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DEFINITIONS OF SOBOLEV CLASSES

ON METRIC SPACES

by B. FRANCHI, P. HAJLASZ and P. KOSKELA

1. Introduction.

Let f2 C R7'1 be an open set. By the classical Sobolev space W1^^) we

mean the Banach space of those p-summable functions whose distributional

gradients are p-summable as well. The space is equipped with the norm

|H|wi,p = \\u\\p + ||V^||p. Here and in what follows by || • ||p we denote the
Lp norm.

There are several ways to generalize the notion of the Sobolev space

to the setting of metric spaces equipped with a Borel measure. We describe

next two definitions of the Sobolev space on a metric space (5, d) equipped

with a Borel masure ^ that is finite on every ball. Following [II], for

1 < p < oo, we define the Sobolev space M^^^S.d.fJi) as the set of all

u e LP(S) for which there exists 0 ^ g € LP(S) such that the inequality

(1) W-u(y)\<^d(x^y)(g{x)+g(y))
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holds /x-a.e. Following [6], [13], [14], by P^^d,^) we denote the set of

all functions u C LP{S) such that there exist 0 < g C LP{S), C > 0 and
A > 1 so that the (l,p)-Poincare inequality

(2) ^ \u-UB\d^i < Cr (/ gpd|.L\
J B \J\B )

1/p

holds on every ball B in 5', where r is the radius of B, UB is the average

value of u on -0, and ^ denotes the average value of the integral.

When S = R71, fi is the Lebesgue measure, d the Euclidean distance

and p > 1, the two different approaches both result in the classical Sobolev

space W1^^), see [II], [19]. However i f p = l , then the space M1^ is

different than TV1'1, see [12].

In the Euclidean setting inequality (2) holds with g = |Vn|, while

inequality (1) holds with g being the maximal function of |Vn|.

In this paper we compare these two different definitions in the setting

of metric spaces and we show that Poincare inequality for pairs of functions

and upper gradients plays a key role in the subject: see Section 2 below

for the definitions. More precisely, we shall use a fairly new self-improving

property of the right hand side of a Poincare inequality (see Theorem 2),
instead of the known self-improving property of the left hand side (see

Lemma 1).

The central examples of metric spaces we have in mind are given

by the so-called Carnot-Carat heodory metrics associated with a family of

Lipschitz continuous vector fields. As there is a natural way to define the

Sobolev classes in terms of a family of vector fields identified with first order

differential operators, a crucial test for our definitions of Sobolev spaces as-

sociated with a metric is to check compatibility with this definition. It has

been inquired by N. Garofalo and R. Strichartz whether the Sobolev space

defined by the pointwise inequality (1) above for the Carnot-Caratheodory

metric associated with a system of vector fields satisfying Hormander^s con-

dition coincides with the space obtained as the closure of smooth functions

in the Sobolev norm generated by the family of vector fields. Theorems 9

(see the discussion preceding this result) and 10 and Corollary 11 below

give a complete answer to this question. Some partial results have been

obtained earlier in [6], [II], [14], [18], [19].

Notation. — Our notation is fairly standard. By L-Lipschitz func-

tions we mean Lipschitz functions with Lipschitz constant L. The average
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value will be denoted by

UB = / u dfJi = ——— / u d^
JB ^1\B) JB

The space L^ is the space of functions ZAsummable on every ball. The

characteristic function of a set E will be denoted by \E' Balls will be
denoted by B. The ball concentric with B and with the radius A times
that of B will be denoted by \B. General constants will be denoted by (7.

The value of C may change even in the same string of estimates. By Borel
measure we shall mean nonnegative Borel-regular measure.

In the remaining part of this paper we assume that S is a metric
space of homogeneous type, i.e. such that the measure ji is Borel, finite on
every ball, and that it satisfies a doubling condition. This means that there

exists a constant Cd > 0 such that for every ball B

/^(2B) < C^(B).

Acknowledgement. — The authors wish to thank Juha Heinonen for
his comments.

2. Sobolev spaces on a metric space.

Let u € L^(S) and g : S —^ [0, oo] be Borel measurable functions.
We say that the pair (u^g) satisfies a (g, p)-Poincare inequality, p,q > 1, if
there exist C > 0 and A ^ 1 such that the inequality

^
\ 1/9 / ( \ I/P

(3) {u-UB^d^} <Cr / ^^
3 / \J\B )

holds on every ball B where r is the radius of B. We do not put any
integrability conditions upon g here, so that we can take for example g = oo.

By P^ we denote the set of all functions u € L^ such that there
exist O ^ ^ G L ^ C ^ O and A >_ 1 which make the pair {u^g} satisfy the

(g,p)-Poincare inequality (3) on every ball B.

Obviously, inequality (3) with A = 1 implies (3) with A > 1. However,

in general the converse implication does not hold (i.e. A > 1 cannot be
replaced by A = 1), see [14]. However, if the metric space satisfies some

additional geometric properties, then one can replace A > 1 in (3) by A == 1

in the sense that if the pair (zA, g) satisfies (3) with A > 1 on every ball,
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then there exists a bigger constant C, such that (n, g) satisfies (3) with
A = 1 on every ball. A sufficient geometric condition for the replacement

of A > 1 by A = 1 is that bounded and closed sets are compact and the

distance between any pair of points equals the infimum of lengths of curves

joining the two points. For details, see [17], [4], Section 5, [20], [10], [13],
[14].

