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ABSTRACT
Deep packet inspection is playing an increasingly important
role in the design of novel network services. Regular ex-
pressions are the language of choice for writing signatures,
but standard DFA or NFA representations are unsuitable for
high-speed environments, requiring too much memory, too
much time, or too much per-flow state. DFAs are fast and
can be readily combined, but doing so often leads to state-
space explosion. NFAs, while small, require large per-flow
state and are slow.

We propose a solution that simultaneously addresses all
these problems. We start with a first-principles characteriza-
tion of state-space explosion and give conditions that elimi-
nate it when satisfied. We show how auxiliary variables can
be used to transform automata so that they satisfy these
conditions, which we codify in a formal model that aug-
ments DFAs with auxiliary variables and simple instructions
for manipulating them. Building on this model, we present
techniques, inspired by principles used in compiler optimiza-
tion, that systematically reduce runtime and per-flow state.
In our experiments, signature sets from Snort and Cisco Sys-
tems achieve state-space reductions of over four orders of
magnitude, per-flow state reductions of up to a factor of six,
and runtimes that approach DFAs.

Categories and Subject Descriptors: C.2.0 [Computer
Communication Networks]: General - Security and protec-
tion (e.g., firewalls)

General Terms: Algorithms, Performance, Security

Keywords: regular expressions, signature matching, deep
packet inspection, XFA

1. INTRODUCTION
Network devices are increasingly using packet content for

processing incoming or outgoing packets. Deep packet in-
spection, as the process is called, arises as networks incorpo-
rate increasingly sophisticated services into their infrastruc-
ture. Such services use application-specific data found in
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packet payloads, for example, to make routing decisions [17],
to block or rate-limit unwanted traffic [11,18], to perform in-
trusion detection, and to provide quality of service [25].

To keep up with line speeds, signatures must be combined
and matched simultaneously in a single pass over the input.
String-based signatures, initially popular, have a fast multi-
pattern matching algorithm [1, 35] but limited expressivity.
Currently, vulnerability [6, 36], session [32], and intrusion
detection [26,28] signatures commonly use the full capabili-
ties of regular expressions, which are highly expressive and
compact. Regular expressions are typically implemented as
either deterministic finite automata (DFAs) or nondetermin-
istic finite automata (NFAs). Like strings, DFAs are fast and
can be readily combined. However, for many common sig-
natures their combination exhibits an explosion in the state
space. On the other hand, NFAs are very succinct but have
a slow matching procedure. Thus, DFAs and NFAs induce
a trade-off requiring either large matching times or large
memory usage, both of which are unsuitable for high-speed
network environments.

Auxiliary variables can be used to reduce the memory re-
quirements of an automaton. This approach, common to
software verification [2] and model checking [8], associates
one or more variables with an automaton and uses them to
track matching state more compactly than explicit states
alone can. But, prior techniques for including these vari-
ables are ad-hoc, and typical models that incorporate them
are not designed for high speed packet inspection. For ex-
ample, using variables to influence transitions via guards
can be expensive at runtime, and their automata difficult
to combine. Also, large signature sets need many variables
(one of our test sets uses almost 200) in order to reduce
the state space to a manageable size. Maintaining and ma-
nipulating all these variables can affect performance signif-
icantly. Incorporating auxiliary state variables is a step in
the right direction, but to the best of our knowledge there is
no general model that allows for the systematic construction,
combination, and analysis that is suitable and necessary for
high-speed packet inspection.

The high-level goal of our work is to make deep packet
inspection practical at high speeds. We begin with a pre-
liminary first-principles characterization of state-space ex-
plosion. We describe, formally, why it occurs and give ideal
conditions that eliminate it when satisfied. We then illus-
trate how auxiliary state variables can be used to “factor
out” the components of automata that violate these con-
ditions. When these conditions are met, automata can be
freely combined without any state explosion. We employ



a formal model, termed Extended Finite Automata (XFAs),
that extends the standard DFA model with (first) a finite
set of auxiliary variables and (second) explicit instructions
attached to states for updating these variables. Variables
cannot affect state transitions, but they can influence ac-
ceptance. The model is fully deterministic and yields com-
bination and matching algorithms that are straightforward
extensions to those for DFAs. This characterization of state
space explosion and the resulting model constitute the first
main contribution of this work.

A primary advantage of this model is that it allows for sys-
tematic analysis and optimization. When many individual
XFAs are combined, the resulting automaton accumulates
all the individual variables and may replicate instructions
across many states. Even when no state-explosion occurs,
this leads to large per-flow state and processing times. Tak-
ing inspiration from common principles used in optimizing
compilers, we devise optimization techniques for systemati-
cally reducing both the number of instructions and the num-
ber of variables. These techniques include exploiting run-
time information and support, coalescing independent vari-
ables, and performing code motion and instruction merging.
Altogether, these optimizations increase performance by up
to an order of magnitude and decrease per-flow state by up
to a factor of six. These systematic optimizations are the
second main contribution of this work.

Our evaluation uses regular expression signature sets ob-
tained from the Snort [28] and Cisco intrusion prevention
systems. We also compare against two other recently pro-
posed techniques, Multiple DFAs (mDFAs) [37] and D2FAs
[20]. Compared to standard DFAs, XFAs yield state space
reductions in excess of four orders of magnitude in some
cases. When optimizations are employed, performance ap-
proaches that of DFA matching. In all cases, XFAs are both
smaller and faster than other evaluated techniques.

Finally, increasing line speeds put ever-increasing pressure
on designers to move data-plane functionality into hardware.
XFAs require no hardware support or assistance to operate,
but there are no restrictions precluding them from hardware
deployment either. As a third contribution, then, we present
a hardware architecture for efficient execution of XFAs.

This paper is organized as follows: after the related work,
we discuss state-space explosion in Section 3 followed by a
description of our model in Section 4. Section 5 discusses
optimization and Section 6 gives experimental results. In
Section 7 we present a possible hardware implementation
and Section 8 concludes.

2. RELATED WORK
String-based signatures were initially popular for packet

inspection and still find some use today. Classic multi-
pattern algorithms such as Aho-Corasick [1] perform match-
ing in O(1) time yet grow linearly in the number of signa-
tures, thereby avoiding state explosion. Many alternatives
and enhancements have since been proposed [10, 22, 33–35]
for use in both software and hardware. In adversarial set-
tings, string-based signatures are not sufficient to withstand
attack techniques such as evasion [12, 27, 29] and mutation
[16], and modern systems have migrated towards signatures
that use the full power of regular expressions [6,28,32, 36].

