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Abstract 1 Introduction

Nearest neighbor queries are importantin many settings, ~The problem we consider is that of nearest neighbor
including spatial databases={nd thek closest citiesand  queries. For example, the quefind the closest city to
multimedia databasesFind the x most similar imaggs ~ San Diego,might return‘Los Angeles’ More formally, a
Previous analyses have concluded that nearest neighborl-nearest neighbor query is defined as follows. Given a data
search is hopeless in high dimensions, due to the notorioussetS of N points and a query, find the closest objeat,
“curse of dimensionality”. However, their precise analysi  1.€,
over real data sets is still an open problem.

The typical and often implicit assumption in previous
studies is that the data is uniformly distributed, with in- A k-nearest neighbor query finds the< N closest points.
dependence between attributes. However, real data setdHenceforth, we shall use the term nearest neighbor query.
overwhelmingly disobey these assumptions; rather, theyNearest neighbor queries are useful in several applicstion
typically are skewed and exhibit intrinsic (“fractal”) di- GIS, where we want to finde.g, the k¥ nearest hospitals
mensionalities that are much lower than their embedding from the place of an accident. Such queries are useful in ur-
dimension,e.g, due to subtle dependencies between at- ban planning, decision makingic; information retrieval,
tributes. In this paper, we show how the Hausdorff and where we want to retrieve similar documents; multimedia
Correlation fractal dimensions of a data set can yield ex- databases, where objecesq, time series) are transformed
tremely accurate formulas that can predict I/O performance into n-d points, by extracting features (such as the first
to within one standard deviation. Discrete Fourier Transform (DFT) coefficients [1]). Thus,

The practical contributions of this work are our accu- @ query of the fornfind & objects similar to the query ob-
rate formulas which can be used for query optimization in ject @ becomes the querfind thek nearest neighbors to
spatial and multimedia databases. The theoretical contri- the query poing;. This approach has been used in several
bution is the ‘deflation’ of the dimensionality curse. Our Other settings: for medical images [24], video [23];; and
theoretical and empirical results show that previous worst DNA databases [32].
case analyses of nearest neighbor search in high dimensions Analyzing query performance in spatial access methods
are over-pessimistic, to the point of being unrealistice Th IS important for query optimization and for evaluating ac-

NN(@)={neS|¥eS8:|l¢g—nl <llqg-pl}

performance depends critically on the intrinsic (“fractpl ¢SS method designs. Unlike more complex queries such as
dimensionality as opposed to the embedding dimension thagPatial join, nearest neighbor queries are 1/0-bound. Most
the uniformity assumption incorrectly implies. I/O cost models unrealistically assume uniformity and in-

dependence to make the analysis tractible (for a recent ex-
ample, see [7]). However, real data overwhelmingly dis-

obey these assumptions; they are typically skewed and often
*This material is based upon work supported by the Nation&rge ; ; ;
Foundation under Grants No. IRI-0625428, DMS-08734420857496, have subtle dependencies between attributes, causing most
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qguery model[27], which assumes that queries are more B
likely to be posed in heavily populated regions.

The “curse of dimensionality” is a notorious problem in
high dimensional indexing whereby performance degrades
exponentially as a function of dimensionality. It has at-
tracted a lot of recent interest [25, 9, 5, 22, 6, 8, 34]. Al- A
though no convincing lower-bound has been shown, the
conventional wisdom in the theory community is that a so-
lution does not exist for worst-case search time polynomial

(a) recursive construction

in d with linear storage [11]. Some empirical studies have L
observed barely sublinear search time in practice; in fact,
in high dimensions, performance can degrade to worse than 0.7
exhaustive search [9].

