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Most calculations in model reduction involve the solutions of a sequence of dual linear systems with multiple right-hand sides. To
solve such systems e�ciently, a new de�ated BiCG method is explored in this paper. 
e proposed algorithm uses harmonic Ritz
vectors to approximate le and right invariant subspaces inexpensively via small descenting direction vectors found by subsequent
runs of de�ated BiCG and then derives the de�ated subspaces for the next pair of dual linear systems. 
is process leads to faster
convergence for the next pair of systems. Numerical examples illustrate the e�ectiveness of the proposed method.

1. Introduction

Large scale simulations play an important role in the study
of a great variety of complex physical phenomena, leading
oen to overwhelming demands on computational resources
[1–5]. Hence, the common approach is to produce a sur-
rogate model of much smaller dimension which provides a
high-�delity approximation of the original model. For such
problems, interpolatory model reduction method combines
�exibility and scalability and has proven e�ectiveness. It
transfers function interpolations in the frequency domain
to meet various desirable approximation goals. During this
process, it requires the solutions of dual linear systems with
multiple right-hand sides (RHSs):

��� = ��, ���̃� = �̃�, � = 1, 2, . . . , �, (1)

where � ∈ R
�×� is a sparse, nonsymmetric matrix and RHSs

are not available simultaneously.

For the solutions of primary linear systems ��� = ��,� = 1, 2, . . . , �, de�ated Krylov methods have been appearing.

is is due to the fact that they take advantage of the fact
that several systems share the same matrix. In addition, the
convergence of Krylov subspace solvers for a linear system,
to a great extent, depends on the spectrum of the matrix.
If one could project the eigenvectors corresponding to the
smallest eigenvalues out from the initial residual and then

solve the de�ated system it will converge much faster. 
e
process is referred to as de�ation. Variants of de�ated Krylov
solvers for the primary linear systems have been fully studied
in the literature [2, 3, 6–14]. However, de�ation for dual linear
systems has not yet been fully investigated [15, 16].

In this paper we extend this idea to the BiCG algorithm
for the dual case. 
e goal of this paper is to develop a new
de�ated BiCG method for solving dual linear systems with
multiple RHSs. Likewise, for BiCG, it can be shown that if the
primal Krylov subspace is de�ated with right eigenvectors,
the corresponding le eigenvectors are removed from the
dual residual. 
erefore, while solving a pair of systems, we
select approximate le and right invariant subspaces of �
and then use those to accelerate the convergence of the next
pair of systems. 
e proposed algorithm uses harmonic Ritz
vectors to approximate le and right invariant subspaces
inexpensively via small descenting direction vectors found
by subsequent runs of de�ated BiCG and then derives the
de�ated subspaces for the next pair of dual linear systems.
Furthermore, we describe a cheap way to build the de�ated
subspaces.

In the next section, we describe the outline of the
de�ated Lanczos algorithm used in the derivation of the
de�ated BiCG method. In Section 3, we derive a de�ated
BiCG method using previously computed de�ated subspace
matrices. How to compute and update such de�ated space
matrices is given in Section 4. In Section 5, we investigate
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De�ne	 = [
1, 
2, . . . , 
�] and 	̃ = [
̃1, 
̃2, . . . , 
̃�].
Choose initial unit vectors V1 and Ṽ1 such that V�1 	̃ = 0 and Ṽ

�
1	 = 0. Set

V0 = 0, Ṽ0 = 0.
for  = 1, 2, . . . do

Solve 	̃��	�� = 	̃��V�;	���	̃�̃� = 	���Ṽ� for ��, �̃��� = �V� − �	��; �̃� = ��Ṽ� − ��	̃�̃��� = (Ṽ�, ��); �̃� = (V�, �̃�)
V̂�+1 = �� − ��V�−1 − ��V�; ̂̃V�+1 = �̃� − �̃�Ṽ�−1 − �̃�Ṽ�
��+1 = (̂̃V�+1, V̂�+1)1/2; �̃�+1 = ̂̃V�+1, V̂�+1��+1
V�+1 = V̂�+1��+1 ; Ṽ�+1 = ̂̃V�+1�̃�+1

end for

Algorithm 1: De�ated Lanczos algorithm.