Unfortunately, regular expressions often do not scale when
combined. DFAs often exhibit polynomial or exponential
growth in the state space, and NFAs are unacceptably slow.

Using DFAs (for their speed) as a starting point, many tech-
niques have recently been proposed to reduce their memory
footprint. Yu et al. [37] propose combining signatures into
a group of DFAs using greedy heuristics to determine which
signatures should be combined together so that a supplied
upper memory bound is not exceeded. The technique does
reduce the total memory footprint, but for complex signa-
ture sets the number of resulting DFAs can be large.

D2FAs [20,21] reduce memory by compressing transitions
at the cost of longer matching times. This approach identi-
fies states with similar transition tables, replacing them with
small tables containing only the transitions that are distinct
at each state. During matching, default transitions are fol-
lowed from state to state until a compressed table entry is
found that corresponds to the current input symbol. In [4],
Becchi and Crowley propose improvements that bound the
number of default transitions followed. These techniques are
orthogonal to ours; we can incorporate them into our own
work to achieve further memory reduction.

Becchi and Cadambi [3] propose state merging, which
moves partial state information from states themselves into
labeled transitions allowing states to be combined. The au-
thors report memory savings of up to one order of magni-
tude. Kumar et al. [19] present a set of heuristics that use
flags and counters for remembering whether portions of sig-
natures have been seen. Like us, they use auxiliary variables
for reducing the state space, although there are some fun-
damental differences. First, their technique is heuristic and
seeks only to reduce blowup, whereas we begin with a for-
mal characterization of blowup and then show how auxiliary
variables can eliminate it. In addition, the interaction be-
tween states, variables, and transitions is not formalized; we
provide an extensible formal model.

The Bro NIDS [26] uses regular expressions for signatures
specified in the context of parsed protocol fields. One advan-
tage of this approach is that signatures are simpler, which in
principle leads to smaller automata. Nevertheless, Bro still
experiences state explosion and uses on-the-fly determiniza-
tion [32] of regular expressions at some runtime cost. In
contrast, the Snort NIDS [28] uses NFA matching guarded
by a string-based multi-pattern prefilter [1]. Matching is
fast in the common case since most payloads never pass the
prefilter. However, malicious traffic can be used to invoke
NFA matching and induce severe slowdowns [9,30].

Clark and Schimmel [7] and Brodie et al. [5] have proposed
hardware-based techniques that use multibyte symbols for
transitions along with other optimizations. Our techniques
are more general and can be applied equally to hardware,
software, or FPGA environments.

Finally, we first introduced the XFA paradigm in previ-
ous work [31]. That work gave an informal characteriza-
tion of state-space explosion and focused on algorithms for
constructing XFAs from regular expressions. Experimental
results were promising but preliminary. In contrast, as de-
scribed above, this work formalizes state-space explosion,
refines the XFA model, and focuses on optimizations neces-
sary for high-speed inspection.

3. UNDERSTANDING STATE EXPLOSION
In this section we formally characterize state space explo-

sion and give sufficient conditions for guaranteeing that such
explosion will not occur. We show how incorporating aux-
iliary state variables can be used to transform automata so
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Figure 1: Depending on the structure of the underlying automata, the combined automaton sizes may be
linear (left), polynomial (middle) or exponential (right) in the limit (some edges removed for clarity).

that they satisfy these conditions and eliminate such explo-
sion directly. This characterization provides the underlying
foundation that motivates our work.

3.1 State and Path Ambiguity
State-space explosion centers around the notion of ambi-

guity, which we define as follows. Let D = (Q, Σ, δ, q0, F ) be
a DFA with states Q, input symbols Σ, transition function δ,
start state q0, and accepting states F ⊆ Q. For state q ∈ Q
we define paths(q) to be the set of paths from q0 to q. In the
presence of cycles, paths(q) may be infinite. Since D is deter-
ministic, we can uniquely represent each path π ∈ paths(q)
by the corresponding sequence of input symbols σ(π).

We say that state q is unambiguous if and only if the
following conditions hold:

• there exists a finite sequence xq ∈ Σ� such that for each
path π ∈ paths(q), σ(π) = y · xq for y ∈ Σ�;

• for some π ∈ paths(q), σ(π) = xq (i.e., y = ε).

In other words, q is unambiguous if and only if all paths to q
have the same suffix xq and at least one path to q is specified
solely by xq.

A DFA D is unambiguous if and only if all states in D are
unambiguous and the following conditions also hold:

• for each y ∈ Σ�, ∃f ∈ F such that y · xf ∈ paths(f);

• let m(q) be the path corresponding to xq for state q.
Then, for each q ∈ Q, q ∈ m(f) for some f ∈ F .

For an unambiguous automaton D, the first three condi-
tions ensure that all strings in the language accepted by D
are of the form . ∗ xf where f ∈ F . The fourth condition
ensures that there are no superfluous states that do not ad-
vance matching progress toward acceptance. Note that am-
biguity is different from nondeterminism; i.e., an ambiguous
state may be reached by many distinct sequences, but the
succession of states is still deterministic in the input. Fi-
nally, we say that a path π ∈ paths(q) is ambiguous if there
is an ambiguous state in π.

3.2 Combination and State Explosion
State-space explosion results from the interaction between

states in ambiguous and unambiguous paths when automata
are combined. During combination, unambiguous states in
the prefix of a path from one automaton get replicated when
combined with ambiguous states in a path in another au-
tomaton. This phenomenon occurs because the combined
automaton must now track progress in matching both the
unambiguous path and, independently, the ambiguous path.
Of course, the amount of replication observed depends on
how extreme and pervasive the ambiguity is in the two source
automata and how much interaction occurs between them.
Automata with limited levels of ambiguity introduce com-
paratively small amounts of replication, whereas a path of
infinite length can cause an entire automaton to be copied
and leads directly to exponential replication.

To illustrate, consider the examples in Figure 1. In this
figure and in most others, we show all states but for clarity
eliminate many transitions. In Figure 1a, automata for the
expressions /atom/ and /a[mv]id/ are combined. Only the
first automaton is unambiguous, but the ambiguity in the
second automaton is limited to allowing only an m or a v in
the transition between the two states. When combined, the
unambiguous and ambiguous paths do not interact, and no
state replication occurs in this case. In general, though, the
replication is limited to a few states.