The following embedding theorem is due to Hajlasz and Koskela [13],

[14], Theorem 5.1 (see also [7]); however, there is a long list of related results

in the literature, that we omit here for sake of brevity: see the survey in
[14].

LEMMA 1. — Let (S,d,u,) be a metric space with p, doubling.

Assume that the pair (u, g) satisfies a (l,p)-Poincare inequality. Then there

exists qo > p such that for every 1 < q < qo the pair (u, g) satisfies a

(q,p)-Poincare inequality. The exponent qo depends only on the doubling
constant and on p.

The constants C and A for the (l,p) and (g,p)-Poincare inequalities
in the above lemma may be different.

Thus for the given range 1 < q < qo, the class P^ is the same as the
class P^. For that reason we restrict our attention to the class P1^ only.

We denote all L^-integrable functions in P^ by P15^, d, p) or simply by
P1-P(S) or by P1^.

Theorem 3.1 from [14] states that u <E M15^ p > 1, if and only if

u € LP and there exist 0 <, g e LP and 1 < q < p such that the pair (n, g)

satisfies a (1, g)-Poincare inequality. This suggests the following question: Is

it true that M^P(S, d, a) = P1'̂ , d, a) for 1 < p < oo? In the case p = 1

the answer is negative (see remark after Corollary 3). In the case p > 1 the

answer is positive provided we assume that in addition the space supports a

(1, g)-Poincare inequality for some 1 < q < p (see the definition below). We

do not know if any additional condition is necessary. The positive answer
is due to Koskela and MacManus [19].

A related question was also raised by Hajlasz and Koskela, [14]:
Is it true that if the pair (u,g) satisfies a (l.p)-Poincare inequality,

1 < p < oo, then there exists 1 < q < p such that the pair (u,g) satisfies a

(l,^)-Pomcare inequality? Note that the positive answer to that question

together with [14], Theorem 3.1, would imply M1^ = P1^. Below we give

a positive answer to the question under the same additional assumption as

before: the space supports a (l,g)-Poincare inequality for some 1 ̂  q < p.
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First we need some definitions.

Let (5, d, u) be a triple as above. Following Heinonen and Koskela [16]

we say that a Borel function g : S —> [0, oo] is an upper gradient of another

Borel function u : S —> M if for every 1-Lipschitz curve 7 : [0, T] —> S we

have

|2z(7(0))-u(7(r))|< / g^(t))dt
Jo

(remember that a curve 7 is called 1-Lipschitz if d(^(/3)^(a)) < \{3 — a\

for all 0 < a < /3 < T). Moreover, we stress the fact that we could define

upper gradients using the class of rectifiable curves, due to the fact that

every rectifiable curve admits an arc-length parametrization.

We say that the space (6',d,/x) supports a (l,p)-Poincare inequality,

1 <^ p < oo, if there exist C > 0 and A ^ 1 such that if u is a continuous

function and g is an upper gradient of u, then the pair (u, g) satisfies a

(l,p)-Poincare inequality with given C and A.

One of the results of the paper reads as follows.

THEOREM 2. — Let 1 < p < oo and let the space supports a (1, q)-

Poincare inequality for some 1 < q < p with given A > 1. Let r > 1 and

assume that the pair (n, g), u € L^(S), 0 ^ g € LP(S), satisfies the family

{ ( { \l/p
(4) } \u - UB\ dp, < Cr -/- gpd^]

JB \JrB )

of Poincare inequalities on every ball B, where r denotes the radius of B.

Then there exists another constant C' > 0 such that for every ball B of

radius r

r ( f \l/q
(5) f \u-UB\du.^C'r f g^u.) .

J B \J\B )

Remarks.

1) Compare the case q = p with the discussion preceding Lemma 1.

The novelty here is that A might be smaller than T.

2) The idea of the proof is to approximate u by "convolutions". The

approximating sequence satisfies the (1, g)-Poincare inequality and passing

to the limit yields (5). Similar techniques of approximation were employed

in [22], [8], [19]. The case q = p requires new ideas.

As a corollary of Theorem 2 and [14], Theorem 3.1 we obtain the

following theorem of Koskela and MacManus [19].
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COROLLARY 3. — Let 1 < p < oo. If the space supports a (1, q)-

Poincare inequality for some 1 <: q < p, then Plfp(S, d, /^) = M15^, d, /^).

The most important example is R7'1 with the Euclidean metric | • | and

the Lebesgue measure T^71. The space supports a (1, l)-Poincare inequality
and hence

(6) P^R^, | . 1.7T1) = M15^, | • |, IT1),

for all 1 < p < oo. As we already noted both spaces coincide with IV ̂ (R^.

Later we shall generalize this result to the case p = 1 and we shall prove

that W1'1^71) = P1'1^71, | • 1,^). As W1-1 + M1'1, we shall also obtain
that P1'1 ^M1'1.