the de�ated BiCG algorithm for solving the dual systemswith
multiple RHSs. 
e e�ectiveness of the proposed method is
also demonstrated in Section 6. Finally, some conclusions are
summarized in Section 7.


roughout this paper, �� is referred to as the transpose
conjugate operation of matrix�, (⋅, ⋅) denotes the inner prod-
uct, 0 is de�ned as the zero matrix, and ⊥� is biorthogonality.
2. The Deflated Lanczos Algorithm

In this section, we describe a de�ated Lanczos algorithm that
builds two sequences {V�}�=1,2,..., {Ṽ�}�=1,2,... of vectors such
that

V�+1⊥� span {	̃, Ṽ1, Ṽ2, . . . , Ṽ�} ,
Ṽ�+1⊥� span {	, V1, V2, . . . , V�} ,

(2)

and (Ṽ�+1, V�+1) = 1, where 	 = [
1, 
2, . . . , 
�] and 	̃ =[
̃1, 
̃2, . . . , 
̃�] are two sets of linearly independent vectors.
We assume that the matrix 	̃��	 is nonsingular. Let

�1 = (� − �	(	̃��	)−1	̃�)�, (3)

�̃1 = (� − ��	̃(	���	̃)−1	�)��. (4)

Since the matrices �1 and �̃1 are each other’s conjugate
transpose, we can apply the standard Lanczos procedure
to the above auxiliary matrices. Let unit vectors V1, Ṽ1 be

biorthogonal to 	̃, 	, respectively; then we compute the
Lanczos vectors which satisfy

�1�� = ���� + ��+1,�V�+1��� , (5)

�̃1�̃� = �̃��̃� + �̃�+1,�Ṽ�+1��� , (6)

where �� = [V1, V2, . . . , V�], �̃� = [Ṽ1, Ṽ2, . . . , Ṽ�], �� and �̃� are ×  tridiagonal matrices, ��+1,�, �̃�+1,� are the last element of

the last row of ��, and �̃� ∈ R
(�+1)×�, respectively.


e Lanczos procedure guarantees that the vectors

V�+1⊥��̃� and Ṽ�+1⊥���. Since 	̃��1 = 0 and 	��̃1 = 0,
we have V��+1	̃ = 0 and Ṽ��+1	 = 0 for  = 1, 2, . . ., via (5) and
(6). Hence the sequences {V�}�=1,2,... and {Ṽ�}�=1,2,... satisfy the
properties of (2).

To make these ideas more concrete, we give a de�ated
Lanczos algorithm by substituting the right-hand sides of (3)
and (4).

3. The Deflated BiCG Algorithm

In this section, we derive the de�ated BiCG method from
Algorithm 1 in exactly the same way as BiCG was derived
from the Lanczos biorthogonalization procedure [17]. For
convenience, we drop the superscript � in (1) and refer to

�� = �, ���̃ = �̃ (7)

as the primary and the dual system, respectively.
Assume initial guesses �0 and �̃0 are given such that !0 =� − ��0⊥�	̃ and !̃0 = �̃ − ���̃0⊥�	. Let V1 = !0/�1, Ṽ1 =!̃0/�̃1. De�ne

K�,� (�,	, !0) ≡ span {	,��} ,
K�,� (�̃, 	̃, !̃0) ≡ span {	̃, �̃�} . (8)


e  th solutions that are updated in de�ated BiCG algorithm
become

�� = �0 + 	%� + ��&� ∈ K�,� (�,	, !0) , (9)

�̃� = �̃0 + 	̃%� + �̃�&� ∈ K�,� (�̃, 	̃, !̃0) . (10)

With de�ation, the biorthogonality conditions ��⊥�	̃,�̃�⊥�	, and �̃�⊥��� de�ne the Petrov Galerkin conditions

!� = !0 − �	%� − ���&�⊥� [	̃, �̃�] , (11)

!̃� = !̃0 − ��	̃%� − ���̃�&�⊥� [	,��] . (12)
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Lemma 1. If ��, �̃�, !�, and !̃� satisfy (9), (10), (11), and
(12), respectively, then !� = -�V�+1 and !̃� = -̃�Ṽ�+1
with -�, -̃� ∈ R. �us the residual !� is orthogonal to