Figure 1b describes the case in which the regular expres-
sion /a[^a][^a]b/ (read as: “an a followed by two non-a
characters, followed by b”) is combined with the expression
/cdef/. In the first automaton, paths to States R, S, and T

are all ambiguous (the path to T is ambiguous because no
path p = yx where x = b and y = ε exists). In the com-
bined automaton shown in the figure, a full copy of both
original automata is required so that both expressions can
be matched. However, states in the prefix of the single
unambiguous path in /cdef/ must also be partially repli-
cated so that the combined automaton can properly track
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Figure 2: Auxiliary variables can transform automata so that they do not blow up when combined.

the progress in matching both /cdef/ and the “don’t care”
transitions in the first automaton. In this case, the num-
ber of paths to ambiguous states is finite, but additional
unambiguous paths in the first regular expression would be
partially replicated along these as well, so that in practice a
large number of additional states may need to be created.

Figure 1c depicts the case in which both regular expres-
sions contain a Kleene closure (.*). This introduces ambigu-
ous paths of infinite length since the closure can consume an
infinite number of symbols. When combined with another
automaton A, the closure effectively replicates A in many
cases. When the two automata in the figure are combined,
the result is similar to a cross-product of states, since the two
automata are heavily interleaved and states must be created
that track each possible position in the first automaton with
each possible position in the second. When n expressions of
this form are combined, the number of required states in the
combined automata is exponential in n.

3.3 Eliminating Ambiguity Through Auxiliary
Variables

From a systematic perspective, we can eliminate state-
space explosion by first identifying the conditions in which
it cannot occur, and second, specifying transformations that
translate offending automata into automata that satisfy the
conditions without changing semantics. In this context, am-
biguity in automata as defined above provides a sufficient set
of conditions, and we relate them to state space explosion
by the following theorems.

Theorem 1. Let D1 and D2 be DFAs with D1 +D2 their
standard product combination. If D1 and D2 are unambigu-
ous, then |D1 + D2| < |D1|+ |D2|, where |D| is the number
of states in D.

Theorem 2. If D1 and D2 are unambiguous, then D1 +
D2 is unambiguous.

We provide a brief sketch of a proof. As described in Sec-
tion 3.1, an unambiguous DFA D = (Q, Σ, δ, q0, F ) recog-
nizes languages of the form {.∗xf |f ∈ F}. Consequently, the
language L(D) can be expressed as Σ�(

P
f∈F xf )Σ�. But,

this has the same structure as languages recognized by Aho-
Corasick-constructed DFAs (see [1, section 8]). Thus, un-
ambiguous DFAs are equivalent to Aho-Corasick automata.

Now, combining Aho-Corasick automata is equivalent to
taking the strings from one automaton and inserting them
into the other. Moreover, the number of states in an Aho-
Corasick automaton is bounded above by

Pk
i=1 |yi|, where

|yi| denotes the length of the string yi. From this, Theorem
1 is established and Theorem 2 immediately follows.

We define state-space explosion formally as a pairwise
phenomenon occurring whenever |D1+D2| ≥ |D1|+ |D2| for
two automata D1 and D2. Theorem 1 is overly restrictive
since in reality a larger class of expressions than strings can
be combined without any appreciable blowup (Figure 1a, for
example). Further, a combined automaton that exhibits a
modest increase in the number of states beyond the addi-
tive sum of its component DFAs is perfectly acceptable in
many cases. Despite these restrictions, Theorem 1 is suffi-
cient for the purposes of characterization and provides an
ideal: if, as in string matching, we can ensure that the ad-
ditive sum of states always dominates the combined sum for
any automata, then state-space explosion can never occur.

Given these conditions, the next task is to identify a mech-
anism for transforming automata. As stated earlier, by aug-
menting DFAs with auxiliary variables we can represent the
state space more compactly than explicit states alone can
do. Intuitively, incorporating auxiliary variables changes the
“shape” of an automaton since part of the computation state
is now stored in the variables. By carefully controlling how
these variables are incorporated and manipulated, we can
in turn transform an ambiguous DFA into an equivalent au-
tomaton with less ambiguity or none altogether.

As an example, consider /retr.*passwd/, whose DFA is
ambiguous. In addition, assume that we can associate a sin-
gle bit with this expression that can be freely manipulated
(set, reset, and tested). Ignoring the method of construc-
tion for the time being, we can use this bit to “remember”
whether the first substring has been observed or not. In so
doing, the shape of the automaton itself is transformed as
illustrated in Figure 2a. When constructed appropriately,
the new automaton along with the bit preserves the seman-
tics of the regular expression. Most importantly, in the new
automaton all states are unambiguous and the automaton
satisfies the condition for avoiding state-space explosion.

As another example, consider /\ncmd[^\n]{200}/, which
is characteristic of vulnerability signatures guarding against



buffer overflows. The DFA for this expression contains 200
ambiguous states whose sole purpose is to count the distance
in the input from the sequence \ncmd in which a newline is
not observed. When combined with other DFAs, unambigu-
ous paths are partially or fully replicated at each of these
“counting states.”

To eliminate the ambiguity in this automaton, we intro-
duce a simple counter whose value can be set (initialized
to a value), reset (indicating the counter value should be
ignored), decremented, and compared to zero. The trans-
formation incorporating the counter is given in Figure 2b.
The state variable replaces the 200 counting states, leading
to a sharp reduction in the size of the automaton. Most
importantly, the careful inclusion of the counter has yielded
an automaton whose states are unambiguous and satisfies
the unambiguity condition. Note that the counter is decre-
mented on the start state. For this counter we assume a
semantics in which the variable is inactive until initialized.
We discuss this property in more detail in Section 5.

In both of these examples, we have in essence “factored
out” the ambiguity of the DFAs and placed it into auxiliary
state variables that manipulate some aspects of the match-
ing state more compactly than explicit DFA states can. In
general, the amount of auxiliary state we introduce and its
effect on the underlying automaton is very fluid. At one
extreme, standard DFAs require no auxiliary state but very
commonly suffer from state explosion when combined. At
the other end, we can reduce an automaton to a single state
(with transitions to itself) by incorporating an appropriate
combination of possibly many different types of state vari-
ables. Of course, the number of state variables may then be
very large, and updating them may be time consuming.