Proof of Theorem 2. — We start with a construction of an approxi-

mating sequence. Fix e > 0 and let {B^} be a covering of 6' by balls with

radii e and the property that the balls ^B^ are pairwise disjoint. Put now

BI = 2B^: the doubling property implies that there is a constant C such

that no point of 6' belongs to more than C balls Bi. Let {^} be a Lipschitz

partition of unity associated to the given family of balls i.e., ̂  ̂  = 1,

0 < ipz < 1, supp(^ C Bi and all the functions (pi are Lipschitz with the

same constant Ce~1. To this end it is enough to choose

^('̂ v '̂̂ r
\ k /

where ̂  is a smooth function, '0 = 1 on [0,1], ̂  = 0 on [3/2, oo), 0 <: ^ <, 1,

and Xi is the center of Bi for i = 1, 2 , . . . We can define now u^ = ]̂  ̂ up^ •

Then f^ \u - Ue\ dfi —^ 0 as e —^ 0 on every ball B. Indeed, this is obvious

when u is continuous and the general case follows by approximating u by

continuous functions in the L1 norm. For the following lemma, see [19],
Lemma 4.7.

LEMMA 4. — Let u be an arbitrary locally integrable function. If
d(b, d) < e, then

\u,(V}-u^o)\<Cd(b^a)h^a\

where

^^U f H^M^)^))^.
^ V4B^4B, ^ /

We do not prove this lemma. Later we shall prove a similar result

(Lemma 12), but in a different setting. The proof given there may be easily
modified to cover Lemma 4.
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As was noticed in [19], the above lemma implies that Ch^ is an upper
gradient for u^.

If the space supports a (l,g)-Poincare inequality, we conclude that
the pair (ue,h^) satisfies a (l.g)-Poincare inequality.

Assume now that the pair (u, g) satisfies the assumptions of Theo-

rem 2. It remains to prove that if we pass to the limit as e —. 0 in the

(1, <7)-Poincare inequality for (u^ he) then we arrive at the desired inequal-
ity (5).

As a direct consequence of the definition of he and the (l,j9)-Poincare
inequality for (u,g) we obtain the following result.

LEMMA 5. — If the pair (u,g) satisfies the family (4) of (l,p)-
Poincare inequalities, then

/ r \ VP
he^C^ [4- gPd^] .̂

, V4rB, /

The following lemma that seems to be of independent interest is the
main new ingredient in our argument.

LEMMA 6. — Let Y be a metric space equipped with a doubling

measure v. Let 0 < g e LP(Y), 1 ̂  p < oo, and suppose a > 1. To every
e > 0 we associate a covering {Bi}i as above. Let

/ r \ 1/P

^-E / ^ XB..
^ \JaBi /

Then limsup^o^ < Cg a.e. Moreover, for every ball B and each

1 ̂  q < P, the family {gj}^ is uniformly integrable on B and

(7) limsup / ^ dv < C f ^g dv.
£^0 J B J B

Here the constant C depends only on q and on the doubling constant.

We recall that the uniform integrability of the family {gj}e on B

means that sup^ f^ gj < oo and for every r] > 0 there exists 6 > 0 such
that if A C B, fi(A) < 6, then sup^ f^ gj < r].

Note that Theorem 2 is a direct consequence of the above two lemmas

and the fact that (u^h^) satisfies the (l.g)-Poincare inequality.

Proof of Lemma 6. — First note that limsup^o^(^) < Cg(x)

whenever a; is a Lebesgue point of ^. Indeed, if x C Bi, then aB, C
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B(x, 2(1 + a)e), and hence

/ x i / P
limsup^(rr) < limsupG y- Q9 dv\ = Cg{x).

E^ £-^0 \./B(^,2(l+cr)£) y

The constant (7 is independent of e due to the fact that both the number

of balls BI such that x e Bi and the ratio v{B(x,2(\ + a)e))/^(aBi) can

be bounded by a constant depending only on the doubling constant.

Let us show now that the family {gj}e is uniformly integrable on B.

Since the sum in the definition of g^ is locally finite, we have

^<^E(7 g^^xB.
^ \JaBi /

and hence sup^ J^ g^dv <C fy ^ dy. This and the Holder inequality imply

uniform integrability when 1 < q < p, so that we can restrict ourselves to

the case q = p. If the family failed to be uniformly integrable on B, then

there would exist 77 > 0, a sequence of sets Kn C B and a sequence En such
that

v{Kn) -^ 0 and / ^ dv > r].
JKr, n

Then we would have

(8) T] < [ g^ dy ^ CV { (f gP dv\ dv
•^n i JK^BI \J(TBi /

=C V- v{Kn^ I ^d.=A..

K^ v^ ^

Given e > 0 we can find 6 > 0 such that

u(E) <6 =^ / gp dv < e.
JE

By the doubling property, there exists a constant C ' such that ̂  \Bi <

Y^iXaBi < C ' . Fix a positive integer m and choose n so large that

v(Kn) < 6 / ( C ' m ) . Divide now the set of indices z such that Kn^Bi ^ 0 into

two classes: the class Ji consists of all those i such that y{Kn^Bi)lv{(jBi) >

1/m, whereas the class 1^ consists of all the remaining indices. We have

(
\ _ _ /.

v |j OB, j < m Y^ v(Kn H B,) = m ̂  / XB^ < mC^(Kn) < 6.
idi / zCJi i(Eli VKn

Hence

^E+E^E/ ^^+E^/ ^d.
ieii iei2 ieh •"7Bi ieh JffEti

^C'fe+i { g " d v ) .
\ m j y )
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Since we can choose an e arbitrary small and an m arbitrary large we

arrive to a contradiction with (8). This completes the proof of the uniform

integrability.