As we argue in this paper, these results are over- f‘
pessimistic when the intrinsic dimensionality of a data set 0.5 & ‘;f'}’
is significantly lower than its embedding dimension. We &‘;&
show both analytically and experimentally that the fractal 02 & -y
dimension, rather than the dimension of the space contain- ' PRSI ey
ing the data set, is the real determinant of performance. In a "‘%;
this sense, the dimensionality curse is ‘deflated’ when the ol 23k v
intrinsic dimensionality is significantly lower than the em 0 025 05 075 1
bedding dimension. Our formulas take as input five param- (b)Si er pi nski data set
eters: the number of data point§, the number of neigh-
borsk, the effective bucket capacity, the dimension of Figure 1. Sierpinski triangle: (a) first 3 steps
the embedding spack, and two measures of the intrinsic ~ ©Of itS recursive construction; (b) sample of
dimensionality, namely, the Hausdorff dimensiti and 5,000 points based on recursive rule.

the Correlation dimensiofs.

The paper is organized as follows. Section 2 gives some
background on fractals and fractal dimensions and reviews Next we present two measures of the so-called fractal
some formulas for spatial selectivity estimation. Sedi8n  dimension of a point set. For algorithms to compute them,
and 4 give our formulas, with associated derivations and see [4].
proofs. Section 5 presents empirical results from experi-

ments. Section 6 lists the conclusions. Definition 1 (Hausdorff fractal dimension) Given

a point set embedded in ali-dimensional space, divide
this space into (hyper-)cubic grid cells of sideLet N (r)
2 Background denote the number of cells that are penetrated by the set of
points (i.e., that contain one or more of its points). For a
Here we give a brief introduction to fractals and review POINtset thathas the self-similarity property in the rage

some work in the analysis of spatial access methods andcalesr € (11, r2), its Hausdorff fractal dimensio®, for
spatial selectivity estimation. this range is measured as

_ Olog(N(r)) _
2.1 Fractals and Fractal Dimensions Do = - “olog(r) constant v € (r1, 72)

A set of points is a fractal if it exhibits self-similarity @
over all scales. This is illustrated in Figure 1(a), which Definition 2 (Correlation fractal dimension) For a point
shows the first few steps in the recursive construction of the Set that has the self-similarity property in the range oflesa
so-calledSierpinski triangle Figure 1(b) gives 5,000 points (71, 72), its Correlation fractal dimensio, for this range
that belong to this triangle. The resulting set of points ex- is measured as

hibits ‘holes’ in any scale; moreover, each smaller trigngl 5

is a miniature replica of the whole triangle. In general, the mogzpz’

essence of fractals is thslf-similarityproperty: parts of Dy = ——' = constant r € (r1,7)

the fractal are similar (exactly or statistically) to the el Ologr

fractal. (2)



wherep; is the percentage of points which fall inside ttie

cell. symbol | definition
N number of points
An interesting observation is that the above definitions | & number of nearest neighbors
encompass traditional Euclidean objects, that is, the frac | £ embedding dimension
tal dimension of Euclidean objects equals their Euclidean| 2 intrinsic dimensionality
dimension. Thus, lines, line segments, circles, and all the| Do Hausdorff fractal dimension
standard curves hav@=1; planes, disks and standard sur- | 2 Correlation fractal dimension
faces haveD=2; etc. h height of R-tree .
C effective bucket capacity
. oy avg side length of R-tree node on leyel
2.2 Spatial Access Methods dlee (k) | avgL.. distance tdi-th nearest neighbor
) n dkz2 (k) avgl. distance td-th nearest neighbor
Spatial access methods and specifically R-trees [17] have ankse. avg number of MBR's sensitive anchors it -norm
been the subject of many papeesg, R+-trees [31], R*- an2 | avg number of MBR’s sensitive anchors vir-norm
trees [2], and Hilbert R-trees [21] See [16] for a Survey PaLl(l)o (k) avg pages retrieved Wnn query Loo_norm)
Recently, the dimensionality curse has attracted a lot-of in P2 (k) | avg pages retrieved by-nn query (.2-norm)

terest, and thus there have been many proposals for spa-
tial access methods geared specifically towards high dimen- Table 1. Symbol table.
sional indexing [25, 9, 5, 6, 8, 34].

