
DeFlaker: Automatically Detecting Flaky Tests

Jonathan Bell1, Owolabi Legunsen2, Michael Hilton3,
Lamyaa Eloussi2, Tifany Yung2, and Darko Marinov2

1George Mason University, Fairfax, VA, USA
2University of Illinois at Urbana-Champaign, Urbana, IL, USA

3Carnegie Mellon University, Pittsburgh, PA, USA

bellj@gmu.edu,{legunse2,eloussi2,yung4,marinov}@illinois.edu,mhilton@cmu.edu

ABSTRACT

Developers often run tests to check that their latest changes to a

code repository did not break any previously working functionality.

Ideally, any new test failures would indicate regressions caused by

the latest changes. However, some test failuresmay not be due to the

latest changes but due to non-determinism in the tests, popularly

called flaky tests. The typical way to detect flaky tests is to rerun

failing tests repeatedly. Unfortunately, rerunning failing tests can

be costly and can slow down the development cycle.

We present the first extensive evaluation of rerunning failing

tests and propose a new technique, called DeFlaker, that detects

if a test failure is due to a flaky test without rerunning and with

very low runtime overhead. DeFlaker monitors the coverage of

latest code changes and marks as flaky any newly failing test that

did not execute any of the changes. We deployed DeFlaker live,

in the build process of 96 Java projects on TravisCI, and found 87

previously unknown flaky tests in 10 of these projects. We also ran

experiments on project histories, where DeFlaker detected 1, 874

flaky tests from 4, 846 failures, with a low false alarm rate (1.5%).

DeFlaker had a higher recall (95.5% vs. 23%) of confirmed flaky

tests than Maven’s default flaky test detector.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

Software testing, flaky tests, code coverage

ACM Reference Format:

Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany

Yung, and Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky

Tests. In Proceedings of ICSE ’18: 40th International Conference on Software

Engineering, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE ’18), 12 pages.

https://doi.org/10.1145/3180155.3180164

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180164

1 INTRODUCTION

Automated regression testing is widely used in modern software

development. Whenever a developer pushes some changes to a

repository, tests are run to check whether the changes broke some

functionality. Ideally, every new test failure would be due to the

latest changes that the developer made and the developer could

focus on debugging these failures. Unfortunately, some failures are

not due to the latest changes but due to flaky tests. As in previous

work, we define a flaky test as a test that can non-deterministically

pass or fail when run on the same version of the code.

Flaky tests are frequent in most large software, and create prob-

lems in development, as described by many researchers and practi-

tioners [1, 25, 26, 36, 37, 43, 44, 48, 51, 54, 56–58, 61, 62, 65, 76, 80,

82, 85]. For example, according to Herzig and Nagappan [48], the

Microsoft’s Windows and Dynamics product teams estimate their

proportion of flaky test failures to be approximately 5%. Similarly,

Pivotal developers estimate that half of their build failures involve

flaky tests [49], Labuschagne et al. [56] reported that 13% of builds

in a TravisCI dataset failed because of flaky tests, and Luo et al. [61]

reported that flaky tests accounted for 73K of the 1.6M (4.56%) daily

test failures in the Google TAP system for regression testing.

When a test fails, developers need automated techniques that

can help determine whether the failure is due to a flaky test or to

a recently introduced regression [48, 54]. The most widely-used

technique to identify flaky test failures, Rerun, is to rerun each

failing test multiple times after witnessing the failure: if some rerun

passes, the test is definitely flaky; but if all reruns fail, the status

is unknown. Rerun is supported by several testing frameworks,

e.g., Android [21], Jenkins [52], Maven [77], Spring [75], and the

Google TAP system [42, 63]. Developers do not proactively search

for flaky tests as a maintenance activity, instead simply using Rerun

to identify that a given test failure is flaky.

There is little empirical guidance describing how to rerun failing

tests in order to maximize the likelihood of witnessing the test

pass. Reruns might need to be delayed to allow the cause of the

failure (e.g., a network outage) to be resolved. Flaky tests are non-

deterministic by definition, so there is no guarantee that rerunning

a flaky test will change its outcome. The performance overhead of

Rerun scales with the number of failing tests — for each failed test,

Rerun will rerun it a variable number of times, potentially also

injecting a delay between each rerun. Rerunning every failed test

is extremely costly when organizations see hundreds to millions of

test failures per day. Even Google, with its vast compute resources,

does not rerun all (failing) tests on every commit [64, 87] but reruns

only those suspected to be flaky, and only outside of peak test

execution times [64].

433

2018 ACM/IEEE 40th International Conference on Software Engineering

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Bell et al.

<>…<><>…<>Magic
.java:
4,5,6,7

List of changes to monitor

Version
Control
System

<>…<><>…<>public
class
Magic {

Current version
 of code

<>…<><>…<>public
class
Magic {

Previous version of code

DeFlaker Coverage
Analyzer

AST
Builder Diff Tool

<>…<><>…<>Magic
.java:
4,5

Differential coverage reports,
one per test

Coverage
Instrumenter

Coverage Recorder

Test Outcome
Monitor/Rerunner

DeFlaker Reporter
<>…

<>
<>…

<>TestMa
gic.mag
icTest()

List of likely
flaky tests

Current commit:
Last build:

Reporting
(after test execution)

Coverage Collection
(during test execution)

Differential Coverage Analysis
(before test execution)

Inputs OutputDeFlaker

Figure 1: High-level architecture of DeFlaker, with three phases: before, during and after test execution.

We performed an extensive evaluation of Rerun (§3.1) on 5, 328

test failures in 5, 966 historical builds of 26 open-source Maven-

based Java projects. The flaky test detector in Maven, which reruns

each test shortly after it failed and in the same JVM in which it

failed, marked only 23% of the 5, 328 test failures as flaky. By iso-

lating each rerun in its own JVM, and further rebooting the build

system to clean the state between reruns, we confirmed that in

fact, at least 95% of those failing tests were flaky. Maven likely

does not isolate test reruns because of the high cost of creating a

process, loading classes, and preparing clean state for each test; our

prior study found that isolating tests can add a 618% overhead [25].

Hence, to effectively find flaky tests, Rerun introduces substantial

performance overhead. Developers should ideally be able to know

immediately after a test fails that it is flaky. Even if a developer

suspects a test to be flaky, our goal is to provide evidence for that

suspicion from the outcome of a single test execution: if the test

fails, is it due to a regression or flakiness?

We propose a new and efficient technique, DeFlaker, that is

complementary to Rerun and often marks failing tests as flaky

immediately after their execution, without any reruns. Recall that a

test is flaky if it both passes and fails when the code that is executed

by the test did not change; moreover, a test failure is new if the

test passed on the previous version of code but fails in the current

version. A straw-man technique to detect flaky tests is to collect

complete statement coverage for each test (of both the test code

and the code under test), intersect coverage with the changes, and

report as flaky new test failures that did not execute any changed

code. However, collecting full statement coverage can be expensive.

Our key insight in DeFlaker is that one need not collect coverage

of the entire codebase. Instead, one can collect only the coverage of

the changed code, which we call differential coverage. Differential

coverage first queries a version-control system (VCS) to detect

code changes since the last version. It then analyzes the code and

constructs an abstract-syntax tree for each changed file to determine

where instrumentation needs to be inserted to track execution of

each change. Finally, when tests run, it monitors change execution,

generating an individual change-coverage report for each test.

We present our DeFlaker tool that detects flaky tests through

lightweight differential coverage tracking. If a test fails but does not

cover any changed code, DeFlaker reports the test as flaky without

requiring any reruns. Our evaluation of DeFlaker uses a traditional

experimental methodology on historical builds on our own servers,

and we also propose a novel methodology for evaluating testing and

analysis tools on open-source projects in real time and in the exact

same build environments that the projects’ developers use. This

new methodology allowed us to evaluate DeFlaker on complex

projects that we could not easily get to compile and execute in our

own local environments (the traditional methodology). Replicating

software builds in a lab environment can be tricky, when complex

projects may include a handful of manual configuration steps before

they can compile. Even then, subtle differences in environment

(e.g., the exact version of Java, and the distinction between an

Oracle JVM and an OpenJDK JVM) can lead to incorrect results.

The marginal human cost of adding a new project to an evaluation

can be very high. In contrast, when projects are currently designed

to be automatically compiled and tested in a standard environment

(e.g., TravisCI), it can be much easier to study more projects.

