated. The SD50% for responses detected in the same individual were
compared (Wilcoxon matched pairs test, p = 0.0039). (D) In-vitro viral replication inhibition assays [48] were performed using a Nef modified and
Raltegravir resistant test virus and purified CTL effector populations from the same individual targeting beneficial and non-beneficial OLP. One
representative experiment of three assays conducted in different individuals is show. Levels of Gag p24 were determined after 4 days of co-
culture of effector cells and auologous CD4 T cells used as target cells. Target cells were stimulated 3 days prior with dual-specific anti-CD3/8
mAb and infected at a MOI of 0.1. The negative control contained wells with target cells only ("no CD8”).
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individual OLP were identified that are predominantly

targeted by individuals with reduced or elevated viral

loads, although the different size of the cohorts required

different statistical approaches for their identification. In

general, most of these OLP were among the more fre-

quent targets in the HIV proteome, possibly due to

both, the need for sizable responder groups to achieve

statistical significance in the viral loads comparison as

well as the high epitope density in these OLP. The iden-

tified OLP were frequently located in HIV-1 Gag and

Pol, but rarely in the more variable proteins such as Env

and Nef. With one exception, Nef and Env featured only

non-beneficial OLP, thus arguing against their inclusion,

at least as full proteins, in a CTL immunogen sequence

[16]. In addition, in both cohorts, the Vif protein yielded

few, yet exclusively beneficial OLP, which may warrant a

renewed look at the inclusion of regulatory proteins in

vaccine design [53,54]. Also common to both clades,

(and despite the wide scatter possibly due to the inclu-

sion of less-frequently targeted OLP), an negative corre-

lation between sequence entropy and PR was observed

providing strong rationale for vaccine approaches that

focus on conserved viral regions where T cell escape

may be complicated by structural constrains [55]. This

was particularly evident in the clade C cohort, where

even within the relatively conserved Gag protein, a

lower entropy was seen for the beneficial OLP compared

to the remainder of the OLP spanning the protein. On

the other hand, while beneficial and non-beneficial OLP

showed a significant difference in their median entropy

in the clade B cohort, this comparison was not signifi-

cant in the clade C cohort. It is possible that the immu-

nogen sequence, designed in 2001, did not optimally

cover the circulating viral population in Durban

throughout the enrollment period (until 2006), leading

to missed responses particularly in the more variable

segments of the virus [32,56]. The study may have thus

failed to identify beneficial as well as non-beneficial

OLP in the more variable genes of HIV. This should

have preferentially affected highly variable OLP due to a

more frequent mismatch between autologous viral

sequence and in vitro test set in these regions. However,

even if scoring as beneficial OLP, such high-entropy

OLP may from an immunogen-design point of view be

of less interest as they would possible contribute only

little to protection from heterologous viral challenge. It

needs however also to be considered that the OLP-spe-

cific entropy values are based on variable numbers of

sequences in the Los Alamos HIV database covering the

different OLP, introducing potential further bias into

these analyses, particularly for less covered proteins

such as Vpu and other viral protein products. Such dif-

ferences between autologous viral sequences and in

vitro test sets may also have impacted the assessment of

functional avidities. These determinations included

responses in the same individual towards epitopes

located in beneficial and non-beneficial OLP; with the

former overall being more conserved. Thus, the higher

functional avidity towards epitopes located in beneficial

OLP could be biased by the higher chance that these

epitopes matched the autologous viral sequence com-

pared to epitopes located in non-beneficial OLP and

which may thus have induced a more robust, avid

response. Apart from covering autologous sequences,

future studies will ideally also include comparable ana-

lyses in individuals identified and tested in acute infec-

tion that go on to control the infection at undetectable

levels of viral replication (i.e. elite-controllers) so that

the selective early emergence of responses to beneficial

OLP could be linked to relative control of viral replica-

tion in chronic infection. As is, the identified beneficial

responses may be particularly important to maintain low

viral replication in chronic stages of infection, which in

theory could be different (for instance due to more

accelerated intra-individual viral evolution in variable

genes) from responses determining viral set point during

acute infection. However, the existing HLA bias in such

cohorts and the small number of responses identified

during earliest stages of infection may make such ana-

lyses a formidable undertaking that will require large

numbers of individuals to be tested longitudinally.