K�,�(�̃, 	̃, !̃0) ≡ span{	̃, !̃0, !̃1, . . . , !̃�−1} and !̃� is orthogonal
toK�,�(�,	, !0) ≡ span{	, !0, !1, . . . , !�}.
Proof. From (3) and (5), we have

��� = �	Υ� + ���� + ��+1,�V�+1��� , (13)

where Υ� := (	̃��	)−1	̃����. Using (9), we get
!� = !0 − �	%� − ���&�,

= !0 − �	%� − (�	Υ� + ���� + ��+1,�V�+1��� ) &�. (14)

From the orthogonality conditions !�⊥�[	̃, �̃�] leads to
the following equations:

%� = −Υ�&�, &� = �1�−1� �1. (15)

Substituting (15) into (14), we get !� = -�V�+1 for some scalar -�.
Similarly, it is able to prove that !̃� = -̃�Ṽ�+1 and !̃�⊥�[	,��].

Now we de�ne �� = 4�5�6�, where 5�, 4�, and 6� are
diagonal, lower triangular, and upper triangular, respectively.
Since a pivotless LDU decomposition of the tridiagonal
matrix �� will lead to a breakdown in BiCG, it can be
avoided by performing the LDU decomposition with 2 ×
2 block diagonal elements [18]. However, such breakdown
rarely happens in practice; hence we will not discuss it for the
sake of brevity. De�ne

7� ≡ [80, 81, . . . , 8�−1] = (−	Υ� + ��)6−1� Λ �,
7̃� ≡ [8̃0, 8̃1, . . . , 8̃�−1] = (−	̃Υ̃� + �̃�) 4−�� Λ̃ �, (16)

where

Υ̃� = (	���	̃)−1	����̃�,
Λ � = diag {-0, -1, . . . , -�−1} ,
Λ̃ � = diag {-̃0, -̃1, . . . , -̃�−1} .

(17)

Using the above information, two-term recurrences for
dual linear systems can be easily derived from the de�ated
Lanczos procedure.

�eorem 2. �e solutions ��, �̃�, the residuals !�, !̃�, and the

descent directions 8�, 8̃� for the dual linear systems satisfy the
following recurrence relations:

�� = ��−1 + ;�−18�−1; �̃� = �̃�−1 + ;�−18̃�−1,
!� = !�−1 + ;�−18�−1; !̃� = !̃�−1 + ;�−1��8̃�−1,

8� = >�−18�−1 + !� − 	��; 8̃� = >�−18̃�−1 + !̃� − 	̃�̃�.
(18)

Proof. It is analogous to the proof of 
eorem 2.1 [7].

�eorem 3. �e descent direction 8̃� is �-orthogonal to{8�}�=1,2,...�. In addition, it is also �-orthogonal to {
�}�=1,2,...�.
Proof. It is equivalent to prove that 7̃�� �7� is a diagonalmatrix

and 	̃�� �7� = 0. Consider the following:

7̃�� �7� = Λ̃��4−1� (−	̃Υ̃� + �̃�)��(−	Υ� + ��)6−1� Λ �
= Λ̃��4−1� ((�̃�� ��� − �̃�)��	Υ�)6−1� Λ �
= Λ̃��4−1� �̃�� (� − �	(	̃��	)−1	̃�)���6−1� Λ �
= Λ̃��4−1� �̃�� �1��6−1� Λ �
= Λ̃��5�Λ �

(19)

is diagonal and

	̃�� �7� = ((−	̃��	(	̃��	)−1	̃�)���
+	̃����)6−1� Λ � = 0.

(20)


e proof of 	�� ��7̃� = 0 goes along the same lines as

above.We next �nd expressions for ;	��, ;̃	��, >	��, and >̃	��with
iteration vectors at hand.

�eorem 4. �e coe�cients in the de�ated BiCG method
satisfy the following relations:

;�−1 = (!̃�−1, !�−1)
(8̃�−1, �8�−1) ;

�� = (	��	)−1	��!�;
>�−1 = (!̃�, !�)

(!̃�−1, !�−1) ;

�̃� = (	���	̃)−1	���!̃�,

(21)

where ;̃�−1 = ;�−1 and >̃�−1 = >�−1.
Proof. 
e proof follows from [7].

Algorithm 2 provides an outline of the de�ated BiCG
method.

