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than Svetlichny's, and introduce a series of suitable Bell-type inequalities for the detection of
three-way nonlocality. Numerical evidence suggests that all three-way entangled pure
quantum states can produce three-way nonlocal correlations.

BANCAL, Jean-Daniel, et al. Definitions of multipartite nonlocality. Physical Review. A, 2013,
vol. 88, no. 1

DOI : 10.1103/PhysRevA.88.014102

Available at:
http://archive-ouverte.unige.ch/unige:36527

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:36527


PHYSICAL REVIEW A 88, 014102 (2013)

Definitions of multipartite nonlocality

Jean-Daniel Bancal,1 Jonathan Barrett,2 Nicolas Gisin,3 and Stefano Pironio4

1Center for Quantum Technologies, National University of Singapore, Singapore
2Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

3Group of Applied Physics, University of Geneva, Geneva, Switzerland
4Laboratoire d’Information Quantique, Université Libre de Bruxelles, Brussels, Belgium
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In a multipartite setting, it is possible to distinguish quantum states that are genuinely n-way entangled from

those that are separable with respect to some bipartition. Similarly, the nonlocal correlations that can arise from

measurements on entangled states can be classified into those that are genuinely n-way nonlocal, and those that

are local with respect to some bipartition. Svetlichny introduced an inequality intended as a test for genuine

tripartite nonlocality. This work introduces two alternative definitions of n-way nonlocality, which we argue are

better motivated both from the point of view of the study of nature, and from the point of view of quantum

information theory. We show that these definitions are strictly weaker than Svetlichny’s, and introduce a series

of suitable Bell-type inequalities for the detection of three-way nonlocality. Numerical evidence suggests that all

three-way entangled pure quantum states can produce three-way nonlocal correlations.
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Consider two quantum systems, prepared in a joint quan-

tum state |ψ〉 and located in separate regions of space.

Suppose Alice measures one system, obtaining outcome a,

and Bob the other, obtaining outcome b. The joint outcome

probabilities can be written P (ab|XY ), where X denotes

Alice’s measurement and Y Bob’s measurement. If the

measurements are performed at spacelike separation, then

Bell’s condition of local causality [1] implies that even if

the particles have interacted in the past (or were produced

together in the same source), they are now independent.

Therefore, even if the quantum state of the two particles is

entangled, it ought to be possible to specify a more complete

description λ of the joint state of the two particles, such that,

given λ, the probabilities can be written in the form

Pλ(ab|XY ) = Pλ(a|X)Pλ(b|Y ). (1)

The state λ is conventionally referred to as a hidden state, since

it is not part of the quantum description of the experiment. Any

hidden state λ which satisfies Eq. (1) is local. If the observed

correlations P (ab|XY ) can be explained by a locally causal

theory, then they can be written

P (ab|XY ) =
∑

λ

qλPλ(a|X)Pλ(b|Y ), (2)

with qλ � 0 and
∑

λ qλ = 1. On the other hand, if correlations

P (ab|XY ) violate a Bell inequality [1], then they cannot be

written in this form. Such correlations cannot be explained

by a locally causal theory, and are referred to as nonlocal

correlations.

Quantum nonlocality is a puzzling aspect of nature, but also

an important resource for quantum information processing. An

information theoretic interpretation of quantum nonlocality

is that two separated parties who wish to simulate the

experiment with classical resources cannot do so using only

shared random data—they must also communicate with one

another. The fact that entangled quantum states can produce

nonlocal correlations enables the quantum advantage in

communication complexity problems [2], device-independent

quantum cryptography [3,4], randomness expansion [5], and

measurement-based quantum computation [6,7].

With three or more systems, qualitatively different kinds

of nonlocality can be distinguished. For definiteness, consider

the tripartite case. If correlations can be written

P (abc|XYZ) =
∑

λ

qλPλ(a|X) Pλ(b|Y ) Pλ(c|Z), (3)

with 0 � qλ � 1 and
∑

λ qλ = 1, then they are local. Other-

wise they are nonlocal. But, as pointed out by Svetlichny [8],

some correlations can be written in the hybrid local-nonlocal

form,

P (abc|XYZ) =
∑

λ

qλ Pλ(ab|XY ) Pλ(c|Z)

+
∑

µ

qµ Pµ(ac|XZ) Pµ(b|Y )

+
∑

ν

qν Pν(bc|YZ)Pν(a|X), (4)

where 0 � qλ,qµ,qν � 1 and
∑

λ qλ +
∑

µ qµ +
∑

ν qν = 1.