Formal worst-case analyses of performance of R-tree
queries in high dimensions have yielded some very pes- : .
simistic results [18, 34, 10]. The focus of the latter two From the previous work, we make use of the following

: . g two results.

are on nearest neighbor queries, where the analysis in [34]
makes assumptions of uniformity and independence, and smyma 2.1 In a well-constructed R-tree, the MBRs are
where the analysis in [10] applies to very restricted con- gqyare-like regions of roughly the same size. The sides
ditions of dependence between dimensions. of these hyper-rectangles at each leyatan be estimated

. . . using the Hausdorff dimensidn, as follows:
2.3 Selectivity Estimation

Ch=i\ Do
Selectivity estimation in R-trees has also attracted much o; = ( v ) , j=0,...,h -1 3)
interest. The focus of [15] and [33] is on estimating disk

accesses for range queries in R-trees. Selectivities 81 Sp wherep is the height of the tree ard is the effective bucket
tial joins using fractals are studied in [4]. Closer work to capacity.

ours is that of [7] and [13], in which cost models for near-

est neighbors are presented. In the former, assumptions oProof: See [14]. |
independence are implicit in the formulas. In the latter, a

cost function was provided, assuming that the distance dis-Theorem 2.2 Given a set of point® with finite cardinal-
tribution F'(x) from an 'anchor’ object to the rest of the ity V embedded in a unit hypercube of dimenstoand its
objects is given, and is the same fany object that we  Correlation dimensionD,, the average number of neigh-
choose as anchor. However, their formula needs statisti-b0rsnb(e, ‘E-d shap§ of a point within a region of regular
cal estimation of?(z), and is unable to make any comment shape and radiusis given by

with respect to the embedding dimensionalify In con- . by

trast, our analysis shows thatdoes not play a role; rather, ~ nb(¢, ‘E-d shap§ = (N — 1) - Vol(c, ‘E-d shapg = (4)

it is the Hausdorff and Correlation fractal dimensions that ]

really matter. Thanks to their simplicity, our formulas al- WhereVol(¢, ‘E-d shap§ is the volume of a shape g,
low for easy extrapolations and asymptotic analysis thet th CUP€, sphere) of radius

formulasin [7, 13] cannot. .

To the best of our knowledge, the only nearest neighborPrOOf' See [3]. .
analysis that uses fractals is in [29], which gives upper and .
lower bounds for 1-nearest neighbor queries. In contrast,3 ProposedL..., Nearest Neighbor Formulas
here we tackle the problem éfnearest neighbor queries
and give a single and more accurate average value. More- Because the analysis is more straightforward, we first
over, our formulas can be simplified, and thus lead to funda- consider thd.., distance between points, that#&y, y) =
mental observations that deflate the ‘dimensionality curse max;<;<g |2; — ¥;|. Moreover, nearest neighbor search



based on thé...-norm has been used in the literatueey search radiuse). Then the average number of query-
see [24]). We then proceed to thg case. Both cases are sensitive anchors of an MBR with side lengtk given by
analyzed similarly. D,

An outline of our analysis is given as follows. First, g (€)= (N = 1) - (1 4+26)7 + 1. (7)
we determine how far away from the anchor point of the Proof: We assume the center of the MBR to be a data point.
query thekth nearest neighbor is located on average, in ef- Since every MBR wraps a large number of data points on
fect, transforming a nearest neighbor query into an equiv- average, it can be expected that there exists a data point
alent range query. Based on this distance, we compute theyithin a very small distance to the center. The inflated MBR
number of query anchors which cause a typical page to be(with the query-sensitive anchors in it) is a square of side
accessed. Since in the biased model data points are chotength/ + 2¢, so that we can directly use Eq. 4 to estimate
sen as query anchors and each point is equally likely to bethe number of data points falling into it. Computinig! (1+
taken, this directly gives us the access probability of that 2¢ ‘E-d cubé), substituting the term in Eq. 4, and adding
page. By summing up over the access probabilities of all the MBR’s center as a further anchor completes the proof.
R-tree pages, we finally get the average number of page aco
cesses, that is, the averag@mearest neighbor performance We are ready now to estimate the number of page ac-
of the structure. cesses needed to answei-aearest neighbor query (that s,

