
 Open access Proceedings Article DOI:10.1145/800194.805852

Definitional interpreters for higher-order programming languages — Source link

John C. Reynolds

Institutions: Syracuse University

Published on: 01 Aug 1972

Topics: Applicative programming language, Fifth-generation programming language, Language primitive,
First-generation programming language and Programming language theory

Related papers:

 Call-by-name, call-by-value and the λ-calculus

 The Mechanical Evaluation of Expressions

 A correspondence between ALGOL 60 and Church's Lambda-notations: Part II

 Abstracting control

 Rabbit: A Compiler for Scheme

Share this paper:

View more about this paper here: https://typeset.io/papers/definitional-interpreters-for-higher-order-programming-
4dc2liewao

https://typeset.io/
https://www.doi.org/10.1145/800194.805852
https://typeset.io/papers/definitional-interpreters-for-higher-order-programming-4dc2liewao
https://typeset.io/authors/john-c-reynolds-2ki0y32c0q
https://typeset.io/institutions/syracuse-university-37mql6rp
https://typeset.io/topics/applicative-programming-language-2wqj7tb2
https://typeset.io/topics/fifth-generation-programming-language-3oz2aej7
https://typeset.io/topics/language-primitive-1qaooo3v
https://typeset.io/topics/first-generation-programming-language-k8r66ret
https://typeset.io/topics/programming-language-theory-198cun89
https://typeset.io/papers/call-by-name-call-by-value-and-the-l-calculus-alulagepxr
https://typeset.io/papers/the-mechanical-evaluation-of-expressions-2cb63769ln
https://typeset.io/papers/a-correspondence-between-algol-60-and-church-s-lambda-1q42olegmt
https://typeset.io/papers/abstracting-control-2c9fj3izmc
https://typeset.io/papers/rabbit-a-compiler-for-scheme-3yntsvpk1u
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/definitional-interpreters-for-higher-order-programming-4dc2liewao
https://twitter.com/intent/tweet?text=Definitional%20interpreters%20for%20higher-order%20programming%20languages&url=https://typeset.io/papers/definitional-interpreters-for-higher-order-programming-4dc2liewao
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/definitional-interpreters-for-higher-order-programming-4dc2liewao
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/definitional-interpreters-for-higher-order-programming-4dc2liewao
https://typeset.io/papers/definitional-interpreters-for-higher-order-programming-4dc2liewao

Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1998

Definitional interpreters for higher-order programming languages Definitional interpreters for higher-order programming languages

John C. Reynolds
Syracuse University, Systems and Information Science, john.reynolds@cd.cmu.edu

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation

Reynolds, John C., "Definitional interpreters for higher-order programming languages" (1998). College of

Engineering and Computer Science - Former Departments, Centers, Institutes and Projects. 13.

https://surface.syr.edu/lcsmith_other/13

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Flcsmith_other%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/13?utm_source=surface.syr.edu%2Flcsmith_other%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Higher-Order and Symbolic Computation, 11, 363–397 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Definitional Interpreters

for Higher-Order Programming Languages*

JOHN C. REYNOLDS**

Systems and Information Science, Syracuse University

Abstract. Higher-order programming languages (i.e., languages in which procedures or labels can occur as

values) are usually defined by interpreters that are themselves written in a programming language based on the

lambda calculus (i.e., an applicative language such as pure LISP). Examples include McCarthy’s definition of

LISP, Landin’s SECD machine, the Vienna definition of PL/I, Reynolds’ definitions of GEDANKEN, and recent

unpublished work by L. Morris and C. Wadsworth. Such definitions can be classified according to whether the

interpreter contains higher-order functions, and whether the order of application (i.e., call by value versus call by

name) in the defined language depends upon the order of application in the defining language. As an example,

we consider the definition of a simple applicative programming language by means of an interpreter written in a

similar language. Definitions in each of the above classifications are derived from one another by informal but

constructive methods. The treatment of imperative features such as jumps and assignment is also discussed.

Keywords: programming language, language definition, interpreter, lambda calculus, applicative language,

higher-order function, closure, order of application, continuation, LISP, GEDANKEN, PAL, SECD machine,

J-operator, reference.

1. Introduction

An important and frequently used method of defining a programming language is to give an

interpreter for the language that is written in a second, hopefully better understood language.

(We will call these two languages the defined and defining languages, respectively.) In this

paper, we will describe and classify several varieties of such interpreters, and show how

they may be derived from one another by informal but constructive methods. Although

our approach to “constructive classification” is original, the paper is basically an attempt to

review and systematize previous work in the field, and we have tried to make the presentation

accessible to readers who are unfamiliar with this previous work.

(Of course, interpretation can provide an implementation as well as a definition, but there

are large practical differences between these usages. Definitional interpreters often achieve

clarity by sacrificing all semblance of efficiency.)

We begin by noting some salient characteristics of programming languages themselves.

The features of these languages can be divided usefully into two categories: applicative

features, such as expression evaluation and the definition and application of functions,

and imperative features, such as statement sequencing, labels, jumps, assignment, and

* Work supported by Rome Air Force Development Center Contract No. 30602-72-C-0281 and ARPA Contract

No. DAHC04-72-C-0003. This paper originally appeared in the Proceedings of the ACM National Conference,

volume 2, August, 1972, ACM, New York, pages 717–740.
** Current address: Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

e-mail: John.Reynolds@cs.cmu.edu

364 REYNOLDS

procedural side-effects. Most user-oriented languages provide features in both categories.

Although machine languages are usually purely imperative, there are few “higher-level”

languages that are purely imperative. (IPL/V might be an example.) On the other hand,

there is at least one well-known example of a purely applicative language: LISP (i.e., the

language defined in McCarthy’s original paper [1]; most LISP implementations provide

an extended language including imperative features). There are also several more recent,

rather theoretical languages (ISWIM [2], PAL [3], and GEDANKEN [4]) that have been

designed by starting with an applicative language and adding imperative extensions.

Purely applicative languages are often said to be based on a logical system called the

lambda calculus [5, 6], or even to be “syntactically sugared” versions of the lambda calculus.

In particular, Landin [7] has shown that such languages can be reduced to the lambda calculus

by treating each type of expression as an abbreviation for some expression of the lambda

calculus. Indeed, this kind of reducibility could be taken as a precise definition of the

notion of “purely applicative.” However, as we will see, although an unsugared applicative

language is syntactically equivalent to the lambda calculus, there is a subtle semantic

difference. Essentially, the semantics of the “real” lambda calculus implies a different

“order of application” (i.e., normal-order evaluation) than most applicative programming

languages.

A second useful characterization is the notion of a higher-order programming language.

In analogy with mathematical logic, we will say that a programming language is higher-

order if procedures or labels can occur as data, i.e., if these entities can be used as arguments

to procedures, as results of functions, or as values of assignable variables. A language that

is not higher-order will be called first-order.

In ALGOL and its various descendents, procedures and labels can be used as procedure

arguments, and in more recent languages such as PL/I and ALGOL 68, they may also be

used as function results and assignable values, subject to certain “scope” restrictions (which

are imposed to preserve a stack discipline for the storage allocation of the representations

of functions and labels). However, the unrestricted use of procedures and labels as data is

permitted in only a handful of languages which sacrifice efficiency for generality: LISP

(in most of its interpretive implementations), ISWIM, PAL, GEDANKEN, and (roughly)

POP-2.

With regard to current techniques of language definition, there is a substantial disparity

between first-order and higher-order languages. As a result of work by Floyd [8], Manna

[9], Hoare [10], and others, most aspects of first-order languages can be defined logically,

i.e., one can give an effective method for transforming a program in the defined language

into a logical statement of the relation between its inputs and outputs. However, it has not

yet been possible to apply this approach to higher-order languages. (Although recent work

by Scott [12, 13, 14, 15] and Milner [16] represents a major step in this direction.)

Almost invariably, higher-order languages have been defined by the approach discussed

in this paper, i.e., by giving interpreters that are themselves written in a programming

language (An apparent exception is definition of ALGOL given by Burstall [17], but this

can be characterized as a logical definition of a first-order interpreter for a higher-order

language.) Moreover, even when the defined language contains imperative features, the

defining language is usually purely applicative (probably because applicative languages are

well suited for computations with symbolic expressions). Examples include McCarthy’s

DEFINITIONAL INTERPRETERS 365

definition of LISP [1], Landin’s SECD machine [7], the Vienna definition of PL/I [18],

Reynolds’ definitions of GEDANKEN [19], and recent unpublished work by L. Morris [20]

and C. Wadsworth.

(There are a few instances of definitional interpreters that fall outside the conceptual

framework developed in this paper. A broader review of the field is given by deBakker

[21].)

These examples exhibit considerable variety, ranging from very concise and abstract

interpreters to much more elaborate and machine-like ones. To achieve a more precise

classification, we will introduce two criteria. First, we ask whether the defining language is

higher-order, or more precisely, whether any of the functions that comprise the interpreter

either accept or produce values that are themselves functions.

The second criterion involves the notion of order of application. In designing any language

that allows the use of procedures or functions, one must choose between two orders of

application which are called (following ALGOL terminology) call by value and call by

name. Even when the language is purely applicative, this choice will affect the meaning

of some, but not all, programs that can be written in the language. Remembering that an

interpreter is a specific program, we obtain our second criterion: Does the meaning of the

interpreter depend upon the order of application chosen for the defining language?

These two criteria establish four possible classes of interpreters, each of which contains

one or more of the examples cited earlier:

Order-of- Use of higher-order functions:

application

dependence: yes no

yes direct interpreter McCarthy’s

for GEDANKEN definition of LISP

no Morris-Wadsworth SECD machine,

method Vienna definition

The main goal of this paper is to illustrate and relate these classes of definitional inter-

preters. In the next section we will introduce a simple applicative language, which we will

use as the defining language and also, with several restrictions, as the defined language.

Then we will present a simple interpreter that uses higher-order functions and is order-of-

application dependent, and we will transform this interpreter into examples of the three

remaining classes. Finally, we will consider the problem of adding imperative features to

the defined language (while keeping the defining language purely applicative).

366 REYNOLDS

2. A Simple Applicative Language

In an applicative language, the meaningful phrases of a program are called expressions, the

process of executing or interpreting these expressions is called evaluation, and the result of

evaluating an expression is called a value. However, as is evident from a simple arithmetic

expression such as x+y, different evaluations of the same expression can produce different

values, so that the process of evaluation must depend upon something more than just the

expression being evaluated. It is evident that this “something more” must specify a value

for every variable that might occur in the expression (more precisely, occur free). We will

call such a specification an environment, and say that it binds variables to values.

It is also evident that the evaluation process may involve the creation of new environments

from old ones. Suppose x1, . . . , xn are variables, v1, . . . , vn are values, and e and e′ are

environments. If e′ specifies the value vi for each xi, and behaves the same way as e for all

other variables, then we will say that e′ is the extension of e that binds the xi’s to the vi’s.