Here, each term in the decomposition factorizes into a product

of a probability pertaining to one party’s outcome alone, and

a joint probability for the two other parties. We say that

correlations of the form (4) are S2 local. If correlations cannot

be written in this form, then a term such as Pλ(abc|XYZ) must

appear somewhere in the decomposition. Such correlations

are often said to exhibit genuine three-way nonlocality,

although we will refer to this as Svetlichny nonlocality.

Svetlichny introduced an inequality, a violation of which

implies Svetlichny nonlocality. Svetlichny’s inequality can

be violated by appropriate measurements on a Greenberger-

Horne-Zeilinger (GHZ) or W state [9].

In further work, Seevinck and Svetlichny [10] and, inde-

pendently, Collins et al. [11] generalized the tripartite notion

of Svetlichny nonlocality to n parties. In both Refs. [10] and

[11], an inequality is derived that detects n-partite Svetlichny

nonlocality. See also Refs. [9,12,13].

014102-11050-2947/2013/88(1)/014102(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.014102


BRIEF REPORTS PHYSICAL REVIEW A 88, 014102 (2013)

The present Brief Report considers two alternative defini-

tions of genuine multipartite nonlocality, which are different

from Svetlichny’s. We argue that these definitions are better

motivated, both physically and from the point of view of

information theory. We show that the alternative definitions

are strictly weaker than Svetlichny’s and describe a Bell

inequality such that its violation is sufficient for genuine

three-way nonlocality according to both alternative defini-

tions. Numerical evidence suggests that any pure, three-way

entangled quantum state can produce correlations that violate

this inequality. On the other hand, there exist pure, three-way

entangled quantum states for which we have not been able to

find any measurements giving rise to Svetlichny nonlocality.

Different kinds of nonlocality. Consider again the case of

bipartite correlations. There are various ways in which a hidden

state λ might fail to be local. Let Pλ(a|XY ) =
∑

b Pλ(ab|XY )

be the marginal probability for Alice to obtain outcome a

when the measurement choices are X and Y , and similarly

let Pλ(b|XY ) =
∑

a Pλ(ab|XY ) be the probability for Bob to

obtain b. Suppose that λ satisfies

Pλ(a|XY ) = Pλ(a|XY ′) ∀a,X,Y,Y ′, (5)

Pλ(b|XY ) = Pλ(b|X′Y ) ∀b,Y,X,X′. (6)

In this case, if Alice and Bob are in possession of two particles,

which they know to be in the hidden state λ, then even if

λ is nonlocal, observing her own outcome gives Alice no

information about Bob’s measurement choice. This is because

the marginal probabilities for a are independent of Bob’s

choice. Hence Bob cannot send signals to Alice by varying

his measurement choice. Similarly, Alice cannot send signals

to Bob. Such a λ is nonsignaling.

If Eq. (5) is satisfied but Eq. (6) is violated, then Bob’s

outcome gives him at least some information about Alice’s

measurement choice, hence Alice can send signals to Bob.

The hidden state λ is one-way signaling. Similarly, if Eq. (6)

is satisfied but Eq. (5) is violated. If Eqs. (5) and (6) are both

violated then λ is two-way signaling.

So far, this discussion has followed many treatments of

quantum nonlocality in that no attention has been given to

the timing of Alice’s and Bob’s measurements. It has been

assumed—naively—that the measurements can unproblem-

atically be regarded as simultaneous, or alternatively that

the probabilities Pλ(ab|XY ) are independent of the timing

of the measurements. With one-way and two-way signaling

states, this can quickly cause problems. Suppose that a

hidden state λ is one-way signaling from Alice to Bob.