Our experiments in the live environments involved 93 projects

and 614 commits, and we found 87 previously unknown flaky tests

in 10 of these projects. We reported 19 of these newly-detected

flaky tests, and developers have already fixed 7 of them. In order to

perform a larger evaluation (without abusing TravisCI’s resources),

we also performed a traditional evaluation on 26 projects and 5, 966

commits running in our own environment, in which DeFlaker

detected 4, 846 flaky test failures among 5, 328 confirmed flaky tests

(95.5%), with a low false positive rate (1.5%). In comparison, the

current Rerun in Maven found only 23% of these same test failures

to be flaky. For projects with very few test failures, DeFlaker can

impose almost no overhead: only collecting coverage in a single

rerun of failed tests. For projects with too many failures to rerun,

we found that DeFlaker imposes a low enough overhead (4.6%) to

be used with every test run, eliminating the need for reruns.

The primary contributions of this paper are:

• New Idea: A general purpose, lightweight technique for detect-

ing flaky tests by tracking differential coverage.

• Robust Implementation: A description of our open-source

flaky test detector, DeFlaker [28].

• Extensive Evaluation: Experiments with various Rerun ap-

proaches and DeFlaker on 5, 966 commits of 26 projects, taking

5 CPU-years in aggregate; to our knowledge, this is the first

empirical comparison of different Rerun approaches.

• Novel Methodology: A new research methodology for evalu-

ating testing tools by shadowing the live development of open-

source projects in their original build environment.

2 DEFLAKER

DeFlaker detects flaky tests in a three-phase process illustrated in

Figure 1. In the first phase, differential coverage analysis, DeFlaker

uses a syntactic diff from VCS and an AST builder to identify a list of

changes to track for each program source file. In the second phase,

coverage collection, DeFlaker injects itself into the test-execution

process, monitoring the coverage of each change identified in the

434

DeFlaker: Automatically Detecting Flaky Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

pu b l i c c l a s s SuperOld {
p u b l i c vo id magic () {
}

}
p u b l i c c l a s s SuperNew ex t ends SuperOld {

p u b l i c vo id magic () {
a s s e r t (f a l s e) ; / / c au s e s t e s t to f a i l

}
}
p u b l i c c l a s s App ex t end s SuperOld / ∗ SuperNew ∗ / {
}
p u b l i c c l a s s TestApp {

@Test p u b l i c vo id t e s tApp () {
new App () . magic () ; / / unchanged l i n e changes behav i o r

}
}

Figure 2: Sample change that challenges a syntactic diff

prior phase. Finally, once tests have finished executing, DeFlaker

analyzes the coverage information and test outcomes to determine

the set of test failures that are likely flaky. In principle, these reports

could also be printed immediately, as tests fail, but we report them

at the end of the test run to conform with existing testing APIs.

2.1 Differential Coverage Analysis

DeFlaker analyzes program code and version history to determine

how to track the impact of changed code, combining syntactic

change information from a VCS (in our case, Git), with structural

information from each program source file. DeFlaker tracks the

coverage of changes to all program source files (including both test

code and program code). The output of this phase are locations in

the program code in which to add coverage probes that are used at

runtime to determine if a test executes changed code.

As other researchers pointed out, e.g., in the context of regression-

test selection [39, 66] and change-impact analysis [23, 69, 84], using

solely syntactic change information is often insufficient in object-

oriented languages. In other words, it is necessary to monitor even

some syntactically unchanged lines to determine that a change gets

executed. For instance, changes that modify the inheritance struc-

ture of a class or method overloading may cause dynamic dispatch

to occur differently at a call site that itself is unchanged.

Figure 2 shows an example test prone to some of these challenges:

changing the super type of App from SuperOld to SuperNew would

cause the (unchanged) magic method call to refer to a different

implementation, causing the test to fail instead of pass. Similarly,

adding an empty implementation of the magic method to the App

class would change the test behavior as well. To handle these

sorts of changes, prior work either (1) performs static analysis to

model changes at a fine granularity or (2) instead, simply tracks

the changes at a coarse granularity. Traditional approaches—e.g.,

JDiff [23], Chianti [69], DejaVOO [66], and FaultTracer [84]—model

the dynamic dispatch behavior of the JVM to infer the exact se-

mantics of each change. These approaches can precisely identify

the impact of adding or removing a method to or from a class, or

changing a type hierarchy, allowing downstream tools to take into

account any potential changes to method invocation.

More recent work has shown that in some contexts it can bemore

cost-effective to model these changes more coarsely, greatly reduc-

ing the cost of the analysis, at the cost of some loss in precision [39].

These tools track class file coverage rather than statement coverage:

if a test references a class in any way, then that class is considered

covered. This approach is safe because it will identify when a test

might be impacted by some change, but may flag some changes as

impacting a test, even if they do not. Referring again to Figure 2, a

class coverage tool would declare classes App, SuperOld, SuperNew,

and TestApp as covered by testApp(), which references all these

classes when executed. This coarse granularity introduces impreci-

sion: a change to a statement not covered by testApp() in any of

those classes would be considered covered. However working at a

coarser granularity is fast and does not require the type resolution

of heavyweight static analysis. In our context, working only at

coarser granularity could lead to false negatives: flaky tests may

be falsely considered to have executed changed code, preventing

DeFlaker from detecting them.

DeFlaker takes a hybrid approach (similar to recent work in hy-

brid regression test selection [83]), benefiting from the low upfront

analysis cost of class-level coverage, while often still achieving

the high precision of statement-level coverage. DeFlaker does not

need to find that every change was covered by a test, but only that

some change was covered by a test. Therefore, DeFlaker can ignore

tracking some changes, but infer their coverage from other facts.

For each statement that is identified as added, removed or changed

(based on the syntactic diff), DeFlaker classifies it as: (1) safe to

track using statement-level coverage (e.g., changing a statement in

a method body); (2) not safe to track using statement-level coverage,

so instead should be tracked using class-level coverage; or (3) does

not need to be tracked. §3.3 evaluates performance improvements

of hybrid coverage over class-level coverage.

DeFlaker identifies new, changed, and removed files directly

from the VCS. DeFlaker assumes that removed classes, if refer-

enced by other classes, will result in changes in those other classes,

which it will track. For each new or changed file, DeFlaker builds

an abstract-syntax tree (AST) representation of the file. For new

files, DeFlaker marks every type (i.e., class, interface, enum, or

annotation) defined in that file to be tracked with class coverage.

If the change is to a statement in a method body or to a variable

initializer, DeFlaker tracks that statement directly. If the change

adds/removes an exception handler, DeFlaker marks the change as

covered if the first statement enclosed by the try block is executed.

DeFlaker defers to class-level tracking of the enclosing type if a

change alters the parent type or list of interfaces implemented by

that type, or if the change removes (or reduces the visibility of) a

method declared in that type — changes that may impact dynamic

dispatch in non-trivial ways. Adding a new method to a type might

also change dynamic dispatch, but in a predictable way: the new

method would be called instead of another. Therefore, DeFlaker

simply tracks the coverage of the first statement in newly added

methods. DeFlaker does not track changes that add or remove field

definitions, assuming that for such changes to impact some test,

other code must change (e.g., code referencing that field). Changes

to field initializer code are tracked using statement-level coverage.

Limitations. The kinds of changes listed above are the only ones

that DeFlaker tracks. Hence, DeFlaker’s differential coverage is

not complete, because it may not report that some changed code

was covered even if it is. For instance, DeFlaker ignores the impact

of various changes on code that uses reflection: adding a field, for

example, will change the array of fields returned by the Class.

getDeclaredFields() method, which some test might call, but

435

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Bell et al.

DeFlaker would not track. Similarly, DeFlaker does not consider

the impact of changes to annotations of types, fields, or methods.

These limitations of DeFlaker’s hybrid coverage are an intentional

trade-off, because the goal of DeFlaker is to detect, as efficiently

as possible, whether a test executed changed code.

It is important to highlight what problems can arise if a tool

under-approximates code coverage. When DeFlaker misses that a

test executes some changed code, it only results in a false positive,

as DeFlaker reports the test as flaky when it may not be. In other

words, DeFlaker does not miss a flaky test if it misses some cover-

age. In contrast, a regression test-selection tool [34, 39, 45, 66, 70]

that under-approximates coverage could miss to run a test and

thus could miss a bug, resulting in a false negative. Hence, regres-

sion test-selection tools aim to over-approximate code coverage.