The simplest expressions in our applicative language are constants and variables. The

evaluation of a constant always gives the same value, regardless of the environment. We

will not specify the set of constants precisely, but will assume that it contains the integers

and the Boolean constants true and false. The evaluation of a variable simply produces the

value that is bound to that variable by the environment. In the programs in this paper we

will denote variables by alphanumeric strings, with occasional superscripts and subscripts.

If our language is going to involve functions, then we must have a form of expression

whose evaluation will cause the application of function to its arguments. If r0, r1, . . . , rn

are expressions, then r0(r1, . . . , rn) is an application expression, whose operator is r0

and whose operands are r1, . . . , rn. The evaluation of an application expression in an

environment proceeds as follows:

1. The subexpressions r0, r1, . . . , rn are evaluated in the same environment to obtain

values f , a1, . . . , an.

2. If f is not a function of n arguments, then an error stop occurs.

3. Otherwise, the function f is applied to the arguments a1, . . . , an, and if this application

produces a result, then the result is the value of the application expression.

There are several assumptions hiding behind this description that need to be made explicit:

1. A “function of n arguments” is a kind of value that can be subjected to the process of

being “applied” to a sequence of n values called “arguments”.

2. For some functions and arguments, the process of application may never produce a

result, either because the process does not terminate (i.e., it runs on forever), or because

it causes an error stop. Similarly, for some expressions and environments, the process

of evaluation may never produce a value.

3. In a purely applicative language, the application of the same function to the same

sequence of arguments will always have the same effect, i.e., both the result that is

produced, and the prior question of whether any result is produced, depend only upon

the function and its arguments. Similarly, the evaluation of the same expression in the

same environment will always have the same effect.

DEFINITIONAL INTERPRETERS 367

4. During the evaluation of an application expression, the application process does not

begin until after the operator and all of its operands have been evaluated. This is the

call-by-value order of application mentioned in the introduction. In the alternative order

of application, known as call by name, the application process would begin as soon as

the operator had been evaluated, and each operand would only be evaluated when (and

if) the function being applied actually depended upon its value. This distinction will

be clarified below.

5. Although we have specified that all of the subexpressions r0, . . . , rn are to be evaluated

before the application process begins we have not specified the relative order in which

these subexpressions are to be evaluated. In a purely applicative language, this choice

has no effect. (A slight exception occurs if the evaluation of one subexpression never

terminates while the evaluation of another gives an error stop.) However, the choice will

become significant when we start adding imperative features to the defined language.

In anticipation of this extension, we will assume that the subexpressions are evaluated

successively from left to right.

Next, we must have a form of expression whose evaluation will produce a function.

If x1, . . . , xn are variables and r is an expression, then λ(x1, . . . , xn). r is a lambda

expression, whose formal parameters are x1, . . . , xn and whose body is r. (The parentheses

may be omitted if there is only one formal parameter.) The evaluation of a lambda expression

with n formal parameters always terminates and always produces a function of n arguments.

To describe this function, we must specify what will happen when it is applied to its

arguments.

Suppose that f is the function obtained by evaluating λ(x1, . . . , xn). r in an environment

e. Then the application of f to the arguments a1, . . . , an will cause the evaluation of the

body r in the environment that is the extension of e that binds each xi to the corresponding

ai. If this evaluation produces a value, then the value becomes the result of the application

of f .

The key point is that the environment in which the body is evaluated during application is

an extension of the earlier environment in which the lambda expression was evaluated (rather

than the more recent environment in which the application takes place). As a consequence, if

a lambda expression contains global variables (i.e., variables that are not formal parameters),

its evaluation in different environments can produce different functions. For example, the

lambda expression λx. x + y can produce an incrementing function, an identity function

(for the integers), or a decrementing function, when evaluated in environments that bind y

to the values 1, 0, or −1 respectively.

Nowadays, it is generally accepted that this behavior of lambda expressions and environ-

ments is a basic characteristic of a well-designed higher-order language. Its importance is

that it permits functional data to depend upon the partial results of a program.

Having introduced application and lambda expressions, we may now clarify the distinc-

tion between call by value and call by name. Consider the evaluation of an application

expression r0(r1, . . . , rn) in an environment ea, and suppose that the value of the oper-

ator r0 is a function f that was originally created by evaluating the lambda expression

λ(x1, . . . , xn). rλ in an environment eλ. (Possibly this lambda expression is r0 itself, but

more generally r0 may be a non-lambda expression whose functional value was created

368 REYNOLDS

earlier in the computation.) When call by value is used, the following steps will occur

during the evaluation of the application expression:

1. r0 is evaluated in the environment ea to obtain the function value f .

2. r1, . . . , rn are evaluated in the environment ea to obtain arguments a1, . . . , an.

3. rλ is evaluated in the extension of eλ that binds each xi to the corresponding ai, to

obtain the value of the application expression.

When call by name is used, the same expressions are evaluated in the same environments.

But the evaluations of the operands r1, . . . , rn will occur at a later time and may occur a

different number of times. Specifically, instead of being evaluated before step (3), each

operand ri is repeatedly evaluated during step (3), each time that its value ai is actually

used (as a function to be applied, a Boolean value determining a branch, or an argument of

a primitive operation).

At first sight, since the evaluation of the same expression in the same environment al-

ways produces the same effect, it would appear that the result of a program in a purely

applicative language should be unaffected by changing the order of application (although

it is evident that the repeated evaluation of operands occurring with call by name can be

grossly inefficient). But this overlooks the possibility that “repeatedly” may mean “never”.

During step (3) of the evaluation of r0(r1, . . . , rn), it may happen that certain arguments

ai are never used, so that the corresponding operands ri will never be evaluated under call

by name. Now suppose that the evaluation of one of these ri never terminates (or gives an

error stop). Then the evaluation of the original application expression will terminate under

call by name but not call by value. In brief, changing the order of application can affect the

value of an application expression when the function being applied is independent of some

of its arguments and the corresponding operands are nonterminating.

(In ALGOL the distinction between call by value and call by name also involves a change

in “coercion conventions”. However, this change is irrelevant in the absence of assignment.)

In the defined language, we will consider only the use of call by value, but in the defin-

ing language we will consider both orders of application. In particular, we will inquire

whether the above-described situation occurs in our interpreters, so that changing the order

of application in the defining language can affect the meaning of the defined language.

We now introduce some additional kinds of expressions. If rp, rc and ra are expressions,

then if rp then rc else ra is a simple conditional expression, whose premiss is rp, whose

conclusion is rc, and whose alternative is ra. The evaluation of a conditional expression

in an environment e begins with the evaluation of its premiss rp in the same environment.

Then, depending upon whether the value of the premiss is true or false, the value of the

conditional expression is obtained by evaluating either the conclusion rc or the alternative

ra in e. Any other value of the premiss causes an error stop.

It is also convenient to use a LISP-like notation for “multiple” conditional expressions.

If rp1, . . . , rpn and rc1, . . . , rcn are expressions, then

(rp1 → rc1, rp2,→ rc2, . . . , rpn → rcn)

is a multiple conditional expression, with the same meaning as the following sequence of

simple conditional expressions:

DEFINITIONAL INTERPRETERS 369

if rp1 then rc1 else if rp2 then rc2 else · · · if rpn then rcn else error.

Next, we introduce a form of expression (due to Landin [7]) that is analogous to the block

in ALGOL. If x1, . . . , xn are variables, and r1, . . . , rn and rb are expressions, then

let x1 = r1 and · · · and xn = rn in rb

is a let expression, whose declared variables are x1, . . . , xn, whose declaring expressions

are r1, . . . , rn, and whose body is rb. (We will call each pair xi = ri a declaration.) The

evaluation of a let expression in an environment e begins with the evaluation of its declaring

expressions ri in the same environment. Then the value of the let expression is obtained by

evaluating its body rb in the environment that is the extension of e that binds each declared

variable xi to the value of the corresponding declaring expression ri.

It should be noted that the extended environment only affects the evaluation of the body,

not the declaring expressions. For example, in an environment that binds x to 4, the value

of let x = x+1 and y = x−1 in x×y is 15. As a consequence, let expressions cannot be

used (at least directly) to define recursive functions. One might expect, for instance, that

let f = λx. if x = 0 then 1 else x × f(x − 1) in · · ·

would create an extended environment in which f was bound to a recursive function (for

computing the factorial). But in fact, the occurrence of f inside the declaring expression

will not “feel” the binding of f to the value of the declaring expression, so that the resulting

function will not call itself recursively.

To overcome this problem, we introduce a second kind of block-like expression. If

x1, . . . , xn are variables, ℓ1, . . . , ℓn are lambda expressions, and rb is an expression, then

letrec x1 = ℓ1 and · · · and xn = ℓn in rb

is a recursive let expression, whose declared variables are x1, . . . , xn, whose declaring

expressions are ℓ1, . . . , ℓn, and whose body is rb. The value of a recursive let expression

in an environment e is obtained by evaluating its body in an environment e′ which satisfies

the following property: e′ is the extension of e that binds each declared variable xi to the

function obtained by evaluating the corresponding declaring lambda expression ℓi in the

environment e′.

There is a circularity in the property “e′ is the . . . in the environment e′” that is char-

acteristic of recursion, and that prevents this property from being an explicit definition of

e′. To be rigorous, we would have to show that there actually exists an environment that

satisfies this property, and also deal with the possibility that this environment might not be

unique. The mathematical techniques needed to achieve this rigor are beyond the scope

of this paper [22, 12, 13, 14, 15]. However, we will eventually derive an interpreter that

defines recursive let expressions more explicitly.

(It is possible to generalize recursive let expressions by allowing arbitrary declaring

expressions. We have chosen not to do so, since the generalization would considerably

complicate some of the definitional interpreters, and is not unique.)

To maintain generality, we have avoided specifying the set of data that can occur as the

result of expression evaluation (beyond asserting that this set should contain functions and

370 REYNOLDS

the Boolean values true and false). However, it is evident that our language must contain

basic (i.e., built-in) operations and tests for manipulating this data. For example, if integers

are to occur as data, we will need at least an incrementing operation and a test for integer

equality. More likely, we will want all of the usual arithmetic operations and tests. If some

form of structured data is to be used, we will need operations for constructing and analyzing

the structures, and tests for classifying them.

Regardless of the specific nature of the data, there are three ways to introduce basic

operations and tests into our applicative language:

1. We may introduce constants denoting the basic functions (whose application will per-

form the basic operations and tests).

2. We may introduce predefined variables denoting the basic functions. These variables

differ from constants in that the programmer can redefine them with his own decla-

rations. They are specified by introducing an initial environment, to be used for the

evaluation of the entire program, that binds the predefined variables to their functional

values.

3. We may introduce special expressions whose evaluation will perform the basic oper-

ations and tests. Since this approach is used in most programming languages (and in

mathematical notation), we will frequently use the common forms of arithmetic and

Boolean expressions without explanation.