Then the outcome probabilities for a measurement of Bob’s

depend on which measurement setting Alice chooses. If Bob

obtains his measurement outcome before Alice chooses her

setting (with respect to some frame) then this implies some

kind of backwards causality (with respect to that frame).

Worse, Fig. 1 shows how signaling hidden states can lead to

grandfather-style paradoxes, where no consistent assignment

of probabilities to outcomes is possible.

One solution to these problems would be to restrict attention

to models that involve only nonsignaling hidden states. But a

more general solution is to introduce a notion of a hidden
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FIG. 1. (Color online) Let X,Y,a,b ∈ {0,1}. The particle pair

labeled 1 is independent from the pair labeled 2. The joint state λ1

is such that if a1 = Y1, then Pλ1
(a1b1|X1Y1) = 0, whereas λ2 is such

that if b2 �= X2, then Pλ2
(a2b2|X2Y2) = 0. Consistent predictions are

impossible if measurement choices are as shown.

state, according to which the outcome probabilities can vary

according to the timing of the measurements. In a fully general

treatment, λ will be time dependent, or alternatively, λ will

refer to the state of the particles at some fixed time (perhaps

just after creation) in some fixed frame, and the probabilities

for outcomes depend on the exact timing of the measurements.

For now, let us keep things simple. Consider a hidden

state λ such that the probabilities do not depend on the exact

timing of measurements, but do depend on the time ordering,

where this ordering is determined with respect to a fixed

background frame. If Alice performs X before Bob performs

Y , the probabilities are given by

P A<B
λ (ab|XY ). (7)

If Bob performs Y before Alice performs X, the correlations

may be different with probabilities given by

P B<A
λ (ab|XY ). (8)

Paradoxes such as that of Fig. 1 are avoided if (1) the

fixed background frame determining the time ordering of

measurements is the same for all particle pairs, and (2) the

correlations P A<B
λ (ab|XY ) and P B<A

λ (ab|XY ) are at most

one-way signaling, with P A<B
λ (ab|XY ) satisfying Eq. (5) and

P B<A
λ (ab|XY ) satisfying Eq. (6). An explicit model depending

on the time ordering of measurements and satisfying the above

two conditions is given by Bohm’s theory [14].

Given a set of bipartite quantum correlations P (ab|XY ),

these considerations about the time ordering of measurements

do not make any difference to the basic question of whether or

not P (ab|XY ) is nonlocal, which is perhaps why time ordering

is not often emphasized. In the case of three or more observers,

however, it makes an important difference to the classification

of different kinds of multipartite nonlocality.

Genuine three-way nonlocality. In Eq. (4), the probabilities

are assumed to be independent of the time ordering of measure-

ments, and no constraint is placed on the bipartite correlations

appearing in each term. So Pλ(ab|XY ), for example, can be

one-way or two-way signaling. But, as shown above, problems

can arise with signaling hidden states, including paradoxes that

can result if measurement outcomes can be used to determine

014102-2
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measurement choices on other particles. One remedy is to

consider only nonsignaling hidden states. This suggests the

following definition of genuine tripartite nonlocality.

Definition 1. Suppose that P (abc|XYZ) can be written in

the form

P (abc|xyz) =
∑

λ

qλPλ(ab|xy)Pλ(c|z)

+
∑

µ

qµPµ(ac|xz)Pµ(b|y)

+
∑

ν

qνPν(bc|yz)Pν(a|x), (9)

where the bipartite terms are nonsignaling, satisfying condi-

tions of the form (5) and (6). Then the correlations are NS2

local. Otherwise, we say that they are genuinely three-way NS

nonlocal.

As we have seen, however, a more general remedy is to de-

fine hidden states in such a way that correlations can depend on

the time ordering of the measurements. It is convenient to write

P
TAB

λ (ab|XY ) for a set of time-order-dependent correlations,

so that P
TAB

λ (ab|XY ) = P A<B
λ (ab|XY ) when Alice measures

before Bob and P
TAB

λ (ab|XY ) = P B<A
λ (ab|XY ) when Bob

measures before Alice. As always, assume that P A<B
λ (ab|XY )

and P B<A
λ (ab|XY ) are at most one-way signaling, satisfying

Eqs. (5) and (6), respectively.