To summarize, we have presented a formal framework for
characterizing state space explosion and have shown that
in this framework, auxiliary variables can be used to elimi-
nate explosion. In the next section, we formalize the ideas
presented here into an explicit model that specifies how aux-
iliary variables are incorporated into automata.

4. A FORMAL MODEL
We formally define a (state-based) XFA as follows.

Definition 1. A (state-based) extended finite automaton
is a 7-tuple (Q, V, Σ, δ, U, (q0, v0), F ), where

• Q is the set of states, Σ is the set of inputs (input alpha-
bet), δ : Q × Σ → Q is the transition function,

• V is a finite set of variable values,

• U : Q × V → V is the per-state update function which
defines how the data value is updated on states,

• (q0, v0) is the initial configuration which consists of an
initial state q0 and an initial variable value v0,

• F ⊆ Q × V is the set of accepting configurations.

Informally, XFAs generalize standard DFAs to include a
finite set of possible variable values along with programs at-
tached to states that manipulate the variable during match-
ing. Start states, accepting states, and transient “current”
states each generalize to include a variable value along with
a state. In principle, all auxiliary state is maintained using a
single (possibly composite) variable, although in practice we
can have many distinct variables without any loss of gener-
ality. Note also that according to the definition, a standard

DFA is simply a XFA whose sets of variable values and up-
date functions are each empty.

As with DFAs, transitions are a function of states and
input symbols only and are not influenced by variable val-
ues. Similarly, variable update functions are a function of
states and variable values only. This distinct separation is
one of the key enabling features of the model. On the one
hand, retaining DFA-like transitions allows us to adapt and
use common DFA operations with only slight modification
in most cases. In particular, XFAs can be constructed in-
dividually and later combined using standard techniques.
On the other hand, the use of explicit instructions provides
fertile ground for systematically applying optimizations and
analysis techniques common to compiler construction.

In our earlier work [31], we used an XFA definition that
associated instructions with edges rather than states. Edge-
based XFAs are equivalent to state-based XFAs semanti-
cally, although state-based XFAs require more states.1 On
the other hand, combination, matching, and optimization
algorithms are more efficient for state-based XFAs.

4.1 XFA Construction
We briefly summarize XFA construction from regular ex-

pressions and refer the interested reader to other work [31]
for a full discussion. The steps for compiling a regular ex-
pression to an XFA are similar to those for transforming to
a DFA [15]: parsing and constructing a non-deterministic
automaton, determinization, and reduction. The key differ-
ence is the inclusion of an abstract data domain. Parsing
is modified to initially populate the data domain and intro-
duce update relations that manipulate values in the domain.
Each of the remaining steps is extended to transform these
elements appropriately as the transitions and states are de-
terminized and minimized, yielding an edge-based XFA with
abstract variable values and update functions. Finally, the
last step maps these values and functions to concrete data
types such as bits, counters, or their combinations, with
edge-based instructions for manipulating them.

Conversion to state-based XFAs is straightforward. For
every state S, we create a copy of S (along with its outgoing
transitions) for each incoming transition to S that has a
distinct set of instructions. We then move these instructions
to the corresponding copies of S and retarget the incoming
transitions appropriately.

4.2 Combining XFAs
Although state space blowup occurs when DFAs are com-

bined, recall that the fault lies in the “shape” of the source
automata and in their violation of the conditions given in
Section 3, not in the combination process itself.

Combination of XFAs, given in Algorithm 1, is a straight-
forward extension to DFA combination. Each state in the
combined automaton corresponds to a pair of states from
the first and second input automata. In line 5, the com-
bined start state initializes a worklist which is added to by
each newly created state (line 15). In each iteration, the
algorithm pops a state from the worklist, follows transitions
out of it, and places new states on the worklist as neces-
sary. Iteration continues until the worklist is empty, when
all combined states have been created and processed.

1This is analogous to the differences between the classic
Mealy and Moore automata [15].



COMBINE(XFA first, XFA second):

worklist WL1
XFA c2

c.addState (〈first.start, second.start〉)3
c.setStart (〈first.start, second.start〉)4

WL = { 〈first.start, second.start〉 }5
while ( |WL| > 0 ) do6

〈s,t〉 = WL.pop ()7

foreach (β ∈ Σ) do8
s′ = first.getNextState(s, β)9

t′ = second.getNextState(t, β)10

if 〈s′,t′〉 /∈ c.states then11
c.addState (〈s′,t′〉)12

〈s′, t′〉.instrs.append (s′.instrs)13

〈s′, t′〉.instrs.append (t′.instrs)14

WL.push ( 〈s′,t′〉)15

c.addTrans (〈s, t〉,〈s′, t′〉,β)16

return c17

Algorithm 1. XFA combination. Instructions
are copied from source states to “paired” states.
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Figure 3: Automata produced by combining the
XFAs in Figures 2a and 2b.

Lines 13 and 14 add instructions to combined states from
their original counterparts. For each state q = 〈s, t〉 in a
combined automaton c, we simply copy the instructions from
s and t into q. The correctness of this follows from the fact
that entering combined state q when matching is equivalent
to entering states s and t simultaneously, implying that the
instructions in both s and t need to be executed. Figure 3
shows the results of combining the XFAs in Figures 2a and
2b. For convenience, names of states in the figure contain
the source states from which they are composed. Note that
this automaton has only 15 states, whereas the combined
DFA requires 2194 states.

Combining many XFAs is an incremental process: new sig-
natures can be combined with an existing automaton as nec-
essary without needing to reconstruct entirely from scratch.
One implicit precondition is that the variable value in the
starting configuration be the same in each automaton. In
practice, the last phase of the construction process ensures
this when mapping to high-level types and instructions.

4.3 Matching to Input
Deep packet inspection performs continuous matching, in

which acceptance is indicated whenever an accepting state
is reached, not just at the end of the input. XFA matching,
given in Algorithm 2, simply extends this model by execut-
ing programs attached to states when they are reached. Note
that since acceptance conditions are implemented as instruc-
tions, no special acceptance tests are needed. A raised alert
is processed identically to any other instruction.

MATCH(XFA M, uchar* buf, int len):

state curState = M.start1
execInstrs ( curState.instrs)2
for i ← 0 to len do3

curState = curState.nextState(buf [i])4
execInstrs ( curState.instrs)5

Algorithm 2. Algorithm to match an XFA
against an input buffer.