. . _ the query performance) with respect to -norm.
Lemma 3.1 The averagd. ., -distance of a data point to its queryp ) P the

kth nearest neighbor is given by Theorem 3.3 Assume a set o¥ points with Hausdorff di-
) mensionD, and Correlation dimensio), indexed by an
I 1 k D3 R-tree with effective page capacity and heighth. Then

nn (k) = 9 (m) : (5) the average number of accesses of R-tree pages needed to

answer ak-nearest neighbor query is given by
Proof: In order to reach all neighborg of a query an- Ly
Lo

chor ¢ with L. -distance less than that is,||¢ — 7|, = pLos (1) — ant= (o5, dle(k))
max;=1 g |¢; — n;| < €, a hypercube of radius(of side aii” (k) = Z Ch—i

length2¢) centered afy has to be explored. On the other i=0
hand, the average number of neighbors of a data point in d \ R L\ Ds
gie g -1 h=j\ Do D3
hypercube of radiusis given by Z -1) C n k 2 n 1
= 2D2 Ch=i N N -1 Ch=i
nb(c, ‘E-d cubd) = (N — 1) - Vol(e, ‘E-d cub&) & (6) ®

due to Eq. 4. Substitutin[zjol(e, ‘E-d cubé) by the volume ~ Proof: According to Lemma 2.1, a page’s MBR on level
formula for hypercubeg2¢)Z, as well asib(c, ‘E-d cubé) ~ J has side lengtly; on average. According to Lemmas

by k, and performing some 5|mple algebralc manipulations 3-1 and 3.2 the number of guery -sensitive anchors forcing
to solve the resulting equation foyields the desired result. @ Page access i v (05, dh (k). Since in the biased

0 model the probability of each point to be chosen as query
Lemma 3.1 provides the average search radius around arfnchor is identical, thaLt isy, & page on leve] is accessed

arbitrary data point in order to find its nearest neighbors. ~ with probability i~ - an, % (o;, d5:2(k)) on average. Eq.8
Sincedke (k) is a constant, the nearest neighbor problem sums up the access probabilities of every single page from
hence turns into a specific range query problem from the the root to the leaf level{/C"~/ pages on leve}). O
point of an average analysis, namely, asking square range Note thatwhery = h — 1, Eq. 8 and 9 provide the aver-
queries of radiugZ e (k), where each data point is equally age number ofeaf accesses. We can simplify Eq. 8 under
likely to be chosen as square center. In [27] itis shown thatthe reasonable assumptions thatis large (v > 1) and

all anchors of square range queries with radiudich force D = Do = D (which holds for any mathematical fractal).

a certain page to be accesseg€ry-sensitive anchargor Corollary:

short) must be located within the page’s Minimum Bound- 5
ing Rectangle (MBR) dilated (a la Minkowski sum) by a . h-1 1 E \7D

frame of widthe. The next lemma gives the average num- Py (k) = Z Ch=7 + {1+ (Ch ]) 9)
ber of data points located in such a region if the MBR is J=0

roughly a square by itself.

Proof: By substituting the formulas foan’s., o;, and
Lemma 3.2 Assume the biased model, square range dg (k) and performing some asymptotic manipulations as
queries of radius (= nearest neighbor queries with., N — oo, |



With respect to the above formulas, we make the fol-
lowing observation. Contrary to previous results, thedear
effort doesnot suffer from the ‘dimensionality curse’ when
D « F as a result of the fact that the embedding dimen-
sionality £ does not appear in Eq. 8 and 9. Even wlieis
large, thek-nearest neighbor search performance is dictated
by the fractal dimension of the data set.