Additionally, because DeFlaker only tracks changes to Java files,

DeFlaker may completely miss some non-Java changes that im-

pact the execution of a test, e.g., changing a configuration file. This

limitation is not fundamental, and indeed, DeFlaker could track

more detailed dependencies between tests and external resources

using approaches from regression test-selection work [26, 32]. Our

experiments showed that considering any change to a non-Java

files as impacting every test (a safe, but imprecise approach) did

not substantially change DeFlaker’s false-alarm rate.

2.2 Coverage Collection

DeFlaker uses bytecode injection to insert statement and class

coverage-tracking probes as classes are loaded into the JVM dur-

ing test execution. Tracking statements is simple: for each line L
containing a statement that should be tracked, DeFlaker inserts

a probe just before the bytecode instructions for line L to record
its execution. To track class coverage of type T , DeFlaker inserts
probes in the static initializer of T , in each constructor of T , and
in each non-private static method of T . This approach is safe: it

always detects the use of type T in the absence of test-order depen-

dencies [25, 26, 43, 85], similar to the regression-test selection tool

Ekstazi [39]. DeFlaker generates a coverage report that lists each

changed line/class covered by each test. DeFlaker also monitors

the outcome of each test, ensuring that this information can be

tracked for historical comparisons.

2.3 Reporting

Once the test run finishes, DeFlaker collects outcomes and cov-

erage of each test and generates a report. DeFlaker marks a test

as flaky if: (1) it previously passed, now fails, and did not cover

any code that changed; or (2) it failed, was rerun on the same code,

and subsequently passed. If any non-code files changed since the

last run, DeFlaker warns that the failing test might be flaky and

that the non-code changes may have caused the failure. For each

failing test that covered changed code DeFlaker prints a message

containing each part of the changes that the test covered. This can

help developers debug tests (flaky or not) that failed due to code

changes. Lastly, for changes that were not covered by any test,

DeFlaker prints a warning that changes are not being tested.

2.4 Implementation

While the DeFlaker approach is generic and can apply to nearly

any language or testing framework, we implemented our tool for

< e x t e n s i o n s >
< ex t e n s i on >
<group Id >org . d e f l a k e r < / group Id >
< a r t i f a c t I d > d e f l a k e r −maven−e x t e n s i on < / a r t i f a c t I d >
< v e r s i o n > 1 . 4 < / v e r s i o n >

< / e x t e n s i on >
< / e x t e n s i o n s >

Figure 3: Adding DeFlaker to a Maven build is trivial, con-

sisting of just these 7 lines to be inserted to the build file.

Java, the Maven build system, and two testing frameworks (JUnit

and TestNG). DeFlaker is thread-safe and fully supports multi-

threaded code. DeFlaker is available under an MIT license on

GitHub [28] with binaries published on Maven Central. More infor-

mation on DeFlaker is available at http://www.deflaker.org.

DeFlaker consists of six core components: a Maven build exten-

sion, two Maven plugins, a Maven Surefire test execution provider,

a Java instrumentation agent, and a JUnit/TestNG test-outcome

listener. DeFlaker relies only on public, documented, and sup-

ported APIs to interface with these systems, allowing it to be widely

compatible with many versions of each tool. DeFlaker supports

arbitrarily complex Maven configurations (with multiple modules,

multiple executions of the test or verify phases, and arbitrary con-

figuration arguments passed to each phase). We tested DeFlaker

on the most recent versions (at time of writing) of Maven (3.2.5, 3.39,

3.5.0), the Surefire test execution Maven Plugin (2.18, 2.19, 2.20),

JUnit (4.6–4.12) and TestNG (5.5-5.14.9 and 6.8-6.11). Despite hav-

ing several components, configuring a project to use DeFlaker is

trivial: a developer need only add the Maven extension to the build

file, as shown in Figure 3. We briefly describe the implementation

and functionality of each DeFlaker component.

DeFlaker Maven Extension injects our coverage analysis

plugin and reporting plugin into each module being built. Maven’s

Build Extension interface [22] allows third-party tools to customize

how Maven processes build files, including the ability to rewrite

build files as they are loaded. Our extension also modifies the ex-

ecution of the Surefire and Failsafe plugins to include DeFlaker

instrumentation agent when tests are run, and the appropriate

DeFlaker test listener (JUnit or TestNG, based on the project).

DeFlaker Coverage Analyzer Maven Plugin performs the

change analysis described in Section 2.1. We use the JGit library [53]

to perform the syntactic diff, and the Eclipse JDT library [78] to

construct the ASTs. The coverage analyzer runs just once even for

a multi-module build, detecting what changes need to be tracked

for every file in the repository, regardless of what module that file

is in. Out of the box, Surefire supports rerunning failed tests within

the same JVM, just after they fail. While evaluating DeFlaker, we

found that Maven’s Rerun technique did not even come close to

flagging as many test failures as flaky as DeFlaker (§3.1). Hence, to

help with debugging and verifying that a flaky report represents an

actual flaky test, DeFlaker includes a Surefire Provider to re-run

each failed test in a fresh JVM, which we found can help show more

tests as flaky than Maven’s Rerun. This optional feature is exposed

through the system property deflaker.rerunFlakiesCount. An-

other property, deflaker.delayedCoverage, instructs DeFlaker

to collect coverage only during reruns and not while running tests

normally. The latter configuration has effectively no overhead for

coverage tracking (unless some test fails).

436

DeFlaker: Automatically Detecting Flaky Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

DeFlaker Java Instrumentation Agent rewrites all class-

files as they are loaded into the JVM during test execution. It uses

cached coverage analysis results to determine what coverage probes

to insert in which classes. DeFlaker Test Listener interfaces

with the testing framework (JUnit or TestNG) and records when

tests finish, collecting coverage results and resetting internal coun-

ters.DeFlakerReportingMavenPlugin executes after the unit

test and integration test phases, collecting coverage and test out-

comes, and handling all functionality outlined in Section 2.3.

3 EVALUATION

We performed an extensive evaluation of DeFlaker and Rerun

with the goal of answering several key research questions:

RQ1: How many test failures do different Rerun approaches mark

as flaky?

RQ2: How many test failures does DeFlaker mark as flaky?

RQ3: Given that DeFlaker only detects flaky tests that do not

cover changed code, can it detect real flaky tests? Does De-

Flaker’s hybrid coverage find more flakes than class-level

coverage?

RQ4:What is the overhead of running DeFlaker for all tests?

Experimental Environments To answer these questions, we

created two evaluation environments. The historical environment

simulates how DeFlaker could have worked had developers used

it in the past, and allows us to run experiments on thousands of

commits. The historical environment was constructed on our own

servers, and required us to manually identify projects that we could

successfully build and test. This evaluationmethodology is common

in recent studies on regression testing [26, 32, 39, 41, 59, 60, 68, 73].

In contrast, the live environment requires no configuration or tuning

of individual projects to get them to successfully compile and run

their tests. Instead, the live environment evaluates DeFlaker on a

number of open-source projects in the exact same environment that

the developers use and while development is happening on those

projects, i.e., exactly as a developer would use DeFlaker. The latter

environment allowed us to evaluate DeFlaker on more projects

than would have been possible had we manually configured each

project to build and test. This environment is a new evaluation

methodology, to our knowledge, not used before this paper. Previ-

ous studies have looked at builds on Travis [29, 56] but have not

deployed tools to instrument those builds.

Our historical evaluation environment consisted of 250 Amazon

EC2 “c3.large” instances, each with 2 Intel Xeon E5-2680 v2 vCPUs,

3.75GB of RAM. Each instance ran Ubuntu 14.04 “trusty”, and used

either Java 1.7.0_45 or 1.8.0_131 for builds (depending on the age

of the code being compiled and executed), with Maven 3.3.9. To

answer our RQs, we completed a total of 47, 748 Maven builds in

this historical environment, taking over 5 CPU-years to run. The live

environment ran on the TravisCI platform. Each project included in

the live evaluation was mirrored and configured to use DeFlaker;

when developers pushed commits to their own repositories and

triggered builds, our forks synced and triggered a build of our

repository as well. Because we selected projects that used TravisCI

for their own builds, our build environment was identical to theirs.

The live environment completed 614 builds between May 12, 2017

and Aug 10, 2017. Note that we conducted far fewer builds in the

live environment due to resource constraints: we did not want to

abuse the free TravisCI service. All of our projects were configured

on TravisCI under the same organization, allowing TravisCI to

easily throttle and restrict our builds if needed.