In order to guarantee !0⊥�	̃ and !̃0⊥�	, we take the
following forms. Take �−1 and �−1 as the initial guesses and
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(1) Given	 and 	̃. If	 and 	̃ are not available; then initialize	 and 	̃ to empty matrices.
(2) Choose �−1, �̃−1 and compute �0, �̃0, !0, !̃0 using (22).
(3) if (!0, !̃0) = 0 then �̃−1 to a random vector.

(4) Solve 	̃��	�0 = 	̃��!0;	���	̃�̃0 = 	���!̃0
(5) Set 80 = !0 − 	�0; 8̃0 = !̃0 − 	̃�0.
(6) for  = 1, 2, . . . do
(7) ;�−1 = !̃�−1, !�−18̃�−1, �8�−1
(8) �� = ��−1 + ;�−18�−1; �̃� = �̃�−1 + ;�−18̃�−1
(9) !� = !�−1 + ;�−18�−1; !̃� = !̃�−1 + ;�−1��8̃�−1
(10) if ||!�|| ≤ tol and ||!̃�|| ≤ tol then

(11) break;
(12) end if

(13) >�−1 = !̃�, !�!̃�−1, !�−1
(14) Solve 	̃��	�� = 	̃��!�;	���	̃�̃� = 	���!̃�
(15) 8� = >�−18�−1 + !� − 	��; 8̃� = >�−18̃�−1 + !̃� − 	̃�̃�
(16) end for

Algorithm 2: De�ated BiCG algorithm.

!−1 = � − ��−1, !̃−1 = � − ���̃−1 as the corresponding initial
residuals. Let

�0 = 	(	̃��	)−1	̃�!−1;
!0 = !−1 − �	(	̃��	)−1	̃�!−1,

�̃0 = 	̃(	���	̃)−1	�!̃−1;
!̃0 = !̃−1 − ��	̃(	���	̃)−1	�!̃−1.

(22)

4. Computing Approximate
Invariant Subspaces


e matrices 	 and 	̃ are de�ned as the primary and dual
system de�ated spaces, respectively. 
e de�ated spaces are
�xed to solve the current linear systems; however, the bases
of the de�ated spaces are updated periodically for the next
pair of linear systems. In the literature, approximate invariant
subspace of � is taken as de�ated space. Since we focus on
the solutions of the dual linear systems, it is necessary to
build the le invariant subspace for the dual and the right
invariant for the primary. We use harmonic Ritz vectors [19]
to approximate le and right invariant subspaces cheaply.
Hence it is needed to solve a small generalized eigenvalue
problemwhose solution gives the desired approximate invari-
ant subspaces. Although it is cheap to solve the generalized
eigenvalue problem, it would be expensive to set up the
corresponding matrices in a straightforward manner. For the
less matrix vector products, we use the descent directions 8�,8̃� to update the de�ated subspaces following [7].

Let 	(
) = [
(
)1 , 
(
)2 , . . . , 
(
)� ], 	̃(
) = [
̃(
)1 , 
̃(
)2 , . . .,
̃(
)� ]. For each new system, we de�ne the matrices @, @̃ as
follows:

@(
) = [	(
), 7(
)� ] , @̃(
) = [	̃(
), 7̃(
)� ] , (23)

where

7(
)� = [8(
)1 , 8(
)2 , . . . , 8(
)� ] , 7̃(
)� = [8̃(
)1 , 8̃(
)2 , . . . , 8̃(
)� ] .
(24)


e harmonic projection method computes the A le and
right approximate eigenvectors corresponding to the A small-
est eigenvalues by solving the following generalized eigen-
problems:

B(
)C� − D�E(
)C� = 0, � = 1, . . . , A,
B(
)�C̃� − D̃�E(
)�C̃� = 0, � = 1, . . . , A, (25)

where B(
) = (�̃�@̃(
))��@(
) and E(
) = (��@̃(
))�@(
). LetF(
) = [C(
)1 , C(
)2 , . . . , C(
)� ], F̃(
) = [C̃(
)1 , C̃(
)2 , . . . , C̃(
)� ]; then the
new de�ated subspaces for the next system are de�ned as

	(
+1) = @(
)F(
), 	̃(
+1) = @̃(
)F̃(
). (26)