Definition 2. Suppose that P (abc|XYZ) can be written in

the form

P (abc|xyz) =
∑

λ

qλP
TAB

λ (ab|xy)Pλ(c|z)

+
∑

µ

qµP TAC

µ (ac|xz)Pλ(b|y)

+
∑

ν

qνP
TBC

ν (bc|yz)Pλ(a|x). (10)

Then the correlations are T2 local. Otherwise they are gen-

uinely three-way nonlocal.

Interpretation from the point of view of quantum infor-
mation. It is useful to contrast Definition 2 and Svetlichny’s

one from the perspective of classical simulations of quantum

correlations in term of shared random data and communication

(for examples of such a model, see Ref. [15]). Svetlichny

models naturally correspond to simulation models where

all parties receive their input (the measurement they are to

simulate) at the same time, then there are several rounds of

communication between subsets of the parties, and, finally, all

parties produce an output (the measurement outcome). Models

of the form (10), on the other hand, correspond to simulation

models where inputs are given to the parties in a sequence,

where the order in the sequence is arbitrary and not fixed in

advance. On receiving an input, a party must produce an output

immediately and may send a communication to a subset of the

other parties. This means that although a party’s output can

depend on communications already received, it cannot depend

on communications from parties later in the sequence.

The distinction between both types of models is crucial for

the simulation of quantum correlations in applications such

as measurement-based computation where measurements

are performed adaptively, that is, where the choice of which

measurement to perform on a particular system may depend

on the measurement outcome that was obtained from another

system. In this context, Svetlichny-type simulation models in

which all inputs are given at the same time are not relevant.

Finally, models based on the definition (9) can be inter-

preted as simulation models where classical communication is

replaced by no-signaling resources [16] [such as Popescu-

Rohrlich (PR) boxes [17]]. They are well adapted to the

characterization of nonlocality for cryptographic applications

secure against postquantum adversaries [3].

Characterization and detection of three-way nonlocality.
Let NS2 be the set of all tripartite correlations that are NS2

local, according to Definition 1. Similarly, let T2 be the set of

correlations that are T2 local according to Definition 2, and

S2 the set of S2 local correlations according to the Svetlichny

definition. Given these sets, we have the following results

(see details in the Supplemental Material [18]). First,

the different definitions of multipartite nonlocality are

inequivalent, as one can show the following theorem:

Theorem 1. NS2 ⊂ T2 ⊂ S2 where the inclusion is strict.

Proof. See Appendix C in the Supplemental Material [18].

Note that, contrarily to S2 models, both NS2 and T2 models

can only reproduce no-signaling correlations (this is true on

average for T2 models even though they may involve one-

way signaling between the parties at the hidden level; see

Appendix B in the Supplemental Material [18]). Second, the

NS2,T2 and S2 sets can be characterized efficiently:

Theorem 2. Given correlations P (abc|XYZ) with a finite

number of measurement settings and outputs, it is a linear

programming problem to determine whether they belong to

the sets NS2, T2 or S2.

Proof. See Appendix A in the Supplemental Material [18].

Furthermore, we have an inequality for the NS2 and T2 sets:

Theorem 3. If correlations P (abc|XYZ) are NS2 or T2 local,

then

I = −2P (A1B1) − 2P (B1C1) − 2P (A1C1)

−P (A0B0C1) − P (A0B1C0) − P (A1B0C0)

+ 2P (A1B1C0) + 2P (A1B0C1) + 2P (A0B1C1)

+ 2P (A1B1C1) � 0, (11)

where we have introduced the notation P (AiBj ) ≡
P (a = 0,b = 0|X = i,Y = j ), P (AiBjCk) ≡ P (a = 0,b =
0,c = 0|X = i,Y = j,Z = k).

Proof. See Appendix B in the Supplemental Material [18].

Just like Svetlichny introduced an inequality, violation of

which implies Svetlichny nonlocality, Eq. (11) is a Bell-type

inequality, a violation of which implies that correlations

are genuinely three-way nonlocal (hence also three-way NS

nonlocal). In Appendix D (see Supplemental Material [18]) we

provide also a complete characterization of the NS2 polytope

in the presence of binary inputs and outputs. Inequality (11)

belongs to the family number 6 in this list, and is thus a tight

constraint on the NS2 as well as the T2 sets.