We now proceed to prove (7). Fix 1 < q < p and a ball B. It is enough

to prove that for every sequence En —> 0 for which the limit on the left hand

side of (7) exists, we have

lim [ gj dv <C [ ^ dv
n-^00 J B n J B

with some constant C depending on q and the doubling constant only. Fix

such a sequence {en}n' We need the following theorem of Dunford and

Pettis, see [1].

LEMMA 7. — Let Z be a measurable space equipped with a finite

measure v and let fn e L^(Z^v). Then the sequence {fn}n is weakly

relatively compact in L^{Z, v} if and only if the family {|/n|}n is uniformly

integrable.

Due to the above theorem we can find a subsequence of gj (also

denoted by gj ) and h 6 I^^B) such that gj -^ h weakly in ^(B). Then

due to Mazur's lemma a sequence of convex combinations of gj converges

to h a.e.

Since lim sup^_^^ <^n ^ ^9 a " e ' we conclude that h < Cgq a.e. and
hence (7) follows.

This completes the proof of Lemma 6 and hence those of Theorem 2

and Corollary 3.

In the case 1 ̂  q < p of Lemma 6 we could provide a more direct

proof. Namely we could avoid the proof of the uniform integrability of the

family {^j}e, and replace Dunford-Pettis5 theorem by the reflexivity of the

space L^9 and the fact that the sequence g^ is bounded in I^/9.

The case 1 < q < p of Lemma 6 implies Theorem 2 for 1 ̂  q < p

and hence it is sufficient for the proof of Corollary 3. The case p == q of

Lemma 6 will be used in the next section.

3. Sobolev spaces arising from vector fields.

One of the central applications of the theory of Sobolev spaces on

metric spaces concerns the theory of Sobolev spaces associated with a

family of vector fields that we describe next.
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Let X = (Xi , . . . , Xk) be a family of vector fields in ^ C ST with

real valued, locally Lipschitz continuous coefficients. One can define the

Sobolev space W^f^t)^ 1 <_ p < oo, associated with the family X as the

space of all the functions with finite norm ||'^||^i,p = |M|p 4- ||Xn||p, where

|Xn|2 = ̂  l^j'^12 and the derivatives Xju are understood in the sense of

distributions.

Another way to define the space for 1 < p < oo is to take the closure

of C°° functions in the above norm. As in the Euclidean case, the two

approaches are equivalent. This was obtained independently in [8] and [10].

The method goes, however, back to some old ideas of Friedrichs.

For the sake of simplicity, we assume from now on that ^ == M71.

It is well known that we can canonically associate with X a metric

(the so-called Carnot-Caratheodory metric, or control metric) as follows:

we say that an absolutely continuous curve 7 : [a, b] —^ W1 is admissible if

there exist measurable functions Ci(t\ a < t < 6, satisfying ̂  .̂  Cj(t)2 < 1

and 7^) = E^=i c,(t)X^(t)) a.e.

Then we can define the distance p{x,y) between x,y e W1 as the

infimum of those T > 0 for which there exists an admissible curve

7 : [0, T] -^ V with 7(0) = x, 7(T) = y . If there is no admissible curve

joining x to ^/, then we set p(x^ y ) = oo.

In general p may not be a metric, since it need not be finite. However,

in many important situations p is finite for every pair of points and hence

it is a metric: for instance, this happens when the family X satisfies

Hormander's condition (i.e., when the rank of the Lie algebra generated

by X equals n at any point) [21], or when X is a system of Grushin type

vector fields like those in [4]. In what follows we assume in addition that

the identity map induces a homeomorphism between W1 endowed with the

Euclidean topology and M71 endowed with the Carnot-Carateodory metric.

This assumption excludes pathological situations like typically Qx, x^Oy

inR2 .

To avoid misunderstandings, by B we shall denote balls with respect

to the Carnot-Caratheodory metric and we shall call them metric balls'^

Lipschitz functions with respect to p will be called metric Lipschitz.

It was proved independently by Garofalo and Nhieu [9], Theorem 1.3

and by Franchi, Serapioni and Serra Cassano [8], Proposition 2.9 that if

u is metric Lipschitz, then Xju 6 L^ for j = l , 2 , . . . , f c , where Xju

is understood in the sense of distributions. A careful examination of the
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estimates given in [8] and [9] leads, however, to a stronger result.

THEOREM 8. — Ifu is metric L-Lipschitz, then \Xu\ <, L a.e.

Proof. — By [8], [9] we know that XjU € L^ for j = 1, 2 , . . . , k.

Fix any point x where Xu{x) is defined. We can assume that |Xn(.r)| > 0,

otherwise the inequality is obvious. Since Xu = X(u — const.) we can
assume that u(x) = 0.

Let Y = ̂ =i cj^j^ where Cj = Xju{x)/\Xu{x)\ and let B(x,e) de-

notes the Euclidean ball. Since u(x) = 0, sup^ ̂  \u\ < L diamp(B(rr,£)).

Now the estimates in [8] imply that for every (p G Cg°(B{x,e))

(9) \{Yu^)\ < CL diam^B(^)) M| î

\u(z)-u{e^(-tY))- f u(z) - u(exp^(-tY)) , / , , ,
+hmsup / ————-—-^——/— \(p(z)\dz,

t^0+ JB{x,e) t

where t ̂  exp^(-tY) denotes the integral curve of —Y passing through z

at t = 0.