3. The Defined Language

Although our defining language will use all of the features described in the previous section,

along with appropriate basic operations and tests, the defined language will be considerably

more limited, in order to avoid complications that would be out of place in an introductory

paper. Specifically:

1. Functions will be limited to a single argument. Thus all applicative expressions will

have a single operand, and all lambda expressions will have a single formal parameter.

2. Only call by value will be used.

3. Only simple conditional expressions will be used.

4. Nonrecursive let expressions will be excluded.

5. All recursive let expressions will contain a single declaration.

6. Values will be integers, booleans, and functions. The only basic operations and tests

will be functions for incrementing integers and for testing integer equality, denoted by

the predefined variables succ and equal, respectively.

The reader may accept an assurance that these limitations will eliminate a variety of

tedious complications without evading any intellectually significant problems. Indeed,

with slight exceptions, the eliminated features can be regarded as syntactic sugar, i.e., they

can be defined as abbreviations for expressions in the restricted language [7, 4].

DEFINITIONAL INTERPRETERS 371

4. Abstract Syntax

We now turn our attention to the defining language. To permit the writing of interpreters, the

values used in the defining language must include expressions of the defined language. At

first sight, this suggests that we should use character strings as values denoting expressions,

but this approach would enmesh us in questions of grammar and parsing that are beyond the

scope of this paper. (An excellent review of these matters is contained in Reference [23].)

Instead, we use the approach of abstract syntax, originally suggested by McCarthy [24].

In this approach, it is assumed that programs are “really” abstract, hierarchically structured

data objects, and that the character strings that one actually reads into the computer are

simply representations of these abstract objects (in the same sense that digit strings are

representations of integers). Thus the problems of grammar and parsing can be set aside as

“input editing”. (Of course, this does not eliminate these problems, but it separates them

clearly from semantic considerations. See, for example, Wozencraft and Evans [25].)

We are left with two closely related problems: how to define sets of abstract expressions

(and other structured data to be used by the interpreters), and how to define the basic

functions for constructing, analyzing, and classifying these objects. Both problems are

solved by introducing three forms of abstract-syntax equations. (A more elaborate defined

language would require a more complex treatment of abstract syntax, as given in Reference

[18], for example.) Within these equations, upper-case letter strings denote sets, and lower-

case letter strings denote basic functions.

Let S0, S1, . . . , Sn be upper-case letter strings and a1, . . . , an be lowercase letter strings.

Then a record equation of the form

S0 = [a1 : S1, . . . , an : Sn]

implies that:

1. S0 is a set, disjoint from any other set defined by a record equation, whose members

are records with n fields in which the value of the ith field belongs to the set Si.

(Mathematically, S0 is a disjoint set in one-to-one correspondence with the Cartesian

product S1 × · · · × Sn.)

2. Each ai (is a predefined variable which) denotes the selector function that accepts a

member of S0 and produces its ith field value.

3. Let s0 be the string obtained from S0 by lowering the case of each character. Then s0?

denotes the classifier function that tests whether its argument belong to S0, and mk-s0
denotes the constructor function of n arguments (belonging to the sets S1, . . . , Sn) that

creates a record in S0 from its field values.

For example, the record equation

APPL = [opr: EXP, opnd: EXP]

implies that an application expression (i.e., a member of APPL) is a two-field record whose

field values are both expressions (i.e., members of EXP). It also implies that opr and

opnd are selector functions that produce the first and second field values of an application

372 REYNOLDS

expression, that appl? is a classifier function that tests whether a value is an application

expression, and that mk-appl is a two-argument constructor function that constructs an

application expression from its field values. It is evident that if r1 and r2 are expressions,

opr
(

mk-appl(r1, r2)
)

= r1

opnd
(

mk-appl(r1, r2)
)

= r2,

and if appl?(r) is true,

mk-appl
(

opr(r), opnd(r)
)

= r.

The remaining forms of abstract syntax equations are the union equation:

S0 = S1 ∪ · · · ∪ Sn,

which implies that S0 is the union of sets S1, . . . , Sn, and the function equation:

S0 = S1, . . . , Sn → Sr,

which implies that S0 is the set of n-argument functions that accept arguments in S1, . . . , Sn

and produce results in Sr. (More precisely, S0 is the set of n-argument functions f with

the property that if f is applied to arguments in the sets S1, . . . , Sn, and if f terminates

without an error stop, then the result of f belongs to Sr.)

We may now use these forms of abstract syntax equations to define the principal set of

data used by our interpreters, i.e., the set EXP of expressions of the defined language:

EXP = CONST ∪ VAR ∪ APPL ∪ LAMBDA ∪ COND ∪ LETREC

APPL = [opr: EXP, opnd: EXP]

LAMBDA = [fp: VAR, body: EXP]

COND = [prem: EXP, conc: EXP, altr: EXP]

LETREC = [dvar: VAR, dexp: LAMBDA, body: EXP].

A cumbersome but fairly accurate translation into English is that an expression (i.e., a

member of EXP) is one of the following:

1. A constant (a member of CONST),

2. A variable (a member of VAR),

3. An application expression (a member of APPL), which consists of an expression called

its operator (selected by the basic function opr) and an expression called its operand

(selected by opnd),

4. A lambda expression (a member of LAMBDA), which consists of a variable called its

formal parameter (selected by fp) and an expression called its body (selected by body),

DEFINITIONAL INTERPRETERS 373

5. A conditional expression (a member of COND), which consists of an expression called

its premiss (selected by prem) and an expression called its conclusion (selected by conc)

and an expression called its alternative (selected by altr),

6. A recursive let expression (a member of LETREC), which consists of a variable called its

declared variable (selected by dvar), a lambda expression called its declaring expression

(selected by dexp), and an expression called its body (selected by body).

We have purposely left the sets CONST and VAR unspecified. For CONST, we will

assume only that there is a basic function const? which tests whether its argument is a

constant, and a basic function evcon which maps each constant into the value that it denotes.

For VAR, we will assume that there is a basic function var? which tests whether its argument

is a variable, that variables can be tested for equality (of the variables themselves, not their

values), and that two particular variables are denoted by the quoted strings “succ” and

“equal”.

We must also define the abstract syntax of two other data sets that will be used by our

interpreter. The first is the set VAL of values of the defined language:

VAL = INTEGER ∪ BOOLEAN ∪ FUNVAL

FUNVAL = VAL → VAL.

One must be careful not to confuse values in the defined and defining languages. Strictly

speaking, VAL is a subset of the values of the defining language whose members represent

the values of the defined language. However, since the variety of values provided in the

defining language is richer than in the defined language, we have been able to represent

each defined-language value by the same defining-language value. In our later interpreters

this situation will change, and it will become more evident that VAL is a set of value

representations.

Finally, we must define the set ENV of environments. Since the purpose of an environment

is to specify the value that is bound to each variable, the simplest approach is to assume

that an environment is a function from variables to values, i.e.,

ENV = VAR → VAL.

Within the various interpreters that we will present, each variable will range over some

set defined by abstract syntax equations. For clarity, we will use different variables for

different sets, as summarized in the following table:

Variable Range Variable Range

r EXP e e′ ENV

x z VAR c c′ CONT

ℓ LAMBDA m m′ m′′ MEM

a b VAL rf REF

f FUNVAL n INTEGER

(The sets CONT, MEM, and REF will be defined later.)

374 REYNOLDS

5. A Meta-Circular Interpreter

Our first interpreter is a straightforward transcription of the informal language definition

we have already given. Its central component is a function eval that produces the value of

an expression r in a environment e:

eval = λ(r, e). I.1
(

const?(r) → evcon(r), I.2

var?(r) → e(r), I.3

appl?(r) →
(

eval(opr(r), e)
)(

eval(opnd(r), e)
)

, I.4

lambda?(r) → evlambda(r, e), I.5

cond?(r) → if eval(prem(r), e) I.6

then eval(conc(r), e) else eval(altr(r), e), I.7

letrec?(r) → letrec e′ = I.8

λx. if x = dvar(r) then evlambda(dexp(r), e′) else e(x) I.9

in eval(body(r), e′)
)

I.10

evlambda = λ(ℓ, e). λa. eval
(

body(ℓ), ext(fp(ℓ), a, e)
)

I.11

ext = λ(z, a, e). λx. if x = z then a else e(x). I.12

The subsidiary function evlambda produces the value of a lambda expression ℓ in an

environment e. (We have extracted it as a separate function since it is called from two

places, in lines I.5 and I.9.) The subsidiary function ext produces the extension of an

environment e that binds the variable z to the value a. It should be noted that, in the

evaluation of a recursive let expression (lines I.8 to I.10), the circularity in the definition of

the extended environment e′ is handled by making e′ a recursive function. (However, it is

a rather unusual recursive function which, instead of calling itself, calls another function

evlambda, to which it provides itself as an argument.)

The function eval does not define the meaning of the predefined variables. For this

purpose, we introduce the “main” function interpret, which causes a complete program r

to be evaluated in an initial environment initenv that maps each predefined variable into the

corresponding basic function:

interpret = λr. eval(r, initenv) I.13

initenv = λx.
(

x = “succ” → λa. succ(a),
. . .

I.14

x = “equal” → λa. λb. equal(a, b)
)

. . .
. I.15

In the last line we have used a trick called Currying (after the logician H. Curry) to

solve the problem of introducing a binary operation into a language where all functions

must accept a single argument. (The referee comments that although “Currying” is tastier,

“Schönfinkeling” might be more accurate.) In the defined language, equal is a function

which accepts a single argument a and returns another function, which in turn accepts a

single argument b and returns true or false depending upon whether a = b. Thus in the

defined language, one would write (equal(a))(b) instead of equal(a, b).

DEFINITIONAL INTERPRETERS 375

(Each of our interpreters will consist of a sequence of function declarations. We will

assume that these are implicitly embedded in a recursive let expression whose body is

interpret(R), where R is the program to be interpreted.)

We have coined the word “meta-circular” to indicate the basic character of this interpreter:

It defines each feature of the defined language by using the corresponding feature of the

defining language. For example, when eval is applied to an application expression (lambda

expression, conditional expression, recursive let expression) of the defined language, it

evaluates an application expression (lambda expression, conditional expression, recursive

let expression) in the defining language. Similarly, the initial environment defines the basic

functions of the defined language in terms of the same functions in the defining language.

In one sense, this situation is not undesirable. For the reader who already has a thorough

and correct understanding of the defining language, a meta-circular definition will provide

a concise and complete description of the defined language. (Of course this is a rather

vacuous accomplishment when the defined language is a subset of the defining language.)

The problem is that any misunderstandings about the defining language are likely to be

carried over to the defined language intact. For example, if we were to assume that in

the defining language, the function succ decreases an integer by one, or that a conditional

expression gives the same result when the value of its premiss is non-Boolean as when

it is false, the above interpreter would lead us to the same assumptions about the defined

language.