5. OPTIMIZATION
The conditions and model in Sections 3 and 4 allow XFAs

to be independently constructed and easily combined with-
out blowup, but this flexibility comes at a cost: in combined
automata, many auxiliary variables must be maintained (in-
creasing per-flow state size), and states may contain many
instructions to execute (increasing execution time).

In this section, we present a set of optimization techniques
that systematically reduce both program sizes and per-flow
state requirements of combined XFAs. Taking inspiration
from techniques developed for compiler construction [24],
we present three distinct optimizations: exploiting runtime
information and support, combining independent variables,
and moving and merging instructions. The first and last
techniques reduce instruction counts, whereas the second
reduces both per-flow state and instruction counts.

5.1 Exposing Runtime Information
Some regular expressions, such as /\ncmd[^\n]{200}/, in-

duce counters that are decremented after every byte once
initialized. For example, when the XFA in Figure 2b is
combined with other automata, the decrement and test in-
structions get replicated to most of the states, as shown
in Figure 3, even though no state explosion occurs. When
many such automata are combined, distinct decrement in-
structions get propagated among all states. Executing these
instructions at every state can significantly impact process-
ing times during matching.

Once initialized, the counter in this example will be decre-
mented on all states except those that follow a reset instruc-
tion. Thus, when the counter is initialized at a given payload
offset, the offset at which it would reach 0 is also known. By
maintaining this offset directly, we can eliminate the decre-
ment instruction altogether. This highlights our first opti-
mization, which is to provide runtime support for replacing
(and eliminating) common or expensive operations.

Continuing, we extend the runtime environment with a
sorted list holding the payload offsets at which the counter
would reach 0 along with a pointer to the instructions to
be executed when it does. After each symbol is read, the
offset value at the head of this offset list is compared to the
current payload offset, and the consequent instructions are
executed on equality. In the automata, initialization and
reset instructions are replaced with those that insert into
and remove from the offset list, respectively. This does in-
crease the processing overhead slightly, but the optimization
replaces explicit updates of (potentially) many counter vari-
ables with a single O(1) check after each byte read.

5.2 Combining Independent Variables
Some logically distinct state variables can be reduced to a

single actual variable. For example, if one counter is active
in some set of states and another counter is active in a dis-
joint set, then the two counters can share the same memory
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Figure 4: The counter minimization process applied to automata for signatures /\na[^\n]{200}/ and
/\nb[^\n]{150}/. The optimization results in the elimination of one of the original counters.

location without interference, leading to reduced memory
and smaller programs. This scenario is similar to the regis-
ter assignment problem faced by a typical compiler: multiple
variables can share the same register as long as they cannot
be simultaneously “live.”

Thus, the goal of this optimization is to automatically
identify pairs of variables that are compatible at each state
in an XFA. We achieve this goal through a two-step process:
a dataflow analysis first determines the states at which a
variable is active, and a compatibility analysis uses this in-
formation to iteratively find and combine independent vari-
ables. These techniques apply to many kinds of state vari-
ables, although for presentation purposes we focus on a fairly
simple decrementing counter. To aid the discussion, we de-
pict instructions in their actual format, which we describe
briefly. Instructions have the form [instr id,args]. Ini-
tialization instructions set an initial value and also point to
the instructions to be executed when the counter reaches 0.
Consequently, decrement and test instructions are combined
into a single instruction that decrements a counter and com-
pares it to 0, executing the previously supplied instructions if
so. For example, the instruction [ctrSET 1,200,[ALT 3]]

initializes counter 1 to 200. When the counter reaches 0, the
instruction [ALT 3] signals that signature 3 has matched.

We illustrate with the running example in Figure 4. The
leftmost XFAs correspond to expressions /\na[^\n]{200}/
and /\nb[^\n]{150}/ that are combined to give the XFA in
the middle of Figure 4 (the “clouds” belong to a later stage).
In the end, optimization finds that the two counters in the
combined automaton are independent and reduces them to
one counter.

5.2.1 Dataflow Analysis
As informally described in Section 3, counters are initially

inactive with status changes occurring whenever initializa-
tion or reset instructions are executed. The goal of this step
is to determine the activity of each counter at each state
in the combined automaton, even for those states without
instructions. This requires a precise definition of active and
inactive counters, given as follows:

Definition 2. Let Q be the set of states containing a set

operation for counter C. Then, C is active at state S if there
is at least one sequence of input symbols forming a path of
states from a state in Q to S in which no state in the path
contains a reset operation for C. Otherwise C is inactive.

Figure 5: The value lattice that orders abstract
counter facts. Inactive is the initial value.

In other words, C is active at S if and only if there exists at
least one input sequence ending at S containing a set but
no subsequent reset for C. The term activity refers to the
active or inactive status of a counter. Operations applied to
an inactive counter are effectively a no-op.

To calculate activity, we define a dataflow analysis that fits
into the classic monotone dataflow framework [24]. Static
dataflow analyses comprise techniques used at compile time
to produce correct but approximate facts about behavior
that arises dynamically at runtime. During execution, dif-
ferent input may yield different behavior depending on that
input; static techniques must therefore produce correct (if
approximate) results for all possible inputs. Dataflow analy-
ses and their applicability to program optimization are well-
studied and at the foundation of many common compiler
optimizations including register allocation, constant propa-
gation, and partial subexpression elimination [24].

The first step in an analysis is to identify the abstract val-
ues, or facts, that the counter can assume and order them
in a lattice structure. Here, the values active and inactive
are arranged in the lattice given Figure 5. Second, a di-
rected graph with a designated start node is supplied by the
XFA itself. Third, flow functions define the effects that in-
structions have on each possible value in the lattice. For a
counter C with set, reset, and decr-and-test instructions,
the flow functions are defined as follows:

fset(C) → Active fdecr−and−test(C) → C
freset(C) → Inactive fpreserve(C) → C

For set and reset, C becomes active and inactive, respec-
tively. decr-and-test does not change C’s value, and pre-

serve is the identity function used when there is no instruc-
tion at a state.

These components define a standard forward-flow “may
have” analysis. The analysis algorithm propagates facts
for each counter among the states, applying flow functions
whenever they are encountered. It terminates when the facts
have converged to a single value per state. Upon completion,
a counter is marked as inactive at a state S if and only if C
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Figure 6: Counter compatibility matrix, specifying
which counter operations are compatible at a state
and the surviving operation.