Note that t i—> exp^—tV) is an admissible curve and hence \u(z) —

u(exp^(-tY))\ ̂  Lp(z,exp^(-tY)) < L\t\, so that

\{Yu^}\ < (CLdiam^(B(rr,£))+L) H ^ l l ^ i .

This implies that

sup \Yu\ <, CLdia.mp(B(x,£)) + L.
B{x,e)

Note that diam^(B(.r, e)) —^ 0 as e —^ 0 (because of the assumption that the

identity map is a homeomorphism between p and the Euclidean metric),

so that, taking the limit as e —> 0, we get \Yu\ < L a.e.

In [17], D. Jerison proved that if the vector fields satisfy Hormander's

condition then the following version of the Poincare inequality holds:

/ r \ I/P / r \ I/P
(10) ( ̂  \u - u^ dx ) < Cr ( ̂  [Xu^ dx

V-B / V B /

for any 1 < p < oo. Here we integrate with respect to the Lebesgue measure.

A similar inequality for Grushin type vector fields has been obtained earlier

by Franchi and Lanconelli [5]. After those papers many other results have

been obtained, see [10] and [14] for extensive references.

We shall formulate our results in an abstract setting that does not

rely on any specific smoothness or structure assumption on X. As e.g. in
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[9], [10], [8], [14] we just assume that the vector fields are such that for

every locally metric Lipschitz function u, the pair (n, \Xu\) satisfies a kind

of (l,p)-Poincare inequality. More precisely, we assume that there is a Borel

measure /^, doubling with respect to p, A ^ 1, C > 0, and 1 < p < oo such

that for every metric ball B of radius r

r ( r \l/p
(11) +\u-u-\d^l^Cr[+\Xu\pd|l)

J B \J\B )
Note that, as we pointed out above, without loss of generality we may

assume A = 1. However, this will not play any role in our proofs.

As examples show ([14], [16]), even in the Euclidean setting it some-

times happens that a (l,p)-Poincare inequality holds for some p > 1 but

the (1, l)-Poincare inequality fails.

Let dp. = ujdx^ <jj > 0 a.e., uj C L^. We define the Sobolev spaces

Arj^IR^/^), 1 < p < oo, associated with the family of vector fields as a

completion of locally metric Lipschitz functions in the norm

IHI^OR-,/.) = IMIi^) + \\XU\\LP^Y

If 1 <^ p < oo, then every metric Lipschitz function can be approximated

by C°° functions in the Sobolev norm, so equivalently T^^R71,/^) can be

defined as the closure of C°° functions. Indeed, let u be metric Lipschitz

with compact support. Then by the argument of Friedrichs, [8], [9], the

usual convolution approximation Hg == ̂  * u satisfies Hg —->• u uniformly,

Xue —^ Xu in Lp (with respect to the Lebesgue measure) and Xue is

uniformly bounded, as we can see since

XjUe = [Xj{u * <^) - {XjU) * (pe] + {XjU) * (^.

Indeed, the last term is bounded since XjU is bounded (again by [8] and

[9]), whereas the first term can be bounded by writing it explicitly as in

the proof of Proposition 1.4 of [8]. This easily implies that Ue —>• u in
u-^-iP/mn .,\
11 X ^

K • > ^ ) '

Under some additional assumptions on fJi all the above definitions are

equivalent with the distributional definition, see [8], [9]. However in the

case of general weights it is more appropriate to define the Sobolev space

as a closure of locally metric Lipschitz functions.

Recently, N. Garofalo and R. Strichartz independently raised the

following question: does the Sobolev space H^fW1) associated with a

system of vector fields satisfying (for instance) Hormander^s condition

coincide with the Sobolev space defined using the Carnot-Caratheodory

distance as in definition (1)7
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As we have seen, even in the classical Euclidean setting the answer is

negative when q = 1, so that we assume in the question that q > 1.

If Poincare inequality (11) holds for some p > 1, then [14], Theo-

rem 3.1 implies the inclusion H^^,^) C M^Br,^) C P^Sr,/^) for

p < q < oo. Thus the question concerns the opposite inclusions.

In the following theorems we give an affirmative answer. Moreover we

give a "metric" characterization of the Sobolev space even for q = 1 which

is a more striking result. Let us start with the following abstract result.

THEOREM 9. — Let (S',d,/^) be a metric space equipped with a

doubling measure and let N be a positive integer. Suppose that there is

a linear operator which associates with each locally Lipschitz function u a

measurable function Du : S —> R^ in such a way that

1. Ifu is L-Lipschitz with L > 1, then \Du\ :< CL a.e.

2. If u is locally Lipschitz and constant in an open set f2 C S, then

Du = 0 a.e. in f^.

Let Hlfp(S) be the Banach space defined as the closure of the set of

locally Lipschitz functions with finite norm \\u\\ = \\u\\p + ||̂ ||p. Then

P^P{S) C H^P(S) for 1 < p < oo.

It seems that in general there may be a problem with the definition

of Du for a given u € Hlfp(S). Namely, suppose that Uk and Vk are two

sequences of locally Lipschitz functions such that both sequences converge

to u in LP, but Duk —^ g in L^, Dv^ —^ h in LP, g ^ h. Then (u,g) and

(iA, h) represent two different elements in H11'P(S), which means that the

gradient is not uniquely determined (for related examples, see [2], p. 91).