These particular difficulties are easily overcome; we could define functions such as succ

in terms of elementary mathematics, and we could insert explicit tests for erroneous values.

But there are three objections to meta-circularity that are much more serious:

1. The meta-circular interpreter does not shed much light on the nature of higher-order

functions. For this purpose, we would prefer an interpreter of a higher-order defined

language that was written in a first-order defining language.

2. Changing the order of application used in the defining language induces a similar change

in the defined language. To see this, suppose that eval is applied to an application

expression r0(r1) of the defined language. Then the result of eval will be obtained by

evaluating the application expression (line I.4)

(

eval(r0, e)
)(

eval(r1, e)
)

in the defining language. If call by value is used in the defining language, then eval(r1, e)
will be evaluated before the functional value of eval(r0, e) is applied. But evaluating

eval(r1, e) interprets the evaluation of r1, and applying the value of eval(r0, e) interprets

the application of the value of r0. Thus in terms of the defined language, r1 will be

evaluated before the value of r0 is applied, i.e., call by value will be used in the defined

language.

On the other hand, if call by name is used in the defining language, then the application

of the functional value of eval(r0, e) will begin as soon as eval(r0, e) has been evaluated,

and the operand eval(r1, e) will only be evaluated when and if the function being applied

depends upon its value. In terms of the defined language, the application of the value of

r0 will begin as soon as r0 has been evaluated, and the operand r1 will only be evaluated

376 REYNOLDS

when and if the function being applied depends upon its value, i.e., call by name will

be used in the defined language.

3. Suppose we wish to extend the defined language by introducing the imperative features

of labels and jumps (including jumps out of blocks). As far as is known, it is impossible

to extend the meta-circular definition straightforwardly to accommodate these features

(without introducing similar features into the defining language).

In the following sections we will develop transformations of the meta-circular interpreter

that will meet the first two of these objections. Then we will find that the transformation

designed to meet the second objection also meets the third.

It should be emphasized that, although these transformations are motivated by their ap-

plication to interpreters, they are actually applicable to any program written in the defining

language, and their validity depends entirely upon the properties of the defining language.

6. Elimination of Higher-Order Functions

Our first task is to modify the meta-circular interpreter so that none of the functions that

comprise this interpreter accept arguments or produce results that are functions. An exam-

ination of the abstract syntax shows that this goal will be met if we can replace the two sets

FUNVAL and ENV by sets of values that are not functions. Specifically, the new members

of these sets will be records that represent functions.

We first consider the set FUNVAL. Since the new members of this set are to be records

rather than functions, we can no longer apply these members directly to arguments. Instead

we will introduce a new function apply that will “interpret” the new members of FUNVAL.

Specifically, if fnew is a record in FUNVAL that represents a function fold and if a is any

member of VAL, then apply(fnew, a) will produce the same result as fold(a). Assuming

for the moment that we will be able to define apply, we must replace each application of

a member of FUNVAL (to an argument a) by an application of apply (to the member of

FUNVAL and the argument a). In fact, the only such application occurs in line I.4, which

must become

appl?(r) → apply
(

eval(opr(r), e), eval(opnd(r), e)
)

. I.4′

To decide upon the form of the new members of FUNVAL, we recall that whenever a

function is obtained by evaluating a lambda expression, the function will be determined

by two items of information: (1) the lambda expression itself, and (2) the values that were

bound to the global variables of the lambda expression at the time of its evaluation. It is

evident that these items of information will be sufficient to represent the function. This

suggests that the new set FUNVAL should be a union of disjoint sets of records, one set

for each lambda expression whose value belonged to the old FUNVAL, and that the fields

of each record should contain values of the global variables of the corresponding lambda

expression.

In fact, the meta-circular interpreter contains four lambda expressions (indicated by solid

underlining) that produce members of FUNVAL. The following table gives their locations

and global variables, and the equations defining the new sets of records that will represent

DEFINITIONAL INTERPRETERS 377

their values. (The connotations of the set and selector names we have chosen will become

apparent when we discuss the role of these entities in the interpretation of the defined

language.)

Location Global Variables New Record Equation

I.11 ℓ e CLOSR = [lam: LAMBDA, en: ENV]

I.14 none SC = []

I.15 (outer) none EQ1 = []

I.15 (inner) a EQ2 = [arg1: VAL]

Thus the new set FUNVAL will be

FUNVAL = CLOSR ∪ SC ∪ EQ1 ∪ EQ2,

and the overall structure of apply will be:

apply = λ(f, a).
(

closr?(f) → · · · ,

sc?(f) → · · · ,

eq1?(f) → · · · ,

eq2?(f) → · · ·

)

.

Our remaining task is to replace each of the four solidly underlined lambda expressions

by appropriate record-creation operations, and to insert expressions in the branches of apply

that will interpret the corresponding records. The lambda expression in line I.11 must be

replaced by an expression that creates a CLOSR-record containing the value of the global

variables ℓ and e:

evlambda = λ(ℓ, e). mk-closr(ℓ, e). I.11′

Now apply(f, a) must produce the result of applying the function represented by f to

the argument a. When f is a CLOSR-record, this result may be obtained by evaluating the

body

eval
(

body(ℓ), ext(fp(ℓ), a, e)
)

of the replaced lambda expression in an appropriate environment. This environment must

bind the formal parameter a of the replaced lambda expression to the value of a and must bind

the global variables ℓ and e of the lambda expression to the same value as the environment

in which the CLOSR-record f was created. Since the latter values are stored in the fields

of f , we have:

apply = λ(f, a).
(

closr?(f) → let a = a and ℓ = lam(f) and e = en(f)

in eval
(

body(ℓ), ext(fp(ℓ), a, e)
)

,

. . .
)

.

378 REYNOLDS

(In this particular case, but not in general, the declaration a = a is unnecessary, since the

formal parameter of the replaced lambda expression and the second formal parameter of

apply are the same variable. From now on, we will omit such vacuous declarations.)

A similar treatment (somewhat simplified since there are no global variables) of the

lambda expression in I.14 and the outer lambda expression in I.15 gives:

initenv = λx.
(

x = “succ” → mk-sc(),
. . .

I.14′

x = “equal” → mk-eq1()
)

. . .
I.15′

and

apply = λ(f, a).
(

closr?(f) → let ℓ = lam(f) and e = en(f)

in eval
(

body(ℓ), ext(fp(ℓ), a, e)
)

,

sc?(f) → succ(a),

eq1?(f) → λb. equal(a, b),

eq2?(f) → · · ·

)

.

Finally, we must replace the lambda expression that originally occurred as the inner

expression in I.15. Although we have already moved this expression into the body of apply

(since it was the body of a previously replaced lambda expression), the same basic treatment

can be applied to the new occurrence, giving:

apply = λ(f, a).
(

closr?(f) → let ℓ = lam(f) and e = en(f)

in eval
(

body(ℓ), ext(fp(ℓ), a, e)
)

,

sc?(f) → succ(a),

eq1?(f) → mk-eq2(a),

eq2?(f) → let b = a and a = arg1(f) in equal(a, b)
)

.

(Note that the declaration relating formal parameters is not vacuous in this case.)

The entire transformation that converts FUNVAL from a set of functions to a set of records

has been informally justified by appealing to an understanding of the defining language,

without regard to the meaning or use of the particular program being transformed. But now

it is illuminating to examine the different kinds of records in FUNVAL in terms of their

role in the interpretation of the defined language. The records in the set CLOSR represent

functional values that are produced by evaluating the lambda expressions occurring in the

defined language programs. They are equivalent to the objects called FUNARG triplets

in LISP and closures in the work of Landin [7]. The unique records in the one-element

sets SC and EQ1 represent the basic functions succ and equal. Finally, the records in EQ2

represent the functions that are created by applying equal to one argument.

A similar transformation can be used to “defunctionalize” the set ENV of environments.

To interpret the new members of ENV, we will introduce a interpretive function get, with

the property that if enew represents an environment eold and x is a member of VAR, then

DEFINITIONAL INTERPRETERS 379

get(enew, x) = eold(x). Applications of get must be inserted at the three points (in lines

I.3, I.9, and I.12) in the interpreter where environments are applied to variables:

var?(r) → get(e, r), I.3′

...

λx. if x = dvar(r) then evlambda(dexp(r), e′) else get(e, x) I.9′

...

ext = λ(z, a, e). λx. if x = z then a else get(e, x). I.12′

Next, there are three lambda expressions that produce environments; they are indicated by

broken underlining which we have carefully preserved during the previous transformations.

The following table gives their locations and global variables, and the equations defining

the new sets of records that will represent their values:

Location Global Variables New Record Equation

I.14′-15′ none INIT = []

I.12′ z a e SIMP = [bvar: VAR, bval: VAL, old: ENV]

I.9′ r e e′ REC = [letx: LETREC, old: ENV, new: ENV]

Thus the new set of environment representations is:

ENV = INIT ∪ SIMP ∪ REC.

Replacement of the three environment-producing lambda expressions gives:

letrec?(r) → letrec e′ = mk-rec(r, e, e′) · · · I.8-9′′

...

ext = λ(z, a, e). mk-simp(z, a, e) I.12′′

...

initenv = mk-init(), I.14′′-15′′

and the environment-interpreting function is:

get = λ(e, x).
(

init?(e) →
(

x = “succ” → mk-sc(), x = “equal” → mk-eq1()
)

,

simp?(e) → let z = bvar(e) and a = bval(e) and e = old(e)

in if x = z then a else get(e, x),

rec?(e) → let r = letx(e) and e = old(e) and e′ = new(e)

in if x = dvar(r) then evlambda(dexp(r), e′) else get(e, x)
)

.

But now we are faced with a new problem. By eliminating the lambda expression in I.9′,

we have created a recursive let expression

380 REYNOLDS

letrec e′ = mk-rec(r, e, e′) · · ·

that violates the structure of the defining language, since its declaring subexpression is no

longer a lambda expression. However, there is still an obvious intuitive interpretation of

this illicit construction: it binds e′ to a “cyclic” record, whose last field is (a pointer to) the

record itself.

If we accept this interpretation, then whenever e is a member of REC, we will have

new(e) = e. This allows us to replace the only occurrence of new(e) by e, so that the

penultimate line of get becomes:

rec?(e) → let r = letx(e) and e = old(e) and e′ = e · · · .

But now our program no longer contains any references to the cyclic new fields, so that

these fields can be deleted from the records in REC. Thus the record equation for REC is

reduced to:

REC = [letx: LETREC, old: ENV],

and the offending recursive let expression becomes:

letrec?(r) → let e′ = mk-rec(r, e) · · · . I.8′-9′′′

At this point, once we have collected the bits and pieces produced by the various trans-

formations, we will have obtained an interpreter that no longer contains any higher-order

functions. However, it is convenient to make a few simplications:

1. let expressions can be eliminated by substituting the declaring expressions for each

occurrence of the corresponding declared variables in the body.