Multipartite nonlocality and noisy quantum states. It is

interesting to investigate the extent to which different quantum

states can produce each type of multipartite nonlocality.

Consider an experiment in which measurements are performed

014102-3
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TABLE I. Minimum values of the p parameter required for

the quantum states ρGHZ and ρW to exhibit genuine multipartite

nonlocality. These values were found by numerical optimization.

It is assumed that three parties each have two possible measurement

settings, each with two outcomes. If p > pNS then correlations can be

produced which are three-way NS nonlocal (see Definition 1). If p >

pT , then correlations can be produced which are three-way nonlocal

(Definition 2). If p > pS , then correlations can be produced which are

Svetlichny nonlocal. Inequalities demonstrating the different notions

of nonlocality of ρW for values of p higher than the above thresholds

are described in Appendix D in the Supplemental Material [18].

State pNS pT pS

ρGHZ 1/
√

2 1/
√

2 1/
√

2

ρW 0.8 0.82 0.92

on a tripartite quantum state, with each party having a choice

of two measurement settings, and each measurement having

two possible outcomes. Let

|GHZ〉 = 1/
√

2(|000〉 + |111〉), (12)

|W 〉 = 1/
√

3(|001〉 + |010〉 + |100〉), (13)

ρGHZ = p |GHZ〉〈GHZ| + (1 − p)I/8, (14)

ρW = p |W 〉〈W | + (1 − p)I/8, (15)

where I is the identity and 0 � p � 1. We have determined

using linear programming the minimum values of p for which

the states ρGHZ and ρW will exhibit each kind of multipartite

nonlocality. Results are summarized in Table I.

For the noisy GHZ state, it makes no difference which def-

inition is employed—three-way NS nonlocal, three-way non-

local, and Svetlichny nonlocal correlations can be generated

whenever p > 1/
√

2. In the case of the noisy W state, there is

a range of values of p for which the state is too noisy to exhibit

Svetlichny nonlocality, but can still produce correlations which

are three-way nonlocal, and similarly a range of values of p for

which the state is too noisy to exhibit three-way nonlocality,

but can still produce correlations which are three-way NS

nonlocal. This again demonstrates that the different definitions

of multipartite nonlocality are strictly inequivalent.

Multipartite nonlocality and tripartite entanglement.
Finally, we conclude by presenting numerical results that

suggest that all pure tripartite entangled states are three-way

nonlocal. An arbitrary pure state of three qubits that is

genuinely tripartite entangled can always be written in the form

[19] |ψ〉 = λ0|000〉 + λ1e
φ|100〉 + λ2|101〉 + λ3|110〉 +

λ4|111〉, with φ ∈ [0,π ], λi � 0,
∑

i λ
2
i = 1, λ0 �= 0,

λ2 + λ4 �= 0, and λ3 + λ4 �= 0. We tested inequality (11) for

85 = 32 768 states of this form obtained by considering eight

possible values for five independent variables parametrizing

these states. After numerical optimization of the measurement

settings, a violation was found in each case. We thus have the

following conjecture:

Conjecture 1. All genuinely tripartite entangled states can,

with a suitable choice of measurements, generate genuinely

three-way nonlocal correlations.

Note, however, that we were not able to find any violation

of the Svetlichny type for the following tripartite entangled

state, |ψ〉 =
√

3
2

|000〉 +
√

3
4

|110〉 + 1
4
|111〉 [though it violates

inequality (11)]. Our search included the 1087 different

Svetlichny inequalities introduced in Ref. [20], as well as a

linear programming search over the Svetlichny polytope with

two measurements settings per party.

Note added in proof. While the present Brief Report

formally makes public the alternative definitions of multi-

partite nonlocality presented here, they have already been

communicated privately to close collaborators. In particular,

Definitions 1 and 2 were used in Refs. [21–23]. Note also the

independent work [24] where Definition 2 is introduced and

motivated from a different (though related) perspective.
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