4 Proposedl, Nearest Neighbor Formulas

In this section, we analyze nearest neighbor queries in  Figure 2. MBR of side length [ dilated by

the L, norm, thatisd(z, y) = Zfﬂ(l‘i _ yi)z}l/z_ For- rounded frame of width ¢ in (a) 2-d and (b)
tunately, this slightly modified scenario can be handled in 3-d.

a manner very similar to that of the,,-norm. While the
ideas behind the analysis remain the same, the formulas are
more complicated. The first lemma determines the average
Euclidean distance between neighbors.

radius¢). Then the average number of query-sensitive an-
chors of an MBR with side lengths given by

Doy
. . N—1)-(1?+4 N 4
Lemma4.1 The average Euclidean distance of a data ( ) ( taledme ) th

point to itskth nearest neighbor is given by ank2 (1,¢) = =2 Dy
(N—=1)- (13 +6[%e + 3l + %71’63) 54,
r(+%) ® E O\ Dz ifE=3
dkz (k) = ( ﬁ2 ) .<N_ 1) . (10 (13)

Proof: The proof is identical to that of Lemma 3.2, except
Proof: We proceed analogously to the proof of Lemma 3.1. that the volume for the- and3-dimensional solids, as de-
All neighbors of a query anchor with Euclidean distance pjcted in Fig. 2, are used instead of the cube volume. Note
less tharr appear in the surrounding hypersphere of radius that Theorem 2.2 is still applicable to these solids due to

e. Again we use Eq. 4 to estimate the number of data pointstheijr regularity. O
located in this sphere, that is, Using Eq. 13 we can now derive an exact formula for
PL2(k), just as we did in Eq. 8:
— D2
nb(e, ‘E-d spherg) = (N — 1) - Vol(e, ‘E-d spher§ =, . 2 ank2 (o5, dlz (k)
(11) Pall (k) = Z Ch 7 (14)
Using the volume formula foE-d hyperspheres [26], i=0
. For higher than 3 dimensions we come up with an upper
. 77 - ¢F and lower bound of the average number of query-sensitive
Veol(e, ‘E-d spher€) = + %)’ (12) anchors rather than the exact value. Sincelthevariation
of the problem can be solved more easily, we reduce the
we solve Eq. 11 foe. |

. Euclidean case appropriately.
The next step concerns the estimation of the number of

query-sensitive anchors of a certain page. In the EuclideanLemma 4.3 For each MBR-sizé, search distance, and
case, the nearest neighbor query again is transformed intélimensionz holds
a range query in the biased model, this time with spherical
queries (_)f radiud,_%fl(k:)j In[28_] itis shown thz_it all anchors mbr(l 6/\/_) < anmbr( 0 < anmbr(l . (15)
of spherical queries with radiusare located in the page’s
MBR inflated by a rounded frame of widthas depicted ~ Proof: Assume an arbitrary MBR. Then for this MBR
in Fig.2. These geometric solids, however, become morethe reglon 0f possible query-sensitive anchors correspond
difficult to describe with every additional (embedding) di- ing to anl% (l,€) includes the region corresponding to
mension. The following lemma provides a solution for the an’s (I, 6/\/_) since
cases ofy = 2, 3.

o _ € o
Lemma 4.2 Assume the biased model, spherical queries ofoHOO - mzaXm' ~VE = [l7ll </ B
radiuse (= nearest neighbor queries with Euclidean search (16)



Therefore,

120l <1121l

(17)

so that the same property holds for the regions correspond-
ing to ant3.(I,¢) andan3 (I, ¢). These inclusion rela-

tionships of the regions, however, provide an ordering of
the region volumes, which is preserved by the number of
guery anchors located in it (see Theorem 2.2 for the propor-

tionality of volumes and number of anchors). |

Lemma 4.4 Nearest neighbor searching according to the
two distance functionsis related by

2 EN?
diz (k) = dig (K) fork’ = | = (T(1+ = k.
£ (k) = db (k) for (ﬁ (ra+5) )
(18)
Proof: Solvede (k') = dLz (k) for k' |

(T + £y)%)P= . k. Then

iy

Theorem 4.5 Let k' = (%
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Figure 3. Real data sets: road intersections
from (a) Montgomery County, MD; and (b) and
Long Beach County, CA.

the average number of accesses of R-tree pages needed to

answer ak-nearest neighbor query with respect to the Eu-
clidean distance, is estimated as

Data sets: We used the following data sets:

h—1 anL%o (O'j ﬁ?f’(k')) h=1  Lew(  JLeo(1t
mor ’ B Lo anmbr(o-]’dnn (k ))
J= J=

(19)