This makes the situation very unpleasant. Fortunately, for a reasonable

class of spaces we have the uniqueness of the gradient.

We say that the uniqueness of the gradient holds if the following

condition is satisfied: if Un is a sequence of locally Lipschitz functions such

that Un —•» 0 in LP and Du — ^ g m L P ^ then g = 0. In such a situation we

can associate a unique Du obtained by taking the limit of 'gradients' of the

approximating sequence of locally Lipschitz functions to each u e H1^^).

THEOREM 10. — Let (S^d.fi) be a metric space equipped with a

doubling measure and let N be a positive integer. Suppose that there is

a linear operator which associates with each locally Lipschitz function u a

measurable function Du : S —> R^ in such a way that
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1. Ifu is L-Lipschitz with L > 1, then \Du\ < CL a.e.

2. If u is locally Lipschitz and constant in a measurable set E C S,
then Du = 0 a.e. in E.

Let 1 < p < oo. Assume that there exist C > 0 and X ^> 1 such

that for every locally Lipschitz function u, the pair (u, \Du\) satisfies

a (l,p)-Poincare inequality with given C and X. Define ^^{S) as in

Theorem 9. Then H^P^S) = P^P(S), the uniqueness of the gradient holds

and \Du\ <, Cg a.e., whenever (u,g) satisfies the (l,p)-Pomcare inequality.

COROLLARY 11. — Assume that the system X of vector fields on

R71 is such that the identity map gives a homeomorphism between the

Carnot-Caratheodory metric p and the Euclidean metric. Let ji be doubling

with respect to the metric p and such that d^ = uj dx, uj > 0 a.e., uj C L[

Let 1 <, p < oo. Assume that there exist C > 0 and X ^ 1 such that for
every locally metric Lipschitz function u

r / r \ I/P
(12) ^ \u - u-\ d^ ^ Cr / ^ {Xu^ d^

J B \J\B )

for all metric balls. Define H^^, p) as before (completion of the space of

all locally metric Lipschitz functions). Then H^^,^) = P^lR^p,^),

the uniqueness of the gradient holds and \Xu\ < Cg whenever (n, g) satisfies

a (l,p)-Poincare inequality (with constants which may be different from C
and \ in (12)).

The assumptions of the corollary are satisfied for instance by a system

of vector fields satisfying Hormander's condition, by Grushin-type vector

fields like those in [4] or by the general vector fields considered in [10], [14].

Proof of Theorem 9. — Assume that u e P1'73 i.e., there exist
0 < g C L9 and C > 0, A ^ 1 such that the (l.p)-Poincare inequality

r ( r \l/p
-j- \u - UB\ dfi < Cr Y- ^ d^t)
J B \J\B )

holds on every ball B of radius r.

Fix e > 0 and define the covering {Bi}, the Lipschitz partition of unity

{(pi}, and Ue as in the proof of Theorem 2. First we show that u^ —> u in
LP(S) as e -^ 0.

Due to Lemma 1 there exist r > 1 and C > 0 such that

^
X VP / r \ 1/P

^-UB^d^) <Cr / gPd^]
3 / \JrB )
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on every ball B of radius r. Here the constant C is not necessarily the same
as in the first inequality.

Using the fact that the sum in the definition of Ue only has a uniformly
bounded number of nonzero terms we obtain

\u - u^ < C^^^u -UB,^ <C^\u- UB^XB^

i i

and hence

/ {u-u^d^^CV^ [ ^-UB^d^^CeY, { g p d ^ l < C E | < f ^ .
^ i JBi ^ JrBi Js

Thus Ue -^ u in LP{S) as e -> 0.

The following lemma is a variant of Lemmas 4 and 5. For the sake of
completeness we provide a proof.

LEMMA 12. — Assume that the pair (u^g) is as above. Then

/ r \ l /p

\Du,\<C^(} gPd^) XB,.
^ \J3\Bi )

Proof. — For x e S fix a ball in the covering that contains x. Denote
the ball by BQ. Then

\Du,{x)\ = \D(u, - UB,)(X)\

^ ^ \D^{X)\\UB, - UB,

i: x^Bi

<ce~l E / / \u(y)-u(z)\d^(y)d^
i-.x^^^
_ u(y)-u(z)\d^y)d^{z)

i-.xeB^13^^

^Ce^-i- \u(y)-u^\d^(y)
^3Bn^Bo

a \ i / p
^C g P d ^ ) .

\Bo /

In the proof of the first inequality we used finite additivity of D and
property 2. of D. The proof of the lemma is complete.

We claim that we can subtract a subsequence of Du^^, weakly

convergent in L^. Assume for a moment that we have already proved this
claim. We show how to complete the proof of the theorem: indeed, by

Mazur's lemma a sequence of convex combinations of u^^ is a Cauchy
sequence for the norm in the space H1^ and this sequence converges to u.
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Thus u C H1^ and Theorem 9 is proved once the claim is proved. Thus we

are left with the proof of the claim.

Assume first that p > 1. By Lemma 12, sup^ fc.\Dus\pdp, <^

C fggpda^ so that the sequence Du^ is bounded in LF and the claim fol-

lows from the reflexivity of the space. The case p = 1 requires more effort.