2. Line I.11′ can be eliminated by replacing occurrences of evlambda by mk-closr.

3. Line I.12′′ can be eliminated by replacing occurrences of ext by mk-simp.

4. Lines I.14′′-15′′ can be eliminated by replacing occurrences of initenv by mk-init().

Thus we obtain our second interpreter:

FUNVAL = CLOSR ∪ SC ∪ EQ1 ∪ EQ2

CLOSR = [lam: LAMBDA, en: ENV]

SC = []

EQ1 = []

EQ2 = [arg1: VAL]

ENV = INIT ∪ SIMP ∪ REC

INIT = []

SIMP = [bvar: VAR, bval: VAL, old: ENV]

REC = [letx: LETREC, old: ENV]

DEFINITIONAL INTERPRETERS 381

interpret = λr. eval
(

r, mk-init()
)

II.1

eval = λ(r, e). II.2
(

const?(r) → evcon(r), II.3

var?(r) → get(e, r), II.4

appl?(r) → apply
(

eval(opr(r), e), eval(opnd(r), e)
)

, II.5

lambda?(r) → mk-closr(r, e), II.6

cond?(r) → if eval(prem(r), e) II.7

then eval(conc(r), e) else eval(altr(r), e), II.8

letrec?(r) → eval(body(r), mk-rec(r, e))
)

II.9

apply = λ(f, a). II.10
(

closr?(f) → II.11

eval
(

body(lam(f)), mk-simp(fp(lam(f)), a, en(f))
)

, II.12

sc?(f) → succ(a), II.13

eq1?(f) → mk-eq2(a), II.14

eq2?(f) → equal(arg1(f), a)
)

II.15

get = λ(e, x). II.16
(

init?(e) →
(

x = “succ” → mk-sc(), x = “equal” → mk-eq1()
)

, II.17

simp?(e) → if x = bvar(e) then bval(e) else get(old(e), x), II.18

rec?(e) → if x = dvar(letx(e)) II.19

then mk-closr(dexp(letx(e)), e) else get(old(e), x)
)

. II.20

Just as with FUNVAL, we may examine the different kinds of records in ENV with regard

to their role in the interpretation of the defined language. The unique record in INIT has

no subfields, while the records in SIMP and REC each have one field (selected by old) that

is another member of ENV. Thus environments in our second interpreter are linear lists (in

which each element specifies the binding of a single variable), and the unique record in

INIT serves as the empty list.

It is easily seen that get(e, x) searches such a list to find the binding of the variable x.

When get encounters a record in SIMP, it compares x with the bvar field, and if a match

occurs, it returns the value stored in the bval field. When get encounters a record in REC,

it compares x with dvar(letx(e)) (the declared variable of the recursive let expression

that created the binding), and if a match occurs, it returns the value obtained by evaluating

dexp(letx(e)) (the declaring subexpression of the same recursive let expression) in the

environment e. The fact that e includes the very binding that is being “looked up” reflects

the essential recursive characteristic that the declaring subexpression should “feel” the effect

of the declaration in which it is embedded. When get encounters the empty list, it compares

x with each of the predefined variables, and if a match is found, it returns the appropriate

value.

The definition of get reveals the consequences of our restricting recursive let expressions

by requiring that their declaring subexpressions should be lambda expressions. Because of

this restriction, the declaring subexpressions are always evaluated by the trivial operation

of forming a closure. Therefore, the function get always terminates, since it never calls any

other recursive function, and can never call itself more times than the length of the list that

382 REYNOLDS

it is searching. (On the other hand, if we had permitted arbitrary declaring subexpressions,

line II.20 would contain eval(dexp(letx(e)), e) instead of mk-closr(dexp(letx(e)), e).
This seemingly slight modification would convert get into a function that might run on

forever, as for example, when looking up the variable k in an environment created by the

defined-language construction letrec k = k + 1 in · · · .)

The second interpreter is similar in style, and in many details, to McCarthy’s definition of

LISP [1]. The main differences arise from our insistence upon FUNARG binding, the use

of recursive let expressions instead of label expressions, and the use of predefined variables

instead of variables with flagged property lists.

7. Continuations

The transition from the meta-circular interpreter to our second interpreter has not elimi-

nated order-of-application dependence. It can easily be seen that a change in the order of

application used in the defining-language expression (in II.5)

apply
(

eval(opr(r), e), eval(opnd(r), e)
)

will cause a similar change for all application expressions of the defined language.

To eliminate this dependence, we must first identify the circumstances under which an

arbitrary program in the defining language will be affected by the order of application. The

essential effect of switching from call by value to call by name is to postpone the evaluation

of the operands of application expressions (and declaring subexpressions of let expressions),

and to alter the number of times these operands are evaluated. We have already seen that in

a purely applicative language, the only way in which this change can affect the meaning of

a program is to avoid the evaluation of a nonterminating operand. Now suppose we define

an expression to be serious if there is any possibility that its evaluation might not terminate.

Then a sufficient condition for order-of-application independence is that a program should

contain no serious operands or declaring expressions.

Next, suppose that we can divide the functions that may be applied by our program into

serious functions, whose application may sometimes run on forever, and trivial functions,

whose application will always terminate. (Of course, it is well-known that one cannot

effectively decide whether an arbitrary function will always terminate, but one can still

establish this classification in a “fail-safe” manner, i.e., classify a function as serious unless

it can be shown to terminate for all arguments.) Then an expression will only be serious

if its evaluation can cause the application of a serious function, and a program will be

independent of order-of-application if no operand or declaring expression can cause such

an application.

At first sight, this condition appears to be so restrictive that it could not be met in a

nontrivial program. As can be seen with a little thought, the condition implies that whenever

some function calls a serious function, the calling function must return the same result as

the called function, without performing any further computation. But any function that

calls a serious function must be serious itself. Thus by induction, as soon as any serious

function returns a result, every function must immediately return the same result, which

must therefore be the final result of the entire program.

DEFINITIONAL INTERPRETERS 383

Nevertheless, there is a method for transforming an arbitrary program into one that meets

our apparently restrictive condition. The underlying idea has appeared in a variety of

contexts [26, 27, 28], but its application to definitional interpreters is due to L. Morris

[20] and Wadsworth. Basically, one replaces each serious function fold (except the main

program) by a new serious function fnew that accepts an additional argument c called a

continuation. The continuation will be a function itself, and fnew is expected to compute

the same result as fold, apply the continuation to this result, and then return the result of

the continuation, i.e.,

fnew(x1, . . . , xn, c) = c
(

fold(x1, . . . , xn)
)

.

This introduction of continuations provides an additional “degree of freedom” that can

be used to meet the condition of order-of-application independence. Essentially, instead

of performing further actions after a serious function has returned, one embeds the further

actions in the continuation that is passed to the serious function.

To transform our second interpreter, we must first classify its functions. Since the defined

language contains expressions and functions whose evaluation and application may never

terminate, the defining-language functions eval and apply are serious and must be altered

to accept continuations. On the other hand, since we have seen that get always terminates,

it is trivial and will not be altered. (Note that this situation would change if the defined

language permitted recursive let expressions with arbitrary declaring subexpressions.)

Both eval and apply produce results in the set VAL, so that the arguments of continua-

tions will belong to this set. The result of a continuation will always be the value of the

entire program being interpreted, which will also belong to the set VAL. Thus the set of

continuations is:

CONT = VAL → VAL.

(In a more complicated interpreter in which different serious functions produced different

kinds of results, we would introduce different kinds of continuations.)

The overall form of our transformed interpreter will be:

interpret = λr. eval(r, mk-init(), λa. a) II.1′

eval = λ(r, e, c). · · · II.2′

apply = λ(f, a, c). · · · II.10′

get = same as in Interpreter II. II.16–20

Note that the “main level” call of eval by interpret provides an identity function as the

initial continuation.

We must now alter each branch of eval and apply to apply the continuation c to the

former results of these functions. In lines II.3, 4, 6, 13, 14, and 15, the branches evaluate

expressions which are not serious, and which are therefore permissible operands. Thus in

these cases, we may simply apply the continuation c to each expression:

384 REYNOLDS

eval = λ(r, e, c). II.2′
(

const?(r) → c(evcon(r)), II.3′

var?(r) → c(get(e, r)), II.4′

...

lambda?(r) → c(mk-closr(r, e)), . . .
)

II.6′

apply = λ(f, a, c).
(

. . . , II.10′

sc?(f) → c(succ(a)), II.13′

eq1?(f) → c(mk-eq2(a)), II.14′

eq2?(f) → c(equal(arg1(f), a))
)

. II.15′

In lines II.9 and II.12, the branches evaluate expressions that are serious themselves

but contain no serious operands. By themselves, these expressions are permissible, but

they must not be used as operands in applications of the continuation. The solution is

straightforward; instead of applying the continuation c to the result of eval, we pass c as an

argument to eval, i.e., we “instruct” eval to apply c before returning its result:

letrec?(r) → eval(body(r), mk-rec(r, e), c)
)

II.9′

...
(

closr?(f) → II.11′

eval
(

body(lam(f)), mk-simp(fp(lam(f)), a, en(f)), c
)

. II.12′

The most complex part of our transformation occurs in the branch of eval that evaluates

application expressions in line II.5. Here we must perform four serious operations:

1. Evaluate the operator.

2. Evaluate the operand.

3. Apply the value of the operator to the value of the operand.

4. Apply the continuation c to the result of (3).

Moreover, we must specify explicitly that these operations are to be done in the above order.

This will insure that the defined language uses call by value, and also that the subexpressions

of an application expression are evaluated from left to right (operator before operand).

The solution is to call eval to perform operation (1), to give this call of eval a continuation

that will call eval to perform operation (2), to give the second call of eval a continuation that

will call apply to perform (3), and to give apply a continuation (the original continuation c)

that will perform (4). Thus we have:

appl?(r) → eval
(

opr(r), e, λf. eval
(

opnd(r), e, λa. apply(f, a, c)
))

. II.5′

A similar approach handles the branch that evaluates conditional expressions in lines II.7

and 8. Here there are three serious operations to be performed successively:

DEFINITIONAL INTERPRETERS 385

1. Evaluate the premiss.

2. Evaluate the conclusion or the alternative, depending on the result of (1).

3. Apply the continuation c to the result of (2).

The transformed branch is:

cond?(r) → eval
(

prem(r), e, II.7′

λb. if b then eval(conc(r), e, c) else eval(altr(r), e, c)
)

. II.8′

Combining the scattered pieces of our transformed interpreter, we have:

interpret = λr. eval(r, mk-init(), λa. a) II.1′

eval = λ(r, e, c). II.2′
(

const?(r) → c(evcon(r)), II.3′

var?(r) → c(get(e, r)), II.4′

appl?(r) → eval
(

opr(r), e, λf. eval
(

opnd(r), e, λa. apply(f, a, c)
))

, II.5′

lambda?(r) → c(mk-closr(r, e)), II.6′

cond?(r) → eval
(

prem(r), e, II.7′

λb. if b then eval(conc(r), e, c) else eval(altr(r), e, c)
)

, II.8′

letrec?(r) → eval(body(r), mk-rec(r, e), c)
)

II.9′

apply = λ(f, a, c). II.10′
(

closr?(f) → II.11′

eval
(

body(lam(f)), mk-simp(fp(lam(f)), a, en(f)), c
)

, II.12′

sc?(f) → c(succ(a)), II.13′

eq1?(f) → c(mk-eq2(a)), II.14′

eq2?(f) → c(equal(arg1(f), a))
)

II.15′

get = same as in Interpreter II. II.16–20

At this stage, since continuations are functional arguments, we have achieved order-of-

application independence at the price of re-introducing higher-order functions. Fortunately,

we can now “defunctionalize” the set CONT in the same way as FUNVAL and ENV. To

interpret the new members of CONT we introduce a function cont such that if cnew represents

the continuation cold and a is a member of VAL then cont(cnew, a) = cold(a). The

application of cont must be introduced at each point in eval and apply where a continuation

is applied to a value, i.e., in lines II.3′, 4′, 6′, 13′, 14′, and 15′.