FIND EQUIVALENT(XFA M):

do1
foreach pair of counters (c1,c2) do2

compatible = true3
foreach state s ∈ M.states do4
if areCompat(s, c1, c2) == FALSE then5

compatible = false ; break6

if compatible then7
foreach state s ∈ M.states do8

op = getReduced(s, ci, cj)9
combine counters ci and cj , keeping operation op10

break; // fall to outer do...while loop11

while compatible = true12

Algorithm 3. Counter compatibility. Two coun-
ters are equivalent and can be reduced to one if
they are compatible at each state.

is definitely inactive on all paths leading to S. Conversely,
if there is any path to S in which C may be active, then C is
active at S. Hence, the results are correct but approximate.

In Figure 4, the clouds in the middle XFA show the activ-
ity of each counter at each state prior to instruction execu-
tion as computed by the analysis. The counters are inactive
at state MX because all paths to MX pass through LY, which
resets both counters. Similarly, the counters are active in KX

because there is a path from MX that sets counter 1 (making
it active) and a path from KZ that sets counter 2.

5.2.2 Compatibility Analysis
Two counters can be reduced to one if they are compatible

at all states in the automaton. At a single state, two coun-
ters are compatible if their operations and activity status
can be combined without changing the semantics of either
counter. We determine compatibility by computing the cross
product of operations and activity status and pairwise com-
paring each element. The compatibility matrix in Figure 6
contains this information for the simple counters in this ex-
ample. As with the dataflow analysis, activity at state S
refers to the activity of the counter upon entrance to S,
prior to instruction execution.

In the matrix, the preserve column handles the cases in
which a counter has no instruction at the state in question.
r,d,p coalesces the entries for the reset, decrement, and pre-
serve operations, which have identical behavior for inactive
counters. If two operations are compatible, the correspond-
ing entry holds the operation that survives if the counters
are combined. A dash indicates that operations are not com-
patible. Operations to active counters are incompatible with
most other operations, but inactive operations are mostly
compatible. The exception is an inactive set, which tran-
sitions a counter to the active state and is therefore mostly
incompatible. The lower half of the rightmost column spec-
ifies the cases in which a state has instructions for only one

bitSET 1
bitSET 2

x

y

z

[^xyz]

bitTST 1, [alert …]

bitTST 2, [alert …]

y

z

Figure 7: Combined automata for /x.*y/ and /x.*z/.
A stronger dataflow analysis can eliminate a bit.

counter, but the dataflow analysis determines that a second
counter is also active. Combining the two counters and us-
ing the operation of the counter present at the state could
change semantics of the second active counter, so the coun-
ters are in fact not compatible.

Algorithm 3 shows the process for identifying and reduc-
ing equivalent counters. For each pair, the algorithm cycles
through all states and compares the pair using the areCom-

pat function, which extracts activity status and operations
for c1 and c2 at state s and invokes the counter compati-
bility matrix. Lines 8-10 perform the actual reduction for
a pair of counters that are compatible at all states. When
a reduction results in the elimination of one or more in-
structions at a state, the operation that remains is returned
from the compatibility matrix via a call to the getReduced

function. Note that compatibility is not transitive; when a
pair of counters has been reduced, the resulting compatibil-
ity between this new counter and other counters must be
re-established. This is satisfied by Line 11, which causes the
algorithm to fall out to the outermost loop after a reduction
has been performed. In the running example, the rightmost
automaton shows the results after compatibility analysis has
determined that counters 1 and 2 are compatible. All refer-
ences to counter 2 are replaced by a reference to counter 1,
and irrelevant reset and decr operations are removed.

This optimization completes quickly, despite the O(n3)
runtime of the dataflow and compatibility analysis. With
one exception (which contained 172 bits) the procedure com-
pletes in less than one minute per test set. Stronger dataflow
analyses can be used to identify further reduction opportuni-
ties that this analysis misses. For example, Figure 7 shows
a combined XFA for expressions /x.*y/ and /x.*z/ that
share a common prefix and use one bit each. A dataflow
analysis that uses more than just activity could determine
that a single bit is sufficient for both of these expressions.

5.3 Code Motion and Instruction Merging
Many expressions yield automata that set or reset a single

bit. When they are combined, individual states may contain
many such bit assignment instructions. However, the cost of
updating a single bit is the same as that for an entire word;
by coalescing bit operations whose bits fall within the same
word we can shorten the number of instructions in programs
and simultaneously reduce the number of writes to memory.

This optimization operates on each state independently.
The basic mechanism is to move bit assignment instruc-
tions so that those belonging to the same word are adjacent.
Such sequences are then replaced by a composite one-word
mask and an instruction that applies the mask when exe-
cuted. There are subtleties, though. First, there are data
hazards [14]: bit assignment instructions cannot be moved
across other instructions that use or manipulate the bit val-
ues without changing semantics. As an example, in the se-
quence [bitSET 2],[bitTST 4,([alert,42])],[bitRST 4],



Num # States Variables Instrs per state Aux memory (bytes)
Rule set Sigs DFA XFA # bits # ctrs max avg variables program

Snort FTP
72 >3.1M 769

8 46 50 38.67 93 1336K
optimized 8 2/2 5 0.66 9 44K

Snort SMTP
56 >3.1M 2,415

11 31 37 21.48 64 2211K
optimized 6 4/6 21 0.69 21 114K

Snort HTTP
863 >3.1M 15,266

172 15 31 15.91 52 7445K
optimized 171 0/6 11 1.03 34 1008K

Cisco FTP
38 >3.1M 527

11 12 19 12.35 26 271K
optimized 10 0/3 4 0.33 8 16K

Cisco SMTP
102 >3.1M 3,879

8 3 10 5.20 7 806K
optimized 8 0/2 7 0.28 5 76K

Cisco HTTP
551 >3.1M 11,982

13 10 17 10.48 22 4907K
optimized 12 0/2 7 0.42 5 515K

Table 1: Combined automata for several protocols, before and after optimization.