By Lemma 6 and Lemma 12 the family |J9n^| is uniformly integrable and

limsupy^oQ \Du^^ | < Cg. Hence, by the Dunford-Pettis theorem, we find a

function h e L^ and a subsequence of Du^^ (also denoted by Due^) that

converges weakly to h in L1 on every bounded set. Now it suffices to prove

that the given subsequence converges weakly in ^(S).

As in the last step of the proof of Lemma 6, Mazur's lemma implies

that \h\ < Cg and hence h C L1. We have to prove that for every (p € L°°,

(13) / Due^d^i—^ / h^pdii.
Js Js

We know that this property holds for (p with bounded support. By B(R)

we shall denote the ball with radius R centred at a fixed point. Fix (^ C L°°.

We have

{Du^ -H)^ <. ( (Du^ - H)tp + |H|oo { \h\
JB{R} JS\B{R)

lloo
) S I \JB{R} | JS\B{R)

+IM|oo / \D^
JS\B(R}

00 / l^«'£r

S\B{R)

The first term on the right hand side goes to 0 as n —> oo. The second term

is very small provided R is sufficiently large. To estimate the last term we

apply Lemma 12,

/ \Du^\^C (
JS\B(R} J S \

9'
)S\B{R) JS\B(R-8\£r.)

This term is very small (independently on n) provided R is large. The

estimates imply convergence (13). The proof of Theorem 9 is complete.

Proof of Theorem 10. — In the proof we shall need the following

result, see [14], Theorem 3.2.

LEMMA 13. — Assume that the pair (u^g), u G L^, 0 < g G L^,

p > 1, satisfies inequality (2) for every ball B. Then

\u(x) - u(y)\ ̂  Cd(x^y) ((M<f(^))1^ 4- (MgP{y))1/^

for almost every x,y 6 S, where Mh(x) = sup^^o f-^^ . \h\dfji is the

maximal function.
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First we prove the uniqueness of the gradient by modifying the

argument of Semmes [15]. Let Un be a sequence of locally Lipschitz

functions such that Un -^ 0 in LP and Dun -^ g in L9. We have to prove
that g = 0.

By selecting a subsequence we may assume that

(14) / (|^+i - Un^ + \DUn^ - DUn^ ) ̂  ̂  10- .̂
Js

This implies that the sequences Un and Dun converge a.e. Let Un-^-i —Un=

Vn- Since by assumption (vn, \Dvn\) satisfies the (l,p)-Poincare inequality,
Lemma 13 gives

|(^+i - Un){x) - (u^i - Un){y)\ < Cd^x.y^M^v^ (x))^

+(M|D^Q/))1/^).

Hence for £ > k > ko

|(^ - Uk){x) - (^ - Uk){y)\ < Cd(x,y) (^o(^) + 9k,(y)) ,

where
00

9k,(x)= ̂  (MID^P^))^.

n=ko

Taking the limit as £ —> oo we obtain

(15) \Uk(x) -Uk(y)\ < Cd(x^y)(g^(x) +^oQ/)).

for all k > ko and almost every x and y . Now we estimate the size of the
level sets of the function g^:

t

^n-h/.(too > Q) <. E ̂  ( (W^ p)l/p > 2^TT
n==A;o v v

_^ ^(n-fco+l)p .

< E^——^—— f ^Dvn^d^

^ ^(n-fco+l)p

^E^-^^yj^"
n=fco J s

< C'^IQ-^.

In the middle inequality we used the weak type estimate for the maximal

function, while in the last inequality we invoked (14).

Let Eko^t = {9ko > t}' Note that (15) implies that u^ s\Ek t ls

Lipschitz with Lipschitz constant Ct.

Observe now that if u is locally Lipschitz and u\p is Lipschitz with

Lipschitz constant L, then \Du\ < CL almost everywhere in F. Indeed,

u\p can be extended to a globally Lipschitz function u on 5' with Lipschitz
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constant L see [3], Section 2.10.4. Hence \Du\ ^ CL a.e. Since u - u = 0

in F, then |D(-u - u)\ = 0 a.e. in F and thus |Dn| < CL a.e. in F.

Returning to the theorem we get \Duk\ < Ct a.e. in 5' \ £^0,^ and

hence \g\ <, Ct a.e. in S \ ̂ . Thus ^{{\g\ > Ct}) < ^{Ek^t) -^ 0 as

ko —> oo. Since t > 0 can be arbitrary small we conclude that g = 0 a.e.

and the uniqueness of the gradient follows.

By Theorem 9 we know that P1^(S) C 7^ (5). The converse

inclusion follows from the definition of H1^^) and the fact that we have

a (l,p)-Poincare inequality for locally Lipschitz functions.

Thus it remains to prove that if the pair (n, g) satisfies (l,p)-Poincare
inequality, then \Du\ < Cg a.e.

As in the proof of Theorem 9 we find a sequence n^ such that u^^ —> u

in Lp and Due^ is weakly convergent in ZA Then by Mazur's lemma a

sequence of convex combinations of n^ is a Cauchy sequence in the norm
of H^P.

By Lemma 6 and Lemma 12, limsup^^ \Du^^\ <, Cg a.e. Since

convex combinations of Du^^ converge to Du in L23, we conclude that
\Du\ <, Cg a.e. This completes the proof.