Project Selection. To identify projects to include in the live

environment, we selected projects from GitHub that use TravisCI,

have Java as the primary language, and use Maven, yielding a total

of 96 projects. A complete list of all of these projects appears in

the following tables, and additional details (including the revisions

used) are available on our supplemental website [27].

For our historical environment, we selected projects that we

knew had at least one flaky test (and a range of commits that had

the flaky behavior), which served as a ground truth, allowing us to

calculate how often DeFlaker would find bonafide flaky tests. We

selected 96 known flaky tests from 26 projects, consisting of: (1) 4

projects (achilles, checkstyle, jackrabbit-oak, and togglz) from our

live experiment in which we identified 5 flaky tests along with the

starting and ending commits exhibiting that flaky behavior; and

(2) 22 other open-source projects in which the project developers

previously found and fixed a total of 91 flaky tests.

The 22 projects with previously fixed flaky tests contain 17

projects that we obtained from querying GitHub for terms related

to flaky tests (“intermit” or “flak”) and 5 projects that we selected

from a prior study on flaky tests [61]. From the results of querying

GitHub, we selected 81 tests (from 17 projects) where we could

confirm by manual inspection that the commit message actually

fixed a flaky test, and for which we could still run these old tests.

We also consulted a prior study of flaky tests [61], selecting from it

10 flaky tests (from 5 projects) that we could build and run. These

flaky tests and projects come from various categories domains (net-

working, databases, etc.), offering a relatively diverse sample of

flaky tests. For each of these 96 flaky tests, we identified a precise

set of commits where the test was flaky by manually investigating

the cause of flakiness. To limit the time for our experiments, we

run DeFlaker only on 500 randomly selected commits from those

ranges. The test could have failed for any build of those commits.

3.1 RQ1: Finding Flaky Tests through Rerun

While we knew of 96 flaky tests in the projects for the historical

environment, we expected that there were more, too, and wanted

to study each approach’s ability to find these. The methodology

for this study was to run each of the 5, 966 builds, rerunning tests

as they failed. At first, we considered only the Rerun approach

implemented by Maven’s Surefire test runner [77], which reruns

each failed test in the same JVM in which it originally failed. We

were surprised to find that this approach only resulted in 23% of

test failures eventually passing (hence, marked as flaky) even if we

allowed for up to five reruns! The strategy by which test is rerun

matters greatly: make a poor choice, and the test will continue to

fail for the same reason that it failed the first time. Hence, to achieve

a better oracle of test flakiness, and to understand how to best use

reruns to detect flaky tests, we experimented with the following

strategies, rerunning failed tests: (1) Surefire: up to five times in

the same JVM in which the test ran (Maven’s Rerun); then, if it

still did not pass (2) Fork: up to five times, with each execution

in a clean, new JVM; then, if it still did not pass (3) Reboot: up to

437

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Bell et al.

Table 1: Number of flaky tests found by re-running 5,966 builds of 26 open-source projects.We consider only new test failures,

where a test passed on the previous commit, and report flakes reported by each phase of our Rerun strategies. DeFlaker found more flaky

tests than the Surefire or Fork rerun strategies: only the very costly Reboot strategy found more flaky tests than DeFlaker.

DeFlaker labeled as:Test Methods

in Project

Confirmed flaky by

Rerun strategy Flaky Not Flaky

Project #SHAs Total Failing

Total

New

Failures Surefire +Fork ++Reboot Confirmed Unconf. Confirmed Unconf.

achilles 227 337 77 242 13 14 230 225 4 5 8

ambari 500 896 7 75 52 71 74 74 0 0 1

assertj-core 29 6, 261 2 3 2 2 2 2 0 0 1

checkstyle 500 1, 787 1 1 0 0 0 0 0 0 1

cloudera.oryx 332 275 23 29 5 5 5 5 20 0 4

commons-exec 70 89 2 22 22 22 22 21 0 1 0

dropwizard 298 428 1 60 60 60 60 55 0 5 0

hadoop 298 2, 361 365 1, 081 284 865 1, 054 1, 028 25 26 2

handlebars 27 712 7 9 3 7 7 6 2 1 0

hbase 127 431 106 406 62 242 390 383 12 7 4

hector 159 142 12 87 0 74 79 72 4 7 4

httpcore 34 712 2 2 2 2 2 1 0 1 0

jackrabbit-oak 500 4, 035 26 34 10 33 34 32 0 2 0

jimfs 164 628 7 21 21 21 21 15 0 6 0

logback 50 964 11 18 18 18 18 18 0 0 0

ninja 317 307 37 122 37 77 110 94 2 16 10

okhttp 500 1, 778 129 333 296 305 310 231 0 79 23

oozie 113 1, 025 1, 065 2, 246 42 2, 032 2, 244 2, 234 0 10 2

orbit 227 86 9 86 84 85 85 73 0 12 1

oryx 212 200 38 46 14 14 46 14 0 32 0

spring-boot 111 2, 002 67 140 73 107 135 135 3 0 2

tachyon 500 470 4 5 3 5 5 5 0 0 0

togglz 140 227 21 28 5 14 28 28 0 0 0

undertow 7 340 0 0 0 0 0 0 0 0 0

wro4j 306 1, 160 114 217 39 96 99 80 8 19 110

zxing 218 415 2 15 15 15 15 15 0 0 0

26 Total 5, 966 28, 068 2, 135 5, 328 1, 162 4, 186 5, 075 4, 846 80 229 173

five times, running a mvn clean between tests and rebooting the

machine between runs.

Table 1 shows the results of this study, including the number of

test failures confirmed as flaky by each Rerun strategy. Overall, we

observed 2, 135 tests that exhibited some potentially flaky behavior,

having new failures (passing on one commit, then failing on the

following commit). Collectively, these tests had a total of 5, 328 new

failures, with 1, 162 detected by the Surefire (same JVM) reruns,

4, 186 detected by the Surefire strategy or the Fork strategy, and

5, 075 detected by the Surefire, Fork, or Reboot strategy. This result

is striking: the existing flaky test detector in Maven only identified

23% of the flaky failures identified by all three strategies (including

the heavyweight Reboot strategy)!

It would be difficult to fairly state the cost of these various reruns,

as the cost of rerunning a test varies with many factors (how long

the test took to run the first time, how much shared state it might

need to setup, etc.). If all tests fail, then the cost of rerunning them all

once would be at least the cost of running the test suite the first time.

Even when (re)running fewer tests, any Rerun strategy aside from

Maven’s Rerun will incur the high computational cost of isolating

tests in their own JVM as documented by prior work [25], or more

if employing stronger isolation similar to our Reboot strategy [65].

Table 2 summarizes Rerun results by strategy, including the

number of reruns needed to witness the flake. From these results, we

may conclude that only one rerun is needed for each kind of rerun:

first run a failing test in the same JVM once, and if it fails, run in a

new JVM once, and if still fails, run after a reboot. Performing more

runs of the same kind increases the cost but does not substantially

increase the chance to obtain a pass. In other words, changing the

kind of rerun is more likely to help than just increasing the number

of reruns, and various testing frameworks [21, 42, 52, 63, 75, 77]

that support reruns and offer defaults such as 3, 5, or 10 reruns of

the same kind should rather offer new kinds of reruns. DeFlaker

allows Maven users to automatically have tests rerun in a new JVM.

3.2 RQ2: Finding Flaky Tests with DeFlaker

We evaluated DeFlaker’s efficacy in marking test failures as flaky

on the same test executions as in the previous section. That is,

438

DeFlaker: Automatically Detecting Flaky Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Number of reruns required to confirm the flakes

from Table 1, and the percent of flakes confirmed by reruns

at each tier also confirmed byDeFlakerwithout any reruns

required. If a flake was confirmed, we stopped rerunning it; we

executed the three rerun strategies in the order listed.