For avoiding the matrix multiplication and reducing the

number of thematrix vector products inB(
) andE(
), we take
the same way as [7].
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Lemma 5. Let G(
)� = [!(
)1 , !(
)2 , . . . , !(
)� ], G̃(
)� = [!̃(
)1 , !̃(
)2 , . . .,!̃(
)� ]. One has Δ(
)�+1 = [�(
)0 , �(
)1 , . . . , �(
)� ], Δ̃(
)�+1 = [�̃(
)0 , �̃(
)1 , . . .,�̃(
)� ], and

4(
)� =

[[[[[[[[[[[[[[[[[[[[
[

1
;(
)0
− 1
;(
)0

1
;(
)1
− 1
;(
)1 d

d
1

;(
)�−1
− 1
;(
)�−1

]]]]]]]]]]]]]]]]]]]]
]

,

6(
)� = [[[[[
[

1 −>(
)01 −>(
)1
d d1 −>(
)�−11

]]]]]
]

,

(27)

where 4(
)� , 6(
)� take ;(
)� and −>(
), respectively. �en the

matrices �7(
)� , ��7̃(
)� can be computed by

�7(
)� = (	(
)Δ �+1 + 7(
)�+16(
)� ) 4 �,
��7̃(
)� = (	̃(
)Δ̃ �+1 + 7̃(
)�+16̃(
)� ) 4̃ �.

(28)

Proof. 
e proof follows from [7].

Lemma 6. De	ne

5̂(
)� = diag {P(
)0 , P(
)1 , . . . , P(
)�−1} , 
ℎ�!� P(
)� = (8̃(
)� )��8(
)� ,
B̂(
) (�,  ) = P(
)�−1

;(
)�−1 (1 + >(
)�−1) , � =  ,

B̂(
) (�,  ) = − P(
)�;(
)�−1 , � =  + 1,
B̂(
) (�,  ) = B̂(
) ( , �) , � =  − 1,

B̂(
) (�,  ) = 0, ���.
(29)

�en thematricesB(
),E(
),�	(
), and��	̃(
+1) are given
by

B(
) = [
[
(��	̃(
))��	(
) (	̃(
))��	(
)Δ �+14 �(Δ̃ �+14̃ �)��	(
) B̂(
) ]

]
, (30)

E(
) = [(	̃(
))��	(
) 00 5̂(
)] , (31)

�	(
+1) = [�	(
) �7(
)� ] F(
), (32)

��	̃(
+1) = [��	̃(
) ��7̃(
)� ] F̃(
). (33)

Proof. 
e proof is analogous to the proofs as given in [7].

5. Systems with Multiple Right-Hand Sides

In this section, we describe the de�ated BiCG algorithm
for solving the dual linear systems with multiple RHSs. 
e

algorithm uses descent direction vectors 7�, 7̃� to improve
approximate eigenvectors found by subsequent runs of
de�ated BiCG and uses de�ation to accelerate convergence.


e new vectors 7�, 7̃� are appended to the current de�ated

subspaces,	(
) and 	̃(
).
ese incrementally built spaces are
then used to generate approximate subspaces for de�ating the
next systems.
e resulting algorithm is given inAlgorithm 3.


e algorithm requires the storage of 	, �	, 	̃, ��	̃,7, and 7̃ for approximating eigenvectors, amounting to 4A+2
vectors of length U. In addition, we need to save Δ �+1, Δ̃ �+1,;(
)� , >(
)� , and P(
)� of the �rst  steps of the algorithm.

6. Numerical Examples

In this section we give numerical results which indicate the
potential e�ectiveness of our approach. In all of our runs we
use a zero initial guess for the �rst dual system and take (22)
as initial guesses for the remaining systems. Also, we keep the
data in �rst  = 20 steps and A = 20 approximate eigenvectors
associated with smallest eigenvalues. 
e stopping criterion

is taken as ‖� − ���‖2/‖�‖2 ≤ 10−6. All the numerical exper-
iments were performed in MATLAB 2011b. 
e machine we
have used is a PC Pentium(R)4, CPU 2.50GHz, 2.00GB of
RAM.