There are four lambda expressions, indicated by solid underlining, that create continu-

ations. The following table gives their locations and global variables, and the equations

defining the new sets of records that will represent their values:

386 REYNOLDS

Location Global Variables New Record Equation

II.1′ none FIN = []

II.5′ (outer) r e c EVOPN = [ap: APPL, en: ENV, next: CONT]

II.5′ (inner) f c APFUN = [fun: VAL, next: CONT]

II.8′ r e c BRANCH = [cn: COND, en: ENV, next: CONT]

By replacing these lambda expressions by record-creation operations and moving their

bodies into the new function cont (within let expressions that rebind their formal parameters

and global variables appropriately), we obtain a third interpreter, which is independent of

order-of-application and does not use higher-order functions:

CONT = FIN ∪ EVOPN ∪ APFUN ∪ BRANCH

FIN = []

EVOPN = [ap: APPL, en: ENV, next: CONT]

APFUN = [fun: VAL, next: CONT]

BRANCH = [cn: COND, en: ENV, next: CONT]

FUNVAL, ENV, etc. = same as in Interpreter II.

interpret = λr. eval(r, mk-init(), mk-fin())

eval = λ(r, e, c).
(

const?(r) → cont(c, evcon(r)),

var?(r) → cont(c, get(e, r)),

appl?(r) → eval(opr(r), e, mk-evopn(r, e, c)),

lambda?(r) → cont(c, mk-closr(r, e)),

cond?(r) → eval(prem(r), e, mk-branch(r, e, c)),

letrec?(r) → eval(body(r), mk-rec(r, e), c)
)

III

apply = λ(f, a, c).
(

closr?(f) →

eval
(

body(lam(f)), mk-simp(fp(lam(f)), a, en(f)), c
)

,

sc?(f) → cont(c, succ(a)),

eq1?(f) → cont(c, mk-eq2(a)),

eq2?(f) → cont
(

c, equal(arg1(f), a)
))

cont = λ(c, a).
(

fin?(c) → a,

evopn?(c) → let f = a and r = ap(c) and e = en(c) and c = next(c)

in eval(opnd(r), e, mk-apfun(f, c)),

apfun?(c) → let f = fun(c) and c = next(c) in apply(f, a, c),

branch?(c) → let b = a and r = cn(c) and e = en(c) and c = next(c)

in if b then eval(conc(r), e, c) else eval(altr(r), e, c)
)

get = same as in Interpreter II.

DEFINITIONAL INTERPRETERS 387

From their abstract syntax, it is evident that continuations in our third interpreter are linear

lists, with the unique record in FIN acting as the empty list, and the next fields in the other

records acting as link fields. In effect, a continuation is a list of instructions to be interpreted

by the function cont. Each instruction accepts a “current value” (the second argument of

cont) and produces a new value that will be given to the next instruction. The following list

gives approximate meanings for each type of instruction:

FIN: The current value is the final value of the program. Halt.

EVOPN: The current value is the value of an operator. Evaluate the operand of the appli-

cation expression in the ap field, using the environment in the en field. Then obtain a

new value by applying the current value to the value of the operand.

APFUN: The current value is the value of an operand. Obtain a new value by applying the

function stored in the fun field to the current value.

BRANCH: The current value is the value of a premiss. If it is true (false) obtain a new

value by evaluating the conclusion (alternative) of the conditional expression stored in

the cn field, using the environment in the en field.

Each of the three serious functions, eval, apply, and cont, does a branch on the form of

its first argument, performs trivial operations such as field selection, record creation, and

environment lookup, and then calls another serious function. Thus our third interpreter

is actually a state-transition machine, whose states each consist of the name of a serious

function plus a list of its arguments.

This interpreter is similar in style to Landin’s SECD machine [7], though there is consid-

erable difference in detailed mechanisms. (Very roughly, one can construct the continuation

by merging Landin’s stack and control and concatenating this merged stack with the dump.)

8. Continuations with Higher-Order Functions

In transforming Interpreter I into Interpreter III, we have moved from a concise, abstract

definition to a more complex machine-like one. If clarity consists of the avoidance of

subtle characteristics of the defining language, then Interpreter III is certainly clearer than

Interpreter I. But if clarity consists of conciseness and the absence of unnecessary com-

plexity, then the reverse is true. The machine-like character of Interpreter III includes a

variety of “cogs and wheels” that are quite arbitrary, i.e., one can easily construct equivalent

interpreters (such as the SECD machine) with different cogs and wheels.

In fact, these “cogs and wheels” were introduced when we defunctionalized the sets

FUNVAL, ENV, and CONT, since we replaced the functions in these sets by representations

that were correct, but not unique. Had we chosen different representations, we would have

obtained an equivalent but quite different interpreter.

This suggests the desirability of retaining the use of higher-order functions, providing

these entities can be given a mathematically rigorous definition that is independent of any

388 REYNOLDS

specific representation. Fortunately, such a definition has recently been provided by D.

Scott’s new theory of computation [12, 13, 14, 15], which is based on concepts of lattice

theory and topology. (The central technical problem that Scott has solved is to define

functions that are not only higher-order, but also typeless, so that any function may be

applied to any other function, including itself.) Although a description of this work would

be beyond the scope of this paper, we may summarize its main implication for definitional

interpreters: Scott has developed a mathematical model of the lambda calculus, which is

thereby a model for a purely applicative higher-order defining language. But the defining

language modelled by Scott uses call by name rather than call by value. (In terms of the

lambda calculus, it uses normal order of evaluation.) Thus to apply Scott’s work to a defined

language that uses call by value, we need a definitional interpreter that retains higher-order

functions but is order-of-application independent.

An obvious approach to this goal is to introduce continuations directly into the meta-

circular interpreter. At first sight, this appears to be straightforward. Referring back to

Interpreter I, we see that the function eval is obviously serious, while evlambda, ext and

initenv are trivial. (evlambda is trivial since the evaluation of lambda expressions always

terminates.) Apparently eval is the only function that must accept continuations.

But when we transform the branch of eval that evaluates application expressions, the

construction described in the previous section seems to give:

appl?(r) → eval
(

opr(r), e, λf. eval
(

opnd(r), e, λa. c(f(a))
))

.

Unfortunately, the subexpression c(f(a)) is not independent of the order-of-application,

since the evaluation of the operand f(a) may never terminate, while the function c may be

independent of its argument.

The difficulty is that the class of serious functions must include every potentially nonter-

minating function that may be applied during the execution of the interpreter; in addition

to eval, this class contains the members of the set FUNVAL of defined-language functional

values. Thus we must modify the functions in FUNVAL to accept continuations:

FUNVAL = VAL, CONT → VAL,

replacing each function fold by an fnew such that fnew(a, c) = c(fold(a)). This allows

us to replace the order-dependent expression c(f(a)) by the order-independent expression

f(a, c). Of course, we must add continuations as an extra formal parameter to each lambda

expression that creates a member of FUNVAL.

(A similar modification of the functions in ENV is unnecessary, since it can be shown that

the functions in this set always terminate. Just as with get, this depends on the exclusion of

recursive let expressions with arbitrary declaring subexpressions.)

Once the necessity of altering FUNVAL has been realized, the transformation of Inter-

preter I follows the basic lines described in the previous section. We omit the details and

state the final result:

DEFINITIONAL INTERPRETERS 389

VAL = INTEGER ∪ BOOLEAN ∪ FUNVAL

FUNVAL = VAL, CONT → VAL

ENV = VAR → VAL

CONT = VAL → VAL

interpret = λr. eval(r, initenv, λa. a)

eval = λ(r, e, c).
(

const?(r) → c(evcon(r)),

var?(r) → c(e(r)),

appl?(r) → eval
(

opr(r), e, λf. eval(opnd(r), e, λa. f(a, c))
)

,

lambda?(r) → c(evlambda(r, e)), IV

cond?(r) → eval
(

prem(r), e,

λb. if b then eval(conc(r), e, c) else eval(altr(r), e, c)
)

,

letrec?(r) → letrec e′ =

λx. if x = dvar(r) then evlambda(dexp(r), e′) else e(x)

in eval(body(r), e′, c)
)

evlambda = λ(ℓ, e). λ(a, c). eval
(

body(ℓ), ext(fp(ℓ), a, e), c
)

ext = λ(z, a, e). λx. if x = z then a else e(x)

initenv = λx.
(

x = “succ” → λ(a, c). c(succ(a)),

x = “equal” → λ(a, c). c
(

λ(b, c′). c′(equal(a, b))
))

.

This is basically the form of interpreter devised by L. Morris [20] and Wadsworth. It is

almost as concise as the meta-circular interpreter, yet it offers the advantages of order-of-

application independence and, as we will see in the next section, extensibility to accommo-

date imperative control features.

(The zealous reader may wish to verify that defunctionalization and the introduction of

continuations are commutative, i.e., by replacing FUNVAL, ENV, and CONT by appropriate

nonfunctional representations, one can transform Interpreter IV into Interpreter III.)

9. Escape Expressions

We now turn to the problem of adding imperative features to the defined language (while

keeping the defining language purely applicative). These features may be divided into two

classes:

1. Imperative control mechanisms, e.g., statement sequencing, labels and jumps.

2. Assignment.

We will first introduce control mechanisms and then consider assignment.

At first sight, this order of presentation seems facetious. In a language without assignment,

it seems pointless to jump to a label, since there is no significant way for the part of the

computation before the jump to influence the part afterwards. However, in Reference [29],

Landin introduced an imperative control mechanism that is more general than labels and

390 REYNOLDS

jumps, and that significantly enhances the power of a language without assignment. The

specific mechanism that he introduced was called a J-operator, but in this paper we will

develop a slightly simpler mechanism called an escape expression.