Proof: Directly by applying Theorem 2.2 and Lemmas 4.3

and 4.4. O
Analogously to the last section, we perform some

asymptotic manipulations to simplify Eq. 19. Herede-

pends on the embedding dimensignand so do both the

upper and lower bound d?%? (k). Howeverk' — (%)D2

for £ — oo, and thus both bounds monotonously decrease

as F becomes large. In addition, by assumiig> 1 and

Dy = D, and using Eq. 9, we get the following estimation

for PL2(k), B — oo

h—1

1 12
Pyi(k) < + =

— < —_—
e s i TR

7=0

5 Experiments

In this section, we present results from nearest neigh-
bor experiments on both real and synthetic data sets. We
designed experiments to determine the accuracy of our for-
mulas for increasing nearest neighbats &nd for increas-
ing dimensionalitiesl) and ).

e M=ty - road intersections in Montgomery County
from the TIGER database
of the U.S. Bureau of Censug'€2, N=27,282,D, =
1.719 andD, = 1.518);

e LBcty - road intersections in Long Beach County
from TIGER census data
(E=2,N=36,548,D, =1.728, andD, = 1.732);

e Si er pi nski - a synthetic, non-uniform fractal de-
picted in Fig 1, known as Sierpinski’s triangle [30].
It was generated by embedding a Sierpinski triangle
in £ = 10 dimensional space, witlb, = D, =
1.585. The Sierpinski triangle was on a two dimen-
sional plane, which was deliberatatyt aligned with
any of the axes;

¢ pl ane - uniformly generated points for a range of
sizes N (from 1-500K) lying on a 2-d planei.é,
Dy = Ds = 2), embedded inF-d space ' ranges
from 2-100). Two orthonormal vectors were randomly
generated (via Gram-Schmidt) and points were uni-
formly sampled from the plane spanned by these vec-
tors;

e mani f ol d - uniformly generated points lying on a
randomly oriented,Dy; = Ds)-dimensional linear
manifold in F-space. Thus, for a fixefl, the intrinsic
dimensionalityD, = D, can be adjusted.



Queries: For each data set, we ran 100 queries. The

workloads were composed of query anchor points randomly N | observed) ourestimate| lower upper
sampled from each data set in accordance with the biased 110KK 1'33 i'ii 122 2'22
qguery model. For the first set of experiments, we ran each 20K 180 144 134 466
workload to produce a variety of result sizeée( nearest 50K 504 144 134 466
neighbors)k. For the second set, we ran each workload 100K | 1.88 1.44 134 466
data sets of fixed intrinsic dimensionality with embedding 200K 228 1.44 134 4.66
dimensiong” ranging from 2-100, and of fixed embedding
dimension withD, and D- ranging from 1-6. Below we C | observed| ourestimate|[ lower upper
tabulate and plot I/O results from the experiments. 10 2.68 2.13 1.84 555
20 2.19 1.77 1.56 5.07
Software: For optimized performance, we used an im- 20 2.03 1.43 134 466
plementation ofl i bG ST' [19] with R*-tree heuristics 100 1.90 1.29 123 446
(see [2]) and the nearest neighbor algorithm from [20]. We ¢ T observed] our estimate]| Tower _upper
presorted the points into an insertion order ensuring tight 10 306 315 570 701
square-like MBRs. 20 | 2.36 2.61 233  6.24
50 2.27 2.16 1.98 5.44
5.1 Accuracy 100 | 1.89 1.92 1.77  4.94

The plot in Fig. 4 demonstrates the accuracy of our
formulas for both thel., and L., norms on theMccty
data set, plotting 1/O as a function @&f nearest neigh-
bors retrieved. Fig. 4(a) plots the predicted (based on the
formula in Eqg. 8) and observed number leaf page ac-
cesses for thé ., norm; Fig. 4(b) plotgotal page accesses.
Fig. 4(c) plots the predicted (Eq. 14) and observed number
of leaf accesses fat, norm; Fig. 4(d