No-Opt Opt 1
Inst/ ctrs Inst/

Rule set ctrs state gen/imp state

Snort FTP 46 38.67 8/38 4.18
Snort SMTP 31 21.48 10/21 1.59
Snort HTTP 15 15.91 0/15 1.24
Cisco FTP 12 12.35 0/12 2.65
Cisco SMTP 3 5.20 0/3 0.34
Cisco HTTP 10 10.48 0/10 0.69

(a) Opt 1: Exploit runtime information

Opt 1 Opt 2

Rule set bits ctrs bits ctrs

Snort FTP 8 8/38 8 2/2
Snort SMTP 11 10/21 6 4/6
Snort HTTP 172 0/15 171 0/6
Cisco FTP 11 0/12 10 0/3
Cisco SMTP 8 0/3 8 0/2
Cisco HTTP 13 0/10 12 0/2

(b) Opt 2: Coalesce independ. vars

Opt 2 Opt 3
Inst/State Inst/State

Rule set max avg max avg

Snort FTP 7 0.81 5 0.66
Snort SMTP 21 0.73 21 0.69
Snort HTTP 16 1.09 11 1.03
Cisco FTP 7 0.46 4 0.33
Cisco SMTP 9 0.33 7 0.28
Cisco HTTP 8 0.55 7 0.42

(c) Opt 3: Instruction merging

Table 2: Consecutively applying optimizations 1, 2, and 3.

instruction 3 cannot move left because bit 4’s value is used
by instruction 2. Second, merged instructions should com-
bine bits belonging to the same word only. Thus, the task
is to move and merge as many instructions as possible while
satisfying both conditions.

In practice, we use a simple greedy heuristic that identifies
many opportunities for merging. The heuristic first identi-
fies all bit assignment instructions that belong to the same
word. Next, it looks for data hazards between neighboring
pairs of assignments. When a pair with a hazard-free move-
ment direction is found, the instruction is moved along this
direction to its neighbor. The process repeats until no more
moves are performed. For each word, the optimizer merges
adjacent bits, constructs the mask, and replaces the instruc-
tions with a single bit mask instruction. This optimization
is performed last of all, after the dataflow analysis.

6. EXPERIMENTAL EVALUATION

6.1 Test sets and Optimizations
We evaluated XFAs on FTP, SMTP, and HTTP signa-

tures from Snort [28] and Cisco Systems. We first produced
individual state-based XFAs from regular expressions using
the techniques described earlier. We then combined the sig-
natures in each set using Algorithm 1. Combination is fast;
the Snort HTTP set took the most time to combine at just
over seven minutes whereas all other sets required less than a
minute to combine. For comparison purposes, we built stan-
dard DFAs for each of the regular expressions and combined
these per protocol as well.

Table 1 summarizes properties of the combined XFAs. In
each test set, the top row describes the automaton before any
optimizations are performed. Columns 3 and 4 give the num-
ber of states in the combined DFA and XFA, respectively,
and illustrate the magnitude of the savings when state-space
explosion is eliminated. In some cases, the combined DFA
size may be a gross underestimate: Cisco FTP, for example,
exhausted memory after only 23 DFAs were combined. Col-
umns 5 and 6 show the number of variables used by each

test set, Columns 7 and 8 give the maximum and average
number of instructions per state, and Columns 9 and 10 give
the amount of auxiliary memory needed for storing mutable
variables and immutable programs. We used two-byte coun-
ters when computing the variable memory requirements.

We applied the three optimizations in Section 5 in con-
secutive order and show relevant results in Tables 2a, 2b,
and 2c. In Table 2a and all subsequent tables, we use a
forward slash to separate generic and implicit counters. As
the table shows, a large fraction of generic counters were
converted to an implicit form. Since these new counters re-
quire no explicit decrement instruction, the average number
of instructions per state is considerably reduced as shown in
Columns 3 and 5. Table 2b shows the effect of the analy-
ses for coalescing independent variables. In most datasets,
the analysis discovers that a significant percentage of generic
and implicit counters can be coalesced. Note that variables
must have the same type to be considered. For example,
generic counters can be coalesced with other generic coun-
ters but not with implicit counters. For bits, the reduction
opportunities are more modest. We believe that improved
results can be obtained with a more refined analysis. Finally,
Table 2c reports the results of code motion and instruction
merging applied to bit instructions. Not surprisingly, the
largest reductions come from the sets with the most bits.

Table 1 summarizes the cumulative effect of the optimiza-
tions in the bottom row of each set. Figure 8 shows his-
tograms of the number of instructions per state for Snort
HTTP before and after optimization. Note the log scale on
the y-axis. After optimization, just over half of all states
have no instructions, and all remaining states have 11 or
fewer instructions. Histograms for other sets are similar.

6.2 Memory Usage and Performance
In the second set of experiments we analyze the memory

and runtime performance of XFAs when applied to traces
of live traffic. We wrote a translator that converts instruc-
tions on states to C source code (with a distinct function for
each state) and compiled the code to a shared library whose
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Figure 9: Memory versus run-time trade-offs for mDFAs, D2FAs, and XFAs.
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Figure 8: Instructions per state for Snort HTTP,
before (top) and after (bottom) optimization.

functions are linked to the appropriate state during initial-
ization. During inspection, programs are executed after the
input symbol is read and the state transition is complete.
Support for runtime information, as is used in optimization
1, is compiled into the library as well.

For comparison purposes, we also evaluate two other re-
cently proposed techniques, multiple DFAs (mDFAs) [37]
and D2FAs [20], which we briefly described in Section 2.
We implemented the mDFA algorithm and supplied memory
ceilings ranging from 4K total states to 512K total states,
which produced groups of combined automata for each set-
ting. During runtime we matched mDFAs by modifying our
matching code to maintain multiple state pointers. For the
D2FA evaluation, we applied the D2FA edge compression al-
gorithm to each combined DFA in each mDFA group. The
D2FA proposal requires custom hardware to hash an input
symbol to the correct compressed transition entry. To adapt

to a software-based environment, we used a simple bitmap-
based structure to identify the next transition. This makes
the hash function as fast as possible (simulating the hard-
ware assist) with only a minor cost in memory usage.

Execution time tests were performed on 10 GB traces
captured on the link between a university campus and a
departmental network at varying times. We performed all
experiments on a 3.0 GHz Pentium 4 Linux workstation.
Runtime measurements were collected using cycle-accurate
performance counters and are reported as average cycles per
payload byte. During execution, each automaton is applied
only to packets belonging to its respective protocol.