If (in the defined language) x is a variable and r is an expression, then

escape x in r

is an escape expression, whose escape variable is x and whose body is r. The evaluation

of an escape expression in an environment e proceeds as follows:

1. The body r is evaluated in the environment that is the extension of e that binds x to a

function called the escape function.

2. If the escape function is never applied during the evaluation of r, then the value of r

becomes the value of the escape expression.

3. If the escape function is applied to an argument a, then the evaluation of the body r is

aborted, and a immediately becomes the value of the escape expression.

Essentially, an escape function is a kind of label, and its application is a kind of jump. The

greater generality lies in the ability to pass arguments while jumping.

(Landin’s J-operator can be defined in terms of the escape expression by regarding let g =
J λx. r1 in r0 as an abbreviation for escape h in let g = λx. h(r1) in r0, where h is

a new variable not occurring in r0 or r1. Conversely, one can regard escape g in r as an

abbreviation for let g = J λx. x in r.)

In order to extend our interpreters to handle escape expressions, we begin by extending

the abstract syntax of expressions appropriately:

EXP = . . . ∪ ESCP

ESCP = [escv: VAR, body: EXP].

It is evident that in each interpreter we must add a branch to eval that evaluates the new

kind of expression.

First consider Interpreter IV. Since an escape expression is evaluated by evaluating its

body in an extended environment that binds the escape variable to the escape function, and

since the escape function must be represented by a member of the set FUNVAL = VAL,

CONT → VAL, we have

eval = λ(r, e, c).
(

. . . ,

escp?(r) → eval
(

body(r), ext(escv(r), λ(a, c′). . . . , e), c
))

,

where the value of λ(a, c′). . . . must be the member of FUNVAL representing the escape

function.

DEFINITIONAL INTERPRETERS 391

Since eval is a serious function, its result, which is obtained by applying the continuation

c to the value of the escape expression, must be the final result of the entire program being

interpreted. This means that c itself must be a function that will accept the value of the

escape expression and carry out the interpretation of the remainder of the program. But the

member of FUNVAL representing the escape function is also serious, and must therefore

also produce the final result of the entire program. Thus to abort the evaluation of the body

and treat the argument a as the value of the escape expression, it is only necessary for the

escape function ignore its own continuation c′, and to apply the higher-level continuation c

to a. Thus we have:

eval = λ(r, e, c).
(

. . . ,

escp?(r) → eval
(

body(r), ext(escv(r), λ(a, c′). c(a), e), c
))

.

The extension of Interpreter III is essentially similar. In this case, we must add to the set

FUNVAL a new kind of record that represents escape functions:

FUNVAL = . . . ∪ ESCF

ESCF = [cn: CONT].

These records are created in the new branch of eval:

eval = λ(r, e, c).
(

. . . ,

escp?(r) → eval
(

body(r), mk-simp(escv(r), mk-escf (c), e), c
))

,

and are interpreted by a new branch of apply:

apply = λ(f, a, c).
(

. . . ,

escf?(f) → cont(cn(f), a)
)

.

From the viewpoint of this interpreter, it is clear that the escape expression is a signif-

icant extension of the defined language, since it introduces the possibility of embedding

continuations in values.

(The reader should be warned that either of the above interpreters is a more precise

definition of the escape expression than the informal English description given beforehand.

For example, it is possible that the evaluation of the body of an escape expression may

not cause the application of the escape function, but may produce the escape function (or

some function that can call the escape function) as its value. It is difficult to infer the

consequences of such a situation from our informal description, but it is precisely defined

by either of the interpreters. In fact, the possibility that an escape function may propagate

outside of the expression that created it is a powerful facility that can be used to construct

control-flow mechanisms such as coroutines and nondeterministic algorithms.)

When we consider Interpreters I and II, we find an entirely different situation. The ability

to “jump” by switching continuations is no longer possible. An escape function must still be

represented by a member of FUNVAL, but now this implies that, if the function terminates

without an error stop, then its result must become the value of the application expression

that applied the function. As far as is known, there is no way to define the escape expression

392 REYNOLDS

by adding branches to Interpreter I or II (except by the “cheat” of adding imperative control

mechanisms to the defining language, as in Reference [19]). The essential problem is that

the information that was explicitly available in the continuations of Interpreters III and IV

is implicit in the recursive structure of Interpreters I and II, and in this form it cannot be

manipulated with sufficient flexibility.

We have asserted that the escape mechanism encompasses less general control mecha-

nisms such as labels and jumps. The following description outlines the way in which these

more specialized operations can be expressed in terms of the escape expression. (A more

detailed exposition is given in Reference [29].)

1. In the next section we will introduce assignment in such a way that assignments can

be executed during the evaluation of expressions. In this situation it is unnecessary to

make a semantic distinction between expressions and statements; any statement can be

regarded as an expression whose evaluation produces a dummy value.

2. A label-free sequence of statements s1; · · · ; sn can be regarded as an abbreviation for

the expression

(

· · ·

(

(λx1. . . . λxn. xn)(s1)
)

· · · (sn)
)

.

The effect is to evaluate the statements sequentially from left to right, ignoring the value

of all but the last.

3. If s0, . . . , sn are label-free statement sequences, and ℓ1, . . . , ℓn are labels, then a block

of the form

begin s0, ℓ1: s1; · · · ; ℓn: sn end

can be regarded as an abbreviation for

escape g in letrec ℓ1 = λx. g(s1; · · · ; sn) and ℓ2 = λx. g(s2; · · · ; sn)

and · · · and ℓn = λx. g(sn) in (s0; · · · ; sn)

(where g and x are new variables not occurring in the original block). The effect is

that each label denotes a function that ignores its argument, evaluates the appropriate

sequence of statements, and then escapes out of the enclosing block.

4. An expression of the form goto r can be regarded as an abbreviation for r(0), i.e., a

jump to a label becomes an application of the function denoted by the label to a dummy

argument.

10. Assignment

Although the basic concept of assignment is well understood by any competent programmer,

a surprising degree of care is needed to combine this concept with the language features

we have discussed previously. Intuitively, the notion of assignment presupposes that the

DEFINITIONAL INTERPRETERS 393

operations that are performed during the evaluation of a program will occur in a definite

temporal order. Some of these operations will assign values to “variables”. Other operations

may be affected by these assignments; specifically, an operation may depend upon the value

most recently assigned to each “variable”, which we will call the value currently possessed

by the “variable”.

This suggests that for each instant during program execution, there should be an entity

which specifies the set of “variables” that are present and the values that they currently

possess. We will call such an entity a memory, and denote the set of possible memories by

MEM.

The main subtlety is to realize that the “variables” discussed here are distinct from the

variables used in previous sections. This is necessitated by the fact that most programming

languages permit situations (such as might arise from the use of “call by address”) in which

several variables denote the same “variable”, in the sense that assignment to one of them

will change the value possessed by all. This suggests that a “variable” is actually a new

kind of object to which a variable can be bound. Henceforth, we will call these new objects

references rather than “variables”. (Other terms used commonly in the literature are L-value

and name.) We will denote the set of references by REF.

Abstractly, the nature of references and memories can be characterized by specifying an

initial memory and four functions:

initmem: Contains no references.

nextref (m): Produces a reference not contained in the memory m.

augment(m, a): Produces a memory containing the new reference nextref (m) plus the

references already in m. The new reference possesses the value a, while the remaining

references possess the same values as in m.

update(m, rf , a): Produces a memory containing the same references as m. The refer-

ence rf (assuming it is present) possesses the value a, while the remaining references

possess the same value as in m.

lookup(m, rf): Produces the value possessed by the reference rf in memory m.

A simple “implementation” can be obtained by numbering references in the order of their

creation [25]:

REF = [number: INTEGER]

MEM = [count: INTEGER, possess: INTEGER → VAL]

initmem = mk-mem(0, λn. 0)

nextref = λm. mk-ref (count(m) + 1)

augment = λ(m, a). mk-mem
(

count(m) + 1,

λn. if n = count(m) + 1 then a else (possess(m))(n)
)

update = λ(m, rf , a). mk-mem
(

count(m),

λn. if n = number(rf) then a else (possess(m))(n)
)

lookup = λ(m, rf). (possess(m))(number(rf)).

394 REYNOLDS

Our next task is to introduce memories into our interpreters. Although any of our inter-

preters could be so extended, we will only consider Interpreter IV.

It is evident that the operation of evaluating a defined-language expression will now

depend upon a memory m and will produce a (possibly) altered memory m′. Thus the

function eval will accept m as an additional argument. However, because of the use of

continuations, m′ will not be part of the result of eval. Instead, m′ will be passed on as an

additional argument to the continuation that is applied by eval to perform the remainder of

program execution.

In a similar manner, the application of a defined-language function will depend upon and

produce memories. Thus each function in the set FUNVAL will accept a memory as an

additional argument, and will also pass on a memory to its continuation.

On the other hand, there are particular kinds of expressions, specifically constants, vari-

ables, and lambda expressions, whose evaluation cannot cause assignments. For this reason,

the functions evcon and evlambda, and the functions in the set ENV, will not accept or pro-

duce memories.

These considerations lead to the following interpreter, in which memories propagate

through the various operations in a manner that correctly reflects the temporal order of

execution:

VAL = INTEGER ∪ BOOLEAN ∪ FUNVAL

FUNVAL = VAL, MEM, CONT → VAL

ENV = VAR → VAL

CONT = MEM, VAL → VAL

interpret = λr. eval(r, initenv, initmem, λ(m, a). a)

eval = λ(r, e, m, c).
(

const?(r) → c(m, evcon(r)),

var?(r) → c(m, e(r)),

appl?(r) → eval
(

opr(r), e, m,

λ(m′, f). eval(opnd(r), e, m′,

λ(m′′, a). f(a, m′′, c))
)

,

lambda?(r) → c(m, evlambda(r, e)),

cond?(r) → eval
(

prem(r), e, m,

λ(m′, b). if b then eval(conc(r), e, m′, c) else eval(altr(r), e, m′, c)
)

,

letrec?(r) → letrec e′ =

λx. if x = dvar(r) then evlambda(dexp(r), e′) else e(x)

in eval(body(r), e′, m, c),

escp?(r) → eval
(

body(r), ext(escv(r), λ(a, m′, c′). c(m′, a), e), m, c
))

evlambda = λ(ℓ, e). λ(a, m, c). eval
(

body(ℓ), ext(fp(ℓ), a, e), m, c
)

ext = λ(z, a, e). λx. if x = z then a else e(x)

initenv = λx.
(

x = “succ” → λ(a, m, c). c(m, succ(a)),

x = “equal” → λ(a, m, c). c
(

m, λ(b, m′, c′). c′(m′, equal(a, b))
))

.