Proof of Corollary 11. — According to Theorem 10, we need only

to prove the following lemma which is of independent interest.

LEMMA 14. — Assume that the system of vector fields on R71 is

such that the identity map gives a homeomorphism between the Carnot-

Caratheodory metric p and the Euclidean metric. If u is locally metric

Lipschitz and it is constant in a measurable set E, then Xu = 0 a.e. in E.

Proof. — Obviously, we may assume that u = 0 in E. Let x € E

be simultaneously a Lebesgue point of Xu and a density point of E, both
with respect to the Lebesgue measure.

Let ip e Go°°(B(0,l)), ^ ^ 0, f^(z)dz = 1, and ^(z) = e-^z/e).

Inequality (9) holds with Y replaced by any of the X/s, so that we get

(16) \{XjU^^)(x)\ < CL dmmp{B(x,e))

+Glimsup/ ^)-^(exp.(-^)) ^

t^0+ JB(X,E) I t

Now (XjU * ipe){x) —^ Xju{x) as e —^ 0, and thus it remains to show that

the right hand side of the above inequality tends to 0 as e —> 0. This is
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obviously true for the first term on the right hand side, so we are left with
the second one.

Let E}^ and E2^ denote the sets of all z e B(x,e) with u{z) -^ 0

or u(exp^(-tXj)) ̂  0 respectively. Since the integrand in (16) is bounded

by the Lipschitz constant of u in a neighborhood of x (cf. the proof of

Theorem 8), it suffices to prove that to every e > 0, there is t(e) > 0 such

that supo<^<^) \E^t\/\B(x,e)\ -^ 0 as e -^ 0 for i = 1,2. This is obvious

for i = 1, as x is a density point of E and u = 0 on E. Now it remains to

show that supo<^<^) \E2^ = o^).

Assume that t > 0 is sufficiently small. Let ^t(z) = exp^(tXj). The

inverse mapping is ^-t(z) = exp^(-tXj). By [8], p. 101, the mapping

z ^ ^t(z) is bi-Lipschitz on B(x,e}. Moreover for T > 0 small, the

Jacobian of the mapping, which is defined a.e. (by Rademacher's theorem),

satisfies J ( z , t ) = 1 + Ji(z,t), \Ji{z,t)\ < Ct for 0 < t < T, z e B(x,e),

with the constant C not depending on x and t.

Note that \E H B{x,e - e2)} = \B(x,e)\ + o(en) as e -> 0. Indeed,

\E H BQK, e - e2) | = \E H B{x, e) \ - \E n {B{x, e) \ B{x, e - e2)) |.

Now since a: is a density point of E, \E n B{x,e)\ = \B(x,e)\ + o^),

and \En(B(x^)\B(x^-£2))\ ^ \B{x,e) \ B(x^e - e^ = o(^). For

e > 0 we can find t(e) such that t(e) -^ 0 as e —^ 0 and such that

^t(B(x, £-e2)) C B{x, e) for 0 < t < t(e). Hence by the change of variables
formula

(17) |^(^nB(.r,£-£2)!^ [ l-Ct(e)=\B(x,£)\^o(£n).
JEDB{x,e-£2)

Observe now that i f ^ e ^t(Er\B(x,e-e2)), then exp^(-tXj) = ̂ -t(z) e

E H B{x,e - £2), so u{exp^(-tXj)) = 0. Hence <S>t{E H B(x,e - e2)) c

B{x,e) \ E2^, and then by (17), \E2^ = o^). This ends the proof of the

lemma and hence that for the corollary.

In the metric setting a good counterpart of the length of the gradient
would be for example

Du(x) = limsup \u(y) — u(x)\/d(y,x).
y-^x

Note that Du is an upper gradient of a given metric Lipschitz function

u. However, this operator is not linear, and thus it is not covered by the

above theorem. Thus it seems that the following modification of the above

theorem would be more suitable for the general metric setting. Because

this operator D is not linear, we cannot use Mazur's lemma to turn a
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sequence Uk convergent in Lp with Duk weakly convergent in Lp into a

Cauchy sequence in W1^. Thus we replace in the assumption that our

space is a Banach space by the property of being closed under a kind of

weak convergence.

THEOREM 15. — Let {S^d.u) be a metric space equipped with a

doubling measure. Suppose that with each locally Lipschitz function u we

can associate a nonnegative measurable function Du (called the length of

the gradient) in such a way that

1. D(u + v) < C(Du + Dv) and D(\u) < C\\\Du a.e. whenever u, v

are locally Lipschitz and \ is a real number.

2. Ifu is L-Lipschitz, then Du < CL a.e.

3. If u is locally Lipschitz and constant on an open set ^ C 5', then

Du = 0 a.e. in f2.

Assume that W1'P(S), 1 <: p < oo is a function space equipped with

a norm || • || and with the following properties:

3.1fue LP(S) is locally Lipschitz and such that Du € LP(S) then

u e W^(S) and \\u\\ ^ C{\\u\\p + \\Du\\p).

4. Ifuk e W1^ converges in Lp to w and the sequence Duk converges

weakly in L?, then w 6 W1^.

Then Plfp(S) C W1-P{S).

Because the proof is almost the same as that for Theorem 9, we leave

it to the reader.
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