Reruns to Find Flaky

Strategy 1 2 3 4 5 Total

% Also Found

by DeFlaker

Same JVM 994 90 38 24 16 1, 162(22.9%) 87.6%

New JVM 2, 913 32 32 19 28 3, 024(59.6%) 98.4%

Reboot 889 0 0 0 0 889(17.5%) 95.8%

All 5, 075(100.0%) 95.5%

when running tests in our historical environment, we also ran

DeFlaker.We used the reruns as an oracle for whether a test failure

was truly flaky, which allowed us to identify DeFlaker-reported

flaky failures that were confirmed as failures versus those that

remain unconfirmed. Note that we may over-estimate the number

of false alarms for DeFlaker because the test could still be flaky

if investigated further. Table 1 reports these results. In summary,

DeFlaker reported 4, 846 failures as flaky (95.5% of confirmed

flakes) with a very low false alarm rate, just 1.5%. These reports

represent a total of 1, 874 flaky tests. DeFlaker finds significantly

more flaky test failures than the Surefire strategy and slightly more

than those found using the Fork JVM strategy.

Given thatmost of the flakes (77%) couldn’t be confirmed through

a simple rerun in the same JVM, we believe that DeFlaker is even

more valuable to developers, as it can provide immediate, trusted

feedback with significantly less delay. Table 2 shows what percent

of flakes detected by each rerun technique were also detected by

DeFlaker. Of those 3, 024 flaky tests detected only after rerunning

tests in a new JVM, DeFlaker accurately marked 98.4% of them as

flaky, suggesting that the developers could have detected these flaky

tests without paying the cost to rerun these tests. Most compelling

is that for the 889 failures that required the most expensive reruns

to confirm as flaky tests – running a mvn clean between tests and

rebooting the machine between runs – DeFlaker detected 95.8%

of these flaky test runs without any expensive rerun.

Overall, based on these results, we find DeFlaker to be a cost-

beneficial approach to run before or together with Rerun, and we

also suggest a potentially optimal way to run Rerun. For projects

that have lots of failing tests, DeFlaker can be run on all the tests in

the entire test suite, because DeFlaker immediately detects many

flaky tests without needing any rerun. For projects that have a few

failing tests, DeFlaker can be run only when rerunning failed tests

in a new JVM; if the tests still fail but do not execute any changed

code, then reruns can stop without costly reboots.

To evaluate DeFlaker on a wider set of projects, and to find

previously unknown flaky tests, we performed experiments in the

live environment, the results of which are summarized in Table

3. Of the 96 open-source Java projects that we shadowed, rela-

tively few were actively developed (Labuschagne et al. reported

a similar finding [56]), having more than a handful of builds over

the three-month time period. Of particular note are the projects

where DeFlaker was only run on a handful of builds (i.e., achilles,

Table 3: Results from live environment, showing only

projects that had tests fail after previously passing. Showing

the total failures, and for DeFlaker flake reports: Confirmed flakes,

Reports of flakes sent to developers,Addressed flakes by developer.

Flake Reports

Project Tests # SHAs

New

Fails C R A Issue Links

achilles 573 5 2 2 2 2 [2, 3]

checkstyle 26, 935 96 1 1 1 1 [4]

geoserver 4, 919 60 39 39 1 0 [5]

jackrabbit-oak 9, 788 99 5 5 2 1 [6, 7]

jmeter-plugins 1, 571 19 1 1 1 0 [8]

killbill 14, 827 31 26 26 1 0 [9]

nutz 1, 117 87 1 1 1 1 [10]

presto 4, 554 203 11 11 7 0 [11–16]

quickml 98 2 2 2 2 0 [17, 18]

togglz 748 12 3 3 2 2 [19, 20]

10 Total 65, 130 614 91 91 19 7

quickml), yet still identified flaky tests. In total, only 10 projects had

at least one test that DeFlaker detected as a candidate flake (that

had passed in the previous commit, then failed in the current com-

mit). We found a total of 91 failures that were potential flakes, and

confirmed that they were all flakes by repeatedly rerunning them on

our local machines: if they eventually passed given the same code,

and no other changes, we declared them true flakes. Although we

performed far fewer builds in the live environment (constrained by

the resources provided by TravisCI), DeFlaker actually identified

more flaky test failures per-build in the live environment (546) than

in the historical environment (91/614). We found no false positives

in this study (but DeFlaker can have false positives, as discussed

previously). Unfortunately, we cannot comment on the efficacy of

individual rerun strategies here, as we began collecting this data

in the field before automating the three-strategy rerun approach

described in the previous section.

Out of the 91 previously unknown flaky tests that DeFlaker

detected, we reported 19 to developers (one test in togglz and three

tests in presto had been previously detected as flaky by the develop-

ers). Of the 19 reports, 7 have been addressed, most by removing or

reducing flakiness, but one by removing/ignoring the test (which

is why we use the term “addressed” rather than “fixed,” because

removing a test is not a fix for that test, but it was a fix for the test

suite as the developers found more value in removing this test than

keeping it and having to deal with its flakiness). In several cases,

we found that flaky tests previously believed to have been fixed by

developers were still flaky, due to the same or different causes [16].

We received several very positive responses, such as “Thank you

very much for your help with this. I just committed a fix. Looking

forward to see more green builds now.” [19] and “@flakycov, thanks

a lot!” [4]. All remaining reports are still open at the time of writing,

with the exception of one geoserver issue: those developers could

not reproduce the failure and were not interested in debugging

it [5]. In cases where a project had multiple flaky tests, we began

by opening an issue on just one of the flaky tests, and did not open

more issues if the developers didn’t respond. We reported two flaky

tests in presto with similar root causes in one issue.

439

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Bell et al.

3.3 RQ3: Coverage tracking for flake detection

We evaluated the efficacy of using DeFlaker’s hybrid statement-

and class-level coverage in comparison to simple class-level cov-

erage used by a state-of-the-art regression test selection tool [39].

Because DeFlaker uses differential coverage to judge when a fail-

ing test is flaky, it can only identify test failures as flaky when the

test does not cover any recently changed code. If the test does cover

changed code, DeFlaker cannot determine if the failure is flaky,

or if the test will always fail. To determine the limitations of this

coverage-based approach, we evaluate how often flaky tests cover

changed code, for two kinds of coverage.

To answer this question, we need to know precisely the versions

of code in which each flaky test was present and could have flaked

on. To perform this analysis on all 4, 846 flaky failures would not

be possible, as debugging flaky tests is a very time consuming

task. Hence, to answer this question, we focused on the 96 known

flaky tests that we had manually identified in the 5, 966 commits

of code that we built and tested. We calculated the percentage of

test runs on which DeFlaker would have marked the test as flaky

if it failed, regardless of whether the test actually failed or not in

our experiments on that given commit. Because the test was flaky

for each of these commits, it could have failed in any of those runs.

Also, we assume that, on average, a test run that covers no changed

code when the test passes would also cover no changed code when

the test fails (although the exact coverage between a test failure

and a test pass does differ, at least for one branch or exception that

determines the test outcome). Table 4 shows the results per project,

for flaky detection using both DeFlaker’s hybrid statement/class

coverage and only class coverage [39]. DeFlaker identified that

the flaky test did not cover any code change 90% of the time. The

improvements over class coverage are roughly 11 percentage points,

showing the importance of DeFlaker’s precise analysis, compared

with a regression test selection tool that uses class coverage [39].

3.4 RQ4: Performance

Recall that DeFlaker can be run on only failing tests (potentially

when rerun) or on all tests. In some cases, it might be preferred

that DeFlaker runs for every test, regardless of the outcome, to

potentially eliminate the need for reruns. In this case, it is important

to understand what slowdown DeFlaker might add to the testing

process. We measured the relative performance of running tests

without any coverage tracking tool, with DeFlaker, and with the

most recent versions of three most popular code-coverage tools for

Java: JaCoCo (0.7.9), Cobertura (2.1 with Maven plugin 2.7), and

Clover (OpenClover 4.2.0) [24]. We also used a recent research tool

that tracks class coverage: Ekstazi (version 4.6.1) [39]. We config-

ured each of these tools following the instructions provided on their

respective installation pages. For our own tool, DeFlaker, we used

version 1.4 (available on Maven Central and our website [27]). By

default, JaCoCo and Cobertura only create a single coverage report

containing the overall results for the entire test suite, which is not

useful for identifying if a particular test executed any changed code.

Hence, we measured also the performance of using these two tools

to generate coverage reports for each test by connecting our test

listener to each tool and triggering a coverage dump and reset after

each test.

Table 4: DeFlaker’s efficacy finding 96 known flaky tests

across 5,966 different commits of 26 open-source projects,

comparing its novel hybrid statement/class coverage with

only class coverage.