Figure 9 gives space-time comparisons for each test set.
In all plots, the x-axis (processing time) and y-axis (mem-
ory usage) increase on a log scale. The dashed vertical line
gives the runtime for the largest subset of DFAs that we
could combine and fit into memory. mDFAs trace out a
curve showing the trade-offs between memory usage and pro-
cessing time. D2FAs build on mDFAs and follow a similar
curve with a reduced memory footprint. For XFAs, we plot
the combined automata along with the cumulative effects
of each optimization, leading toward the lower left corner.
Optimization 1 exhibits the largest visible improvement. By
eliminating instructions on many states, both memory and
runtime are reduced by up to an order of magnitude. In
general, the second optimization also achieves significant re-
ductions, although here they are largely subsumed by op-
timization 1. Optimization 3 reduces memory but has a
negligible effect on performance.

6.3 Per-flow State
Table 3 depicts the per-flow state for mDFAs/D2FAs at

various memory ceilings and for XFAs. mDFAs require a dis-
tinct current state pointer for each automaton in a group,
and D2FAs have these same requirements. We assume 2-
byte state pointers for 8K and 64K ceilings and 3-byte point-
ers for 512K ceilings. XFA per-flow state contains a state



XFA mDFA/D2FA
Rule set 8K States 64K States 512K States

Snort FTP 11 (4) 8 (2) 4 (2) 6
Snort SMTP 23 (11) 22 (11) 22 (4) 12
Snort HTTP 36 (77) 154 (41) 82 (27) 81
Cisco FTP 10 (4) 8 (2) 4 (2) 6
Cisco SMTP 7 (6) 12 (3) 6 (3) 9
Cisco HTTP 8 (23) 46 (14) 28 (8) 24

Table 3: Per-flow state in bytes for XFAs and mD-
FAs at various memory ceilings. Parentheses hold
the number of mDFAs at each setting.

pointer along with all the variables that must be maintained.
We quantify this by adding a 2-byte state pointer to each of
the optimized variable memory entries (column 9) in Table 1.
Reductions in per-flow state for XFAs are a direct result of
optimization 2. As Table 1 indicates, per-flow state can be
reduced by up to a factor of six. In Table 3, per-flow state
for XFAs is comparable to mDFAs in all cases. For large
test sets, XFA state can be much smaller, depending on the
mDFA memory ceiling.

7. MIGRATING TO HARDWARE
We present here a preliminary chip design that can per-

form signature matching at 10 Gbps using XFAs with up
to 24,576 states. The chip does not perform reassembly or
packet classification, and it also uses techniques for com-
pressing the transition tables. It has 8 packet processing
pipelines each consisting of three loosely coupled stages: a
DFA engine, a program lookup engine, and a processing el-
ement. We expect a clock speed close to 500MHz.

DFA engines consume one byte of input every two cy-
cles and use a shared multiport SRAM to store transition
tables. Each of the 220 entries of this SRAM stores a 15-
bit state identifier. The DFA engines implement a table
compression algorithm based on ideas from the existing lit-
erature [4,20,21]. For brevity we omit the exact description
of the algorithm, but we note that for each payload byte,
the DFA engine performs a single access to the shared tran-
sition table, and up to two accesses to a private SRAM with
24,576 60-bit words.

Program lookup engines receive from their DFA engine
a sequence of states visited and produce a sequence of pro-
grams to be executed. Since most states have no programs
associated with them, the output of this engine includes only
the addresses of the non-empty programs, and it pairs with
each program the offset in the input to which it corresponds.
Each engine uses a private SRAM with 24,576 15-bit words
representing the addresses of the program associated with
each state. At the output of each engine is a large queue of
up to 32 addresses which provides decoupling between the
DFA engines and the PEs.

Processing elements execute the programs associated
with the traversed states. These programs are stored in a
local 64KB instruction memory. For states whose programs
are identical, a single copy needs to be stored. While the
instruction memory of one processing element may not be
large enough to store the programs for XFAs for all pro-
tocols, it can easily store the programs for the largest one.
Hence each processing element can handle a subset of the
protocols we have signatures for. Each PE uses 32 16-bit
registers holding the variables. The instruction set does not
have memory access operations or branches. We use simple
predication to make instructions conditional. All instruc-
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Figure 10: Chip that can do signature matching at
10Gbps using XFAs.

tions are 2 bytes. The PE uses a simple 3-stage pipeline
with one instruction issue per cycle. The only unusual part
is the logic for determining the address of the instruction to
fetch. It can be the next instruction, the first instruction
of the next program in the queue, or the next program in
the offset list. The offset list is a chain of 8 elements that
maintain a sorted list with the offsets in the input at which
various implicit counters fire, together with the addresses of
the programs to be executed in response.

Switching between packets happens with the assis-
tance of the scheduler. For the DFA engine, the switch only
requires loading a new value for the current state. The pro-
cessing element needs to write out the dirty registers and the
offset list into the cache line holding the per flow state of the
old packet, and read in the registers and offsets correspond-
ing to the next one. To avoid slowing the PE down, we use
two sets of registers and two offset lists so that while the PE
is working with one packet, the variables for the previous
one can be written out and those for the next one read in.
A 256KB cache holds packets and their per flow state.

We estimate the chip size by comparing against the Ni-
agara2 floorplan [23]. Our design uses 4.4MB total SRAM
compared to Niagara2’s 4MB of L2 cache. Our processing el-
ements are much simpler than Niagara2’s cores; it has many
components not needed in our design and is more complex.
Since Niagara2 uses 342mm2 in a 65nm technology, we es-
timate that our chip would use less than 200mm2.

8. CONCLUSION AND FUTURE WORK
The Big Bang Theory [13] asserts that a compact, highly

compressed mass exploded into a mostly empty universe,
leaving scattered pockets of organized matter. This is not
too dissimilar from combined DFAs, which experience ex-
plosive growth yet are full of redundancy. In this work, our
running hypothesis is that the systematic use of auxiliary
variables and optimizations provides a practical mechanism
for deflating explosive DFAs.

In this paper we presented a formal characterization of
state-space explosion and showed how auxiliary variables
can be used to eliminate it. We presented XFAs, a formal
model that extends standard DFAs with auxiliary variables
and instructions for manipulating them. We defined opti-



mizations over this model that significantly improve perfor-
mance and decrease per-flow state.

Many research problems remain open. Our treatment
of state-space explosion is preliminary, and stronger results
may allow us to better predict and control it. A better un-
derstanding of the interplay between protocol parsing and
signature matching may yield simpler automata and better
performance. But, even with our current prototype, mea-
surements show large improvements over previous solutions.
We are optimistic that in the end, XFAs will yield a fast,
scalable mechanism for deep packet inspection.
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