DEFINITIONAL INTERPRETERS 395

At this stage, although we have “threaded” memories through the operations of our

interpreter, we have not yet introduced references, nor any operations that alter or depend

upon memories. To proceed further, however, we must distinguish between two approaches

to assignment, each of which characterizes certain programming languages.

In the “L-value” approach, in each context of the evaluation process where a value would

occur, a reference (i.e., L-value) possessing that value occurs instead. Thus, for example,

expressions evaluate to references, functional arguments and results are references, and

environments bind variables to references. (In richer languages, references would occur

instead of values in still other contexts, such as array elements.) This approach is used in the

languages PAL [3] and ISWIM [2], and in somewhat modified form (i.e., references always

occur in certain kinds of contexts, while values always occur in others) in such languages

as FORTRAN, ALGOL 60, and PL/I. Its formalization is due to Strachey [30], and is used

extensively in the Vienna definition of PL/I [18].

In the “reference” approach, references are introduced as a new kind of value, so that

either references or “normal” values can occur in any meaningful context. This approach

is used in ALGOL 68 [31], BASIL [32] and GEDANKEN [4].

The relative merits of these approaches are discussed briefly in Reference [4]. Although

either approach can be accommodated by the various styles of interpreter discussed in

this paper, we will limit ourselves to incorporating the reference approach into the above

extension of Interpreter IV. We first augment the set of values appropriately:

VAL = INTEGER ∪ BOOLEAN ∪ FUNVAL ∪ REF.

Next we introduce basic operations for creating, assigning, and evaluating references.

For simplicity, we will make these operations basic functions, denoted by the predefined

variables ref, set, and val. The following is an informal description:

ref (a): Accepts a value a and returns a new reference initialized to possess a.

(set(rf))(a): Accepts a reference rf and a value a. The value a is assigned to rf and also

returned as the result. (Because of our restriction to functions of a single argument, this

function is Curried, i.e., set accepts rf and returns a function that accepts a.)

val(rf): Accepts a reference rf and returns its currently possessed value.

To introduce these new functions into our interpreter, we extend the initial environment

as follows:

initenv = λx.
(

· · ·

x = “ref” → λ(a, m, c). c(augment(m, a), nextref (m)),

x = “set” → λ(rf , m, c). c
(

m, λ(a, m′, c′). c′(update(m′, rf , a), a)
)

,

x = “val” → λ(rf , m, c). c(m, lookup(m, rf))
)

.

The main shortcoming of the reference approach is the incessant necessity of using the

function val. This problem can be alleviated by introducing coercion conventions, as

discussed in Reference [4], that cause references to be replaced by their possessed values

in appropriate contexts. However, since these conventions can be treated as abbreviations,

they do not affect the basic structure of the definitional interpreters.

396 REYNOLDS

11. Directions Of Future Research

Within this paper we have tried to present a systematic, self-contained, and reasonably

complete description of the current state of the art of definitional interpreters. We conclude

with a brief (and hopeful) list of possible future developments:

1. It would still be very desirable to be able to define higher-order languages logically rather

than interpretively, particularly if such an approach can lead to practical correctness

proofs for programs. A major step in this direction, based on the work of Scott [12, 13,

14, 15], has been taken by R. Milner [16]. However, Milner’s work essentially treats a

language using call by name rather than call by value.

2. It should be possible to treat languages with multiprocessing features, or other features

that involve “controlled ambiguity”. An initial step is the work of the IBM Vienna

Laboratory [18], using a nondeterministic state-transition machine.

3. It should also be possible to define languages, such as ALGOL 68 [31], with a highly

refined syntactic type structure. Ideally, such a treatment should be meta-circular, in

the sense that the type structure used in the defined language should be adequate for the

defining language.

4. The conciseness of definitional interpreters makes them powerful tools for language

design, particularly when one wishes to add new capabilities to a language with a

minimum of increased complexity. Of particular interest (at least to the author) are the

problems of devising better type systems and of generalizing assignment (for example,

by permitting memories to be embedded in values.)

References

1. McCarthy, John. Recursive functions of symbolic expressions and their computation by machine, part I.

Communications of the ACM, 3(4):184–195, April 1960.

2. Landin, Peter J. The next 700 programming languages. Communications of the ACM, 9(3):157–166, March

1966.

3. Evans, Jr., Arthur. PAL – A language designed for teaching programming linguistics. In Proceedings of

23rd National ACM Conference, pages 395–403. Brandin/Systems Press, Princeton, New Jersey, 1968.

4. Reynolds, John C. GEDANKEN – A simple typeless language based on the principle of completeness and

the reference concept. Communications of the ACM, 13(5):308–319, May 1970.

5. Church, Alonzo. The Calculi of Lambda-Conversion, volume 6 of Annals of Mathematics Studies. Princeton

University Press, Princeton, New Jersey, 1941.

6. Curry, Haskell Brookes and Feys, Robert. Combinatory Logic, Volume 1. Studies in Logic and the Founda-

tions of Mathematics. North-Holland, Amsterdam, 1958. Second printing 1968.

7. Landin, Peter J. A λ-calculus approach. In Leslie Fox, editor, Advances in Programming and Non-Numerical

Computation: Proceedings of A Summer School, pages 97–141. Oxford University Computing Laboratory

and Delegacy for Extra-Mural Studies, Pergamon Press, Oxford, England, 1966.

8. Floyd, Robert W. Assigning meanings to programs. In J. T. Schwartz, editor, Mathematical Aspects of

Computer Science, volume 19 of Proceedings of Symposia in Applied Mathematics, pages 19–32, New York

City, April 5–7, 1966. American Mathematical Society, Providence, Rhode Island, 1967.

9. Manna, Zohar. The correctness of programs. Journal of Computer and System Sciences, 3(2):119–127,

May 1969.

10. Hoare, C. A. R. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–

580 and 583, October 1969. Reprinted in [11].

11. Gries, David, editor. Programming Methodology. Springer-Verlag, New York, 1978.

DEFINITIONAL INTERPRETERS 397

12. Scott, Dana S. Outline of a mathematical theory of computation. Technical Monograph PRG–2, Program-

ming Research Group, Oxford University Computing Laboratory, Oxford, England, November 1970. A

preliminary version appeared in Proceedings of the Fourth Annual Princeton Conference on Information

Sciences and Systems (1970), 169–176.

13. Scott, Dana S. Lattice theory, data types and semantics. In Randell Rustin, editor, Formal Semantics of

Programming Languages: Courant Computer Science Symposium 2, pages 65–106, New York University,

New York, September 14–16, 1970. Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

14. Scott, Dana S. Models for various type-free calculi. In Patrick Suppes, Leon Henkin, Athanase Joja,

and Gr. C. Moisil, editors, Logic, Methodology and Philosophy of Science IV: Proceedings of the Fourth

International Congress, volume 74 of Studies in Logic and the Foundations of Mathematics, pages 157–187,

Bucharest, Romania, August 29–September 4, 1971. North-Holland, Amsterdam, 1973.

15. Scott, Dana S. Continuous lattices. In F. William Lawvere, editor, Toposes, Algebraic Geometry and Logic,

volume 274 of Lecture Notes in Mathematics, Dalhousie University, Halifax, Nova Scotia, January 16–19,

1971. Springer-Verlag, Berlin, 1972.

16. Milner, Robin. Implementation and applications of Scott’s logic for computable functions. In Proceedings of

an ACM Conference on Proving Assertions about Programs, pages 1–6, Las Cruces, New Mexico, January

6–7, 1972. ACM, New York. SIGPLAN Notices Volume 7, Number 1 and SIGACT News, Number 14.

17. Burstall, Rodney M. Formal description of program structure and semantics in first order logic. In Bernard

Meltzer and Donald Michie, editors, Machine Intelligence 5, pages 79–98. Edinburgh University Press,

Edinburgh, Scotland, 1969.

18. Lucas, Peter, Lauer, Peter E., and Stigleitner, H. Method and notation for the formal definition of program-

ming languages. Technical Report TR 25.087, IBM Laboratory Vienna, June 28, 1968. Revised July 1,

1970.

19. Reynolds, John C. GEDANKEN – a simple typeless language which permits functional data structures and

coroutines. Report ANL–7621, Applied Mathematics Division, Argonne National Laboratory, Argonne,

Illinois, September 1969.

20. Morris, F. Lockwood. The next 700 formal language descriptions. Lisp and Symbolic Computation, 6(3–

4):249–257, November 1993. Original manuscript dated November 1970.

21. de Bakker, Jaco W. Semantics of programming languages. In Julius T. Tou, editor, Advances in Information

Systems Science, volume 2, chapter 3, pages 173–227. Plenum Press, New York, 1969.

22. Park, David M. R. Fixpoint induction and proofs of program properties. In Bernard Meltzer and Donald

Michie, editors, Machine Intelligence 5, pages 59–78. Edinburgh University Press, Edinburgh, 1969.

23. Feldman, Jerome and Gries, David. Translator writing systems. Communications of the ACM, 11(2):77–113,

February 1968.

24. McCarthy, John. Towards a mathematical science of computation. In Cicely M. Popplewell, editor, Infor-

mation Processing 62: Proceedings of IFIP Congress 1962, pages 21–28, Munich, August 27–September

1, 1962. North-Holland, Amsterdam, 1963.

25. Wozencraft, John M. and Evans, Jr., Arthur. Notes on programming linguistics. Technical report, Department

of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, February

1971.

26. van Wijngaarden, Adriaan . Recursive definition of syntax and semantics. In T. B. Steel, Jr., editor,

Formal Language Description Languages for Computer Programming: Proceedings of the IFIP Working

Conference on Formal Language Description Languages, pages 13–24, Baden bei Wien, Austria, September

15–18, 1964. North-Holland, Amsterdam, 1966.

27. Morris, Jr., James H. A bonus from van Wijngaarden’s device. Communications of the ACM, 15(8):773,

August 1972.

28. Fischer, Michael J. Lambda calculus schemata. In Proceedings of an ACM Conference on Proving Assertions

about Programs, pages 104–109, Las Cruces, New Mexico, January 6–7, 1972. ACM, New York.

29. Landin, Peter J. A correspondence between ALGOL 60 and Church’s lambda-notation. Communications

of the ACM, 8(2–3):89–101, 158–165, February–March 1965.

30. Barron, D.W., Buxton, John N., Hartley, D.F., Nixon, E., and Strachey, Christopher. The main features of

CPL. The Computer Journal, 6:134–143, July 1963.

31. van Wijngaarden,Adriaan, Mailloux, B.J., Peck, J.E.L., and Koster, C.H.A. Report on the algorithmic

language ALGOL 68. Numerische Mathematik, 14(2):79–218, 1969.

32. Cheatham, Jr., T.E., Fischer, Alice, and Jorrand, P. On the basis for ELF – an extensible language facility.

In 1968 Fall Joint Computer Conference, volume 33, Part Two of AFIPS Conference Proceedings, pages

937–948, San Francisco, December 9–11, 1968. Thompson Book Company, Washington, D.C.