% of Runs Flaky by:

Project

Known

Flaky Tests # SHAs Hybrid Cov Class Cov

achilles 1 227 77% 71%

ambari 1 500 100% 100%

assertj-core 1 29 97% 83%

checkstyle 1 500 100% 98%

cloudera.oryx 1 332 95% 94%

commons-exec 1 70 94% 69%

dropwizard 1 298 83% 79%

hadoop 3 298 92% 85%

handlebars 7 27 89% 78%

hbase 3 127 86% 72%

hector 1 159 100% 96%

httpcore 1 34 82% 82%

jackrabbit-oak 1 500 75% 66%

jimfs 1 164 54% 24%

logback 11 50 91% 83%

ninja 2 317 90% 80%

okhttp 33 500 91% 81%

oozie 1 113 91% 75%

orbit 1 227 81% 74%

oryx 3 212 100% 100%

spring-boot 5 111 98% 98%

tachyon 7 500 77% 58%

togglz 3 140 97% 94%

undertow 3 7 75% 17%

wro4j 1 306 68% 56%

zxing 2 218 98% 98%

26 Total 96 5, 966 88% 77%

We considered running this experiment on all 26 projects studied

in RQ1 and RQ2, but found that several were not well amenable

to performance measurements, with a very high variance in test-

execution times, even without any coverage tool (e.g., cloudera.

oryx, which took on average 241 seconds with a standard deviation

of 110 seconds), and filtered out 9 such projects. For each of the

remaining 17 projects, we executed its build (using mvn verify)

on the 10 consecutive versions (most recent as of August 10, 2017)

with each tool, and repeated this process 15 times to reduce noise.

Considering all of the executions, we performed a total of 21, 600

builds over a total of approximately 445 CPU-days (counting the

total time needed to checkout and build each project).

We collected the outcomes of all tests from each execution and

marked the tool as ‘n/a’ if the tool caused errors. Table 5 shows the

results, including the baseline time spent running each test suite

without collecting any coverage (plus or minus a single standard

deviation), and the relative overhead of each tool. To provide a fair

comparison, we timed only the tool’s instrumentation phase (if

applicable), and the tests running phase — we exclude time to fetch

dependencies, compile code, generate reports, etc. Cobertura runs

the entire test suite twice (once without, and once with coverage

440

DeFlaker: Automatically Detecting Flaky Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 5: Measurements comparing the runtime performance overhead of DeFlaker and four other coverage tools vs. the

baseline test execution. Cobertura and Clover did not work for many projects (marked as ‘n/a’), Ekstazi and Cobertura each timed out

(after a four hour limit) on one project (marked as ‘t/o’).

JaCoCo Cobertura

Project

Test

Methods

Baseline

Time (sec) DeFlaker Ekstazi Per-test Default Per-test Default Clover

achilles 563 184.52 ± 6.72 6.2% 62.3% 34.9% 45.2% n/a n/a n/a

ambari 5, 186 3, 726.11 ± 573.55 6.2% 29.1% 52.9% 52.3% n/a n/a n/a

assertj-core 10, 334 24.56 ± 5.09 12.2% 100.6% 30.9% 141.9% 180.1% 194.3% 129.2%

checkstyle 2, 452 75.49 ± 10.61 3.7% 27.0% 25.3% 39.6% 18.5% 45.9% n/a

commons-exec 96 64.85 ± .79 3.7% 2.9% 1.5% 1.4% 2.8% 4.7% 4.4%

dropwizard 1, 455 219.62 ± 7.06 5.6% 94.4% 59.6% 68.9% 33.5% 50.5% n/a

hector 349 481.96 ± 141.28 4.8% 29.6% 16.7% 14.0% 3.0% 10.6% 9.5%

httpcore 1, 059 80.77 ± 10.12 6.5% 18.8% 14.9% 18.6% 18.8% 41.2% 30.2%

jackrabbit-oak 9, 694 1, 290.23 ± 336.05 0.2% 34.4% 31.1% 34.6% n/a n/a n/a

killbill 801 354.66 ± 63.47 3.8% 21.3% 24.8% 19.8% n/a n/a 4.7%

ninja 797 55.53 ± 4.83 8.4% 87.6% 101.8% 385.0% 41.2% 68.3% 20.2%

spring-boot 6, 180 1, 161.90 ± 48.57 0.0% t/o 18.7% 24.7% n/a n/a n/a

tachyon 2, 126 2, 299.54 ± 194.84 3.0% 17.8% 35.1% 36.7% 40.1% t/o n/a

togglz 400 174.70 ± 5.98 4.8% 36.6% 34.0% 35.2% 7.4% 10.2% n/a

undertow 725 180.29 ± 3.94 4.6% 18.2% 11.2% 0.1% n/a n/a n/a

wro4j 1, 280 153.18 ± 6.19 1.5% 26.9% 29.6% 33.6% 6.9% 24.3% 8.1%

zxing 415 114.60 ± 2.21 2.8% 16.2% 36.6% 37.3% n/a n/a 425.8%

Average 626.03 ± 83.61 4.6% 39.0% 32.9% 58.2% 35.2% 50.0% 79.0%

tracking); we report only the time spent running the test suite with

coverage tracking (otherwise, Cobertura would always have over

100% overhead). Cobertura and Clover did not work correctly on

many of the projects, typically due to incompatibilities between

the tool and various parts of the Java 8 syntax. (We found that

these issues were reported before1.) In one case (spring-boot), we

encountered a deadlock while running Ekstazi.

DeFlaker was very fast in nearly every case, with an average

slowdown of only 4.6% across all of these projects. The worst per-

formance from DeFlaker (12.2%) occurred in the assertj-core

project, which had relatively fast test execution (25 seconds): De-

Flaker’s impact on the actual test-execution time was insignifi-

cant, but opening the Git repository and scanning it for changes

still required several seconds, contributing to the overhead. De-

Flaker performed far better than the other coverage tools, both in

assertj-core and other projects. Clover showed highly variable

performance among the projects, and is unique among the cover-

age tools compared: it adds coverage instrumentation to program

source code and not to bytecode.

In summary, the results show two important points. First, De-

Flaker has a relatively low overhead, 4.5% on average, compared

to test runs without any coverage tool, low enough that we believe

it can be “always on” in many projects. Even if DeFlaker were only

run on failing tests, its 4.5% overhead is still low compared with

the cost of rerunning failing tests in isolation. Second, the overhead

of DeFlaker is substantially lower than the overhead of the other

coverage tools. We expected DeFlaker to have a lower overhead

because it collects less information, but we did not expect it to be

that much lower than the very mature JaCoCo (originally released

1https://github.com/cobertura/cobertura/issues/166, https://jira.atlassian.com/browse/
CLOV-1839

in 2009) or Cobertura (originally released in 2005). In particular,

Clover was a commercial product, originally released in 2006 and

sold and maintained as one until 2017 when it was released as open-

source software. Finally, we did not yet optimize the performance

of DeFlaker and believe we can improve it further, e.g., using

techniques such as smart insertion of coverage tracking based on

control-flow graph analysis [79].

4 THREATS TO VALIDITY

While our experiments show that DeFlaker can detect flaky tests

with low overhead, there are threats to generalizing our result.

External: The projects used in our evaluation may not be rep-

resentative. To alleviate this threat, we consider a large number

of projects from different application domains, with different code

sizes and number of test classes. We also considered flaky tests with

varying characteristics. In experiments in our historical environ-

ment, we considered only commits of each project in which there

was at least one flaky test. Our results could differ for a different

range of commits. We chose this range because it allows us to pre-

cisely measure DeFlaker’s ability to find known flaky tests. Further,

we believe that the number of commits that we tested DeFlaker

on (5, 966) is reasonable, especially considering the large amount

of time needed to run these experiments (over 5 CPU-years).

Internal: The tools we use in our evaluation may have bugs.

To increase confidence in our experiments, we use as many tools

that are adopted by the open-source community as possible. To test

DeFlaker, we compared its coverage reports with those from the

stable and popular statement coverage tool JaCoCo.

Construct: To evaluate DeFlaker’s ability to detect known

flaky tests, we computed the percentage of commits of each project

with a known flaky test in which the test did not cover any code

441

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Bell et al.

changed by that commit, without regard for the test outcome. The

assumption here is that if a flaky test covers some change (which

caused it to fail), it will cover that change regardless of whether it

passes or fails. We expect that the likelihood of a flaky test covering

changed code is independent of it failing, because the pass/fail out-

come of the flaky test depends on some source of non-determinism

unrelated to the code changes.

Reproducibility: To enable other researchers to reproduce our

results and build upon DeFlaker we have taken several steps. We

have released DeFlaker under the MIT license on GitHub [28] and

have published binaries on Maven Central [74]. We have released

a companion page on our DeFlaker website [27], which lists each

commit of each project studied, their URLs, as well as each test

identified as flaky in our runs.

5 RELATEDWORK

Flaky Tests. There have been several recent studies of flaky tests.

Luo et al. conducted the first extensive study of flaky tests, studying

over 200 flaky tests found from commit logs and issue trackers of 51

Apache projects, categorizing their root causes, common fixes, and

ways to manifest them [61]. Many of the flaky tests used in Section 3

came from Luo et al.’s dataset. Palomba and Zaidman studied 18

open-source Java projects, executing each test 10 times to detect

flaky tests and then studying automated techniques to repair the

flakiness in each test [82]. We used a similar rerun technique to

detect whether a test failure was a true failure or due to flakiness.

Whereas both of these papers specifically searched projects to seek

out flaky tests, we present instead an evaluation of techniques to

find flaky tests from regular test failures.

The most common approach to detecting flaky tests is to re-

run failing tests, which we call Rerun. Several popular build and

test systems provide support for this, such as Google TAP [42, 63],

Maven Surefire [77], Android [21], Jenkins [52], and Spring [75]. To

the best of our knowledge, TAP (or any other similar system) does

not offer the isolated rerun (in a new JVM/process) that we found to

be more effective than an in-process rerun. We have shown that the

way that each rerun is performed can have a significant impact on

the outcome of the test. Our previous work [33] considered using

coverage information to identify flaky tests but did not consider

differential coverage, which is key to DeFlaker’s performance.

Also related are a variety of machine-learning techniques for cate-

gorizing test failures as false alarms, flaky, or related to a specific

change [48, 54]. Such approaches could be used simultaneously

with Rerun or DeFlaker.

One approach may be that developers perform regular mainte-

nance, running a tool to identify tests that might fail in the future

due to flakiness (i.e., can become flaky tests), and then repair those

tests proactively [26, 38, 43, 72]. However, these tools can be too

expensive to run after every code change and may report too many

warnings, hindering their adoption. For instance, specific tech-

niques have been recently proposed for handling order-dependent

tests. Zhang et al. propose several methods to detect such tests by

rerunning them in different orders [85]. Huo and Clause propose

another technique that can detect such tests [51], although their

technique was originally proposed to detect brittle assertions (that

may cause non-deterministic failures). Bell and Kaiser [25] pro-

pose an approach to tolerate the effects of order-dependent tests

by isolating them in the same JVM. However, none of these tech-

niques focuses on detecting whether a given test failure is due to a

flaky test or not, and none of the techniques handle general case of

arbitrary flaky tests.

Change-Impact Analysis. Change-impact analysis (CIA) tech-

niques aim to determine the effects of source code changes, using

static, dynamic, or combined analysis [31, 69, 71]. For example, Ren

et al. [69] proposed Chianti, a CIA technique that uses static analy-

sis to decompose the difference between two program versions into

atomic changes and uses dynamic call graphs to determine the set

of tests whose behavior might be affected by these changes. It also

uses these call graphs to determine, for each affected test, which

subset of changes can affect the test’s behavior. Our differential

coverage technique also collects coverage but fully dynamically,

requires no expensive static analysis or call-graph generation, and

has a much lower overhead.

RegressionTest Selection.Regression test selection (RTS) tech-

niques determine which tests can be affected by a code change and

only run those to speed up regression testing. Many RTS techniques

have been proposed [35, 40, 45–47, 70, 86] and are summarized in

two literature reviews [30, 81]. Most RTS techniques collect cover-

age, first for all the tests, and then recollect coverage only for the

tests that are run as potentially affected by the code changes. We

compared the performance of DeFlaker to the publicly available

Ekstazi RTS tool [39]. In some ways, DeFlaker is an extension of

residual coverage, a high-level approach to reduce the overhead of

program coverage tracking by only tracking code that has not-yet

been covered [67]. In our terms, the code changed by a new commit

is de-facto not-yet-covered, and hence, tracked.

6 CONCLUSIONS AND FUTUREWORK

Flaky tests can disrupt developers’ workflows, because it is difficult

to know immediately if a test failure is a true failure or a flake.

We presented DeFlaker, an approach and a tool for evaluating

whether a test failure is flaky immediately after it occurs, with

very low overhead. Even if developers still want to rerun their test

failures to determine if they are flaky or not, DeFlaker is still useful

because it can provide its results immediately after the first failure,

rather than requiring tests to be delayed and reran.

We implemented DeFlaker for Java, integrating it with popular

build and test tools, and found 87 previously unknown flaky tests in

10 projects, plus 4, 846 flakes in old versions of 26 projects. We are

interested in exploring other applications of differential coverage.

For instance, if a test fails and covers some changed code, report-

ing the covered changed code may help debugging [69]. Similarly,

reporting when a change is not covered may help test augmenta-

tion [55]. Our results are very promising, and we plan to continue

working with the open-source software community to find flaky

tests and encourage the adoption of DeFlaker, which we have

released under the MIT license [28].

ACKNOWLEDGMENTS

We thank Traian Şerbănuţă and Grigore Roşu for help in debugging

flaky tests using RV-Predict [50], and Alex Gyori for help in de-

bugging flaky tests using NonDex [72]. Darko Marinov’s group is

supported by NSF grants CCF-1409423, CCF-1421503, CNS-1646305,

and CNS-1740916; and gifts from Google and Qualcomm.

442

DeFlaker: Automatically Detecting Flaky Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] 2008. TotT: Avoiding Flakey Tests. (2008). http://googletesting.blogspot.com/

2008/04/tott-avoiding-flakey-tests.html.
[2] 2017. Achilles Issue Tracker Issue Number 309. (2017). https://github.com/

doanduyhai/Achilles/issues/309.
[3] 2017. Achilles Issue Tracker Issue Number 310. (2017). https://github.com/

doanduyhai/Achilles/issues/310.
[4] 2017. checkstyle Issue Tracker Issue Number 4664. (2017). https://github.com/

checkstyle/checkstyle/issues/4664.
[5] 2017. geoserver Issue Tracker Issue Number 8213. (2017). https://osgeo-org.

atlassian.net/browse/GEOS-8213.
[6] 2017. jackrabbit-oak Issue Tracker Issue Number 6512. (2017). https://issues.

apache.org/jira/browse/OAK-6512.
[7] 2017. jackrabbit-oak Issue Tracker Issue Number 6524. (2017). https://issues.

apache.org/jira/OAK-6524.
[8] 2017. JMeter ConcurrencyThreadGroupTest::testFlow flaky test failure. (2017).

https://groups.google.com/forum/#!topic/jmeter-plugins/Fxg2ojVuxBs.
[9] 2017. killbill Issue Tracker Issue Number 769. (2017). https://github.com/killbill/

killbill/issues/769.
[10] 2017. nutz Issue Tracker Issue Number 1283. (2017). https://github.com/nutzam/

nutz/issues/1283.
[11] 2017. presto Issue Tracker Issue Number 8374. (2017). https://github.com/

prestodb/presto/issues/8374.
[12] 2017. presto Issue Tracker Issue Number 8491. (2017). https://github.com/

prestodb/presto/issues/8491.
[13] 2017. presto Issue Tracker Issue Number 8492. (2017). https://github.com/

prestodb/presto/issues/8492.
[14] 2017. presto Issue Tracker Issue Number 8493. (2017). https://github.com/

prestodb/presto/issues/8493.
[15] 2017. presto Issue Tracker Issue Number 8494. (2017). https://github.com/

prestodb/presto/issues/8494.
[16] 2017. presto Issue Tracker Issue Number 8666. (2017). https://github.com/

prestodb/presto/issues/8666.
[17] 2017. quickml Issue Tracker Issue Number 152. (2017). https://github.com/

sanity/quickml/issues/152.
[18] 2017. quickml Issue Tracker Issue Number 154. (2017). https://github.com/

sanity/quickml/issues/154.
[19] 2017. togglz Issue Tracker Issue Number 233. (2017). https://github.com/togglz/

togglz/issues/233.
[20] 2017. togglz Issue Tracker Issue Number 240. (2017). https://github.com/togglz/

togglz/issues/240.
[21] AndroidFlaky 2017. Android FlakyTest annotation. (2017). http://developer.

android.com/reference/android/test/FlakyTest.html.
[22] Apache Software Foundation. 2017. Maven Extension API.

(2017). http://maven.apache.org/ref/3.5.0/apidocs/org/apache/maven/
AbstractMavenLifecycleParticipant.html.

[23] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2004. A
Differencing Algorithm for Object-Oriented Programs. In ASE.

[24] Atlassian. 2017. Comparison of code coverage tools. (2017). https://confluence.
atlassian.com/clover/comparison-of-code-coverage-tools-681706101.html.

[25] Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In
ICSE.

[26] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient
Dependency Detection for Safe Java Test Acceleration. In ESEC/FSE.

[27] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2017. DeFlaker Companion Website. (2017). http://www.
deflaker.org/icsecomp.

[28] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2017. DeFlaker source code. (2017). https://github.com/
gmu-swe/deflaker.

[29] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In MSR.

[30] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.
2011. Regression Test Selection Techniques: A Survey. Informatica (2011).

[31] Shawn A Bohner. 1996. Software change impact analysis. (1996).
[32] Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. 2017. Re-

gression Test Selection Across JVM Boundaries. In ESEC/FSE.
[33] Lamyaa Eloussi. 2015. Determining Flaky Tests from Test Failures. Master’s thesis.

University of Illinois at Urbana-Champaign, Urbana, IL.
[34] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A Systematic Review

on Regression Test Selection Techniques. I&ST-J (2010).
[35] Emelie Engström, Mats Skoglund, and Per Runeson. 2008. Empirical evaluations

of regression test selection techniques: a systematic review. In ESEM.
[36] FlakinessDashboardHOWTO 2017. Flakiness Dashboard HOWTO. (2017). http:

//www.chromium.org/developers/testing/flakiness-dashboard.

[37] Martin Fowler. 2011. Eradicating Non-Determinism in Tests. (2011). http:
//martinfowler.com/articles/nonDeterminism.html.

[38] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical Test Depen-
dency Detection. In ICST.

[39] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In ISSTA.

[40] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. 2001. An empirical study of regression test selection techniques.
TOSEM (2001).

[41] Marco Guarnieri, Petar Tsankov, Tristan Buchs, Mohammad Torabi Dashti, and
David Basin. 2017. Test Execution Checkpointing forWeb Applications. In ISSTA.

[42] Pooja Gupta, Mark Ivey, and John Penix. 2011. Testing at the speed and
scale of Google. (2011). http://google-engtools.blogspot.com/2011/06/
testing-at-speed-and-scale-of-google.html.

[43] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable Testing:
Detecting State-polluting Tests to Prevent Test Dependency. In ISSTA.

[44] Dan Hao, Tian Lan, Hongyu Zhang, Chao Guo, and Lu Zhang. 2013. Is This a
Bug or an Obsolete Test?. In ECOOP.

[45] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. 2001.
Regression Test Selection for Java Software. In OOPSLA.

[46] Mary Jean Harrold, David S. Rosenblum, Gregg Rothermel, and Elaine J. Weyuker.
2001. Empirical Studies of a Prediction Model for Regression Test Selection. TSE
(2001).

[47] Mary Jean Harrold and Mary Lou Soffa. 1988. An incremental approach to unit
testing during maintenance. In ICSM.

[48] Kim Herzig and Nachiappan Nagappan. 2015. Empirically Detecting False Test
Alarms Using Association Rules. In ICSE SEIP.

[49] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-Offs in Continuous Integration: Assurance, Security, and Flexi-
bility. In ESEC/FSE.

[50] Jeff Huang, Patrick Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive
Race Detection with Control Flow Abstraction. In PLDI.

[51] Chen Huo and James Clause. 2014. Improving Oracle Quality by Detecting Brittle
Assertions and Unused Inputs in Tests. In FSE.

[52] JenkinsRandomFail 2016. Jenkins RandomFail annotation. (2016).
https://github.com/jenkinsci/jenkins-test-harness/blob/master/src/main/
java/org/jvnet/hudson/test/RandomlyFails.java.

[53] JGitWebPage 2017. JGit Home Page. (2017). http://www.eclipse.org/jgit/.
[54] He Jiang, Xiaochen Li, Zijiang Yang, and Jifeng Xuan. 2017. What Causes My Test

Alarm?: Automatic Cause Analysis for Test Alarms in System and Integration
Testing. In ICSE.

[55] Wei Jin, Alessandro Orso, and Tao Xie. 2010. Automated Behavioral Regression
Testing. In ICST.

[56] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
Cost of Regression Testing in Practice: A Study of Java Projects Using Continuous
Integration. In ESEC/FSE.

[57] F.J. Lacoste. 2009. Killing the Gatekeeper: Introducing a Continuous Integration
System. In Agile.

[58] Tim Lavers and Lindsay Peters. 2008. Swing Extreme Testing.
[59] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and

Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In FSE.

[60] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan
Zhou, and Lu Zhang. 2016. How Does Regression Test Prioritization Perform in
Real-world Software Evolution?. In ICSE.

[61] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In FSE.

[62] Atif M. Memon and Myra B. Cohen. 2013. Automated testing of GUI applications:
Models, tools, and controlling flakiness. In ICSE.

[63] John Micco. 2013. Continuous Integration at Google scale. (2013).
http://eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013-03-24%
20Continuous%20Integration%20at%20Google%20Scale.pdf.

[64] John Micco. 2017. The State of Continuous Integration Testing @Google. (2017).
https://research.google.com/pubs/pub45880.html.

[65] Kıvanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding bugs by isolating
unit tests. In ESEC/FSE.

[66] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In FSE.

[67] Christina Pavlopoulou and Michal Young. 1999. Residual Test Coverage Monitor-
ing. In ICSE.

[68] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding
Myths and Realities of Test-suite Evolution. In FSE.

[69] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004.
Chianti: A Tool for Change Impact Analysis of Java Programs. In OOPSLA.

[70] Gregg Rothermel and Mary Jean Harrold. 1997. A Safe, Efficient Regression Test
Selection Technique. TOSEM (1997).

443

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Bell et al.

[71] Barbara G Ryder and Frank Tip. 2001. Change impact analysis for object-oriented
programs. In PASTE.

[72] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting
Assumptions on Deterministic Implementations of Non-deterministic Specifica-
tions. In ICST.

[73] August Shi, Suresh Thummalapenta, Shuvendu K. Lahiri, Nikolaj Bjorner, and
Jacek Czerwonka. 2017. Optimizing Test Placement for Module-level Regression
Testing. In ICSE.

[74] Sonatype. 2017. Maven Central Repository. (2017). https://search.maven.org.
[75] spring-junit-page 2017. Spring Repeat Annotation. (2017). https:

//docs.spring.io/spring/docs/current/javadoc-api/org/springframework/
test/annotation/Repeat.html.

[76] Pavan Sudarshan. 2012. No more flaky tests on the Go team. (2012). http:
//www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team.

[77] SurefireRerun 2017. Surefire rerunFailingTestsCount Option. (2017).
http://maven.apache.org/surefire/maven-surefire-plugin/examples/
rerun-failing-tests.html.

[78] The Eclipse Foundation. 2017. Eclipse Java Development Tools (JDT). (2017).
http://www.eclipse.org/jdt/.

[79] Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2002. Efficient Instrumentation
for Code Coverage Testing. In ISSTA.

[80] Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. 2015. An empirical study
of bugs in test code. In ICSME.

[81] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. STVR (2012).

[82] Andy Zaidman and Fabio Palomba. 2017. Does Refactoring of Test Smells Induce
Fixing Flaky Tests?. In ICSME.

[83] Lingming Zhang. 2018. Hybrid Regression Test Selection. In ICSE.
[84] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing Failure-

Inducing Program Edits based On Spectrum Information. In ICSM.
[85] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivanc Muslu, Michael Ernst, and

David Notkin. 2014. Empirically Revisiting the Test Independence Assumption.
In ISSTA.

[86] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley. 2006. Applying
Regression Test Selection for Cots-Based Applications. In ICSE.

[87] Celal Ziftci and Jim Reardon. 2017. Who Broke the Build?: Automatically Identi-
fying Changes That Induce Test Failures in Continuous Integration at Google
Scale. In ICSE-SEIP.

444