A broadly applicable T cell immunogen sequence

should include T cell targets restricted by a wide array

of HLA class I alleles. Although broad representation of

HLA-B alleles may be particularly important in this

regard, emerging data on the effects HLA-C alleles in

these cohorts may warrant a broad HLA-C representa-

tion as well [2,47,57]. In the present study, the 26 bene-

ficial OLP from Lima and the 22 beneficial OLP from

Durban covered 26 described, optimally defined CTL

epitopes restricted by 20 different HLA alleles for the

clade B cohort and 33 epitopes presented by 34 alleles

for the clade C cohort, respectively [44]. As this is likely

to be an underestimate of the true diversity in HLA

restriction (Table 2 and ref [58]), it is reasonable to pre-

dict that the inclusion of identified beneficial OLP, or

even a subset thereof, could evoke potential responses

in a widely diverse HLA context. This could also pro-

vide the basis for the induction of poly-specific T cell

responses with increased breath, which the present data

clearly associates with progressively lower viral loads

and which emerge as a potentially important parameter

from several recent vaccine studies showing superior

protection from SIV challenge in animals with a broad

vaccine induced responses to Gag p17 [59,60].

Recent studies have suggested a global adaptation of

HIV-1 to its various host ethnicities [4,46]. The conse-

quence of such adaptation has led in some cases to the
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elimination of protective CTL targets, causing a pro-

found absence of responses to these epitopes and detri-

mentally changing the association between HLA allele

and HIV-1 disease outcome [4]. It is thus not surprising

that the two main cohorts tested here yielded only par-

tially overlapping sets of beneficial OLP as the impact of

host genetics and viral evolution in the studied popula-

tions cannot readily be overcome. In fact, given studies

by Frahm et al [4], the past and current adaptation of

HIV-1 to common HLA class I alleles will likely still call

for somewhat population tailored vaccine approaches,

especially if the immunogen sequences should be kept

short to avoid regions of potentially reduced immunolo-

gical value [52]. Such approaches will also profit from

more extensive structural analyses that may identify spe-

cific domains of viral proteins that are or are not

enriched in valuable T cell targets; of which the latter

could possibly be ignored for the design of T cell immu-

nogen sequences. Additional analyses in other geneti-

cally unrelated cohorts of HIV-1 infected individuals

and studies in SIV infection may further help to guide

such selective immunogen design and to understand the

factors defining the effectiveness of different epitopes in

mediating relative HIV-1 control. Of note, the beneficial

OLP identified here, 24 in clade B and 22 in clade C

infection matched other immunogen design based on

conserved elements in some parts as well, i.e. of the 14

conserved elements proposed by Hanke et al, eight

(57%) overlapped at least partly with beneficial OLP

identified here [61]. Similarly, among the highly con-

served elements proposed by Rolland et al [52], 35% (5/

14) were covered by our beneficial OLP in clade B infec-

tion. These differences possibly emerge because the pre-

sent analysis is based on functional T cell data rather

than viral sequence alignments, which may not take into

consideration epitope density and processing preferences

of certain regions. Nevertheless, the partial overlap with

these other immunogen design support the focus on

conserved regions and offers the opportunity for alterna-

tive or combined vaccine approach that elicit responses

to regions where the virus is and possibly remains vul-

nerable [4,46,55,62].

Finally, we used the extensive data set available to

approach the question of relative effects of host genetics

(i.e. HLA) and CTL specificity on HIV-1 control. While

the two factors cannot be entirely disentangled, our data

suggest that CTL specificity has an at least equal if not

stronger effect on viral control than HLA class I allele

expression. These findings are also in line with data by

Mothe et al [63] showing that targeting key regions in

p24 surrounding the dominant epitopes restricted by

known protective alleles (KK10 for HLA-B27 and TW10

for HLA-B57/58) in HLA-B27, -57 or B58 negative indi-

viduals is associated with significantly reduced viral

loads. In addition, the presence of individuals not

expressing known beneficial alleles in HIV-1 elite con-

troller cohorts [64], further indicates that HIV-1 control

is not necessarily bound to a few specific HLA class I

alleles. A detailed study of the total HIV-1-specific CTL

response of subjects not expressing these alleles yet

effectively controlling HIV-1 can be expected to provide

further and crucially needed insight into the importance

of targeting specific (conserved) regions of the viral gen-

ome for HIV-1 control. Similarly, the characterization of

functional attributes of these responses, including func-

tional avidity and the ability to suppress in vitro viral

replication will need to be further assessed in such indi-

viduals. Building on experimentally derived and poten-

tially promising immunogen sequences as defined here

may thus provide a suitable basis for further immuno-

gen design and iterative clinical trials in the human

setting.
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