6.1. ConvectionDi
usion Problem. In this subsection, we take
two di�erent approaches BiCG and de�ated BiCG (DBiCG)
to solve the same problem for highlighting the e�ciency
of the de�ation. 
e example is the convection di�usion
problem with Dirichlet boundary conditions in the unit

square [0, 1]2 = Ω ∩ YΩ, whereΩ = (0, 1)2,
−ZΔ\ + -\� + P\ = ^ in Ω,

\ = 0 on YΩ. (34)
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(1) Choose  and A with  ≥ A.
(2) Solve the �rst dual linear systems of (1) with the standard BiCG.

(3) Compute B(1) and E(1) using (30) and (31). Set	(1) = [⌀] and 	̃(1) = [⌀].
(4) for � = 2, 3, . . ., do

(5) Solve for A le and right eigenvectors. Set	(
+1) = @(
)F(
), 	̃(
+1) = @̃(
)F̃(
).
(6) Choose  ≥ 0.
(7) Solve the �th system of (1) by de�ated BiCG with	 = 	(
), 	̃ = 	̃(
+1).
(8) Compute B(
) and E(
). Note that B̃(
) = B(
)� and Ẽ(
) = E(
)�
(9) end for

Algorithm 3: De�ated BiCG algorithm for multiple right-hand sides.

0 10 20 30 40 50

0

5

10

15

Number of iterations

Primary linear systems

BiCG

DBiCG

lo
g 1

0
‖r
‖

−5

−10

−15

(a)

0 10 20 30 40 50

0

5

10

15

Number of iterations

BiCG

DBiCG

lo
g 1

0
‖r
‖

Dual linear systems

−5

−10

(b)

Figure 1: (a) Primary system and (b) dual system.


is problem is discretized with a second-order �nite di�er-
ence scheme for a vertex centered location of unknowns. We
adopt (ℎ/Z)max(|-|, |P|) = 2 to satisfy the Péclet condition,
where ℎ = 1/(b − 1) is the mesh size andb is the number of
points per direction. Here, ℎ = 1/32, - = P = 128, and Z = 1
are taken; then the problem size is 1024 and has 4992 nonzero
entries, which is real, sparse, and nonsymmetric.
e primary
system right-hand side comes from PDE. For convenience,
we take the same vector as the dual system right-hand side.

eir convergence behaviors are plotted in Figure 1.

Figure 1 shows the convergence histories of twomethods.
Using the initial guesses (22), DBiCG (without any de�ated
subspaces) converges rather slowly in the �rst run. 
e
numerical behavior of DBiCG will be the same as the ones
by applying BiCG to solve the �rst dual linear systems. 
e
only di�erence is that the de�ated spaces for the next run are
generated during the �rst process of DBiCG. For the second
run, we solve the same systems by DBiCG-sh with de�ated
spaces. Comparedwith the �rst run, the reduction in iteration
is around 25% in the second run.

6.2. Lattice QCD Problem. 
e second numerical experi-
ments stem from a quantum chromodynamics (QCD) prob-
lem. QCD is the gauge theory that describes the strong
nuclear force between quarks and gluons [20, 21]. Quark
propagators are obtained by solving the inhomogeneous

lattice Dirac equation ��� = ��, where � is a large but sparse
complex non-Hermitianmatrix representing a periodic near-
est neighbour coupling on a four-dimensional Euclidean
space time lattice. Following [22], we take a preconditioning
process which transforms from the original system to the
odd even reduced system. 
at preconditioning process has
one-half of the dimension and a smaller condition number
than the original system; for details see [23, 24]. 
e number

of right-hand sides is 4 and the �� is taken as a vector of
all ones and three independent random vectors with entries
formb(0, 1).

Figure 2 is helpful for seeing how the de�ation works in
practise. It is observed thatDBiCG leads to less iterations than
BiCG.
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Figure 2: (a) Primary system and (b) dual system.

7. Conclusions

In this paper, we have derived a de�ated BiCG method
for dual linear systems with multiple RHSs. 
e proposed
algorithm uses harmonic Ritz vectors to approximate le
and right invariant subspaces inexpensively via small descent
direction vectors found by subsequent runs of de�ated BiCG
and then derives the de�ated subspaces for the next pair of
dual linear systems. 
is process leads to faster convergence
for the next pair of systems. Numerical examples illustrate the
e�ectiveness of the proposed method, which will encourage
us to apply the de�ation technique to the BiCGSTAB algo-
rithm in the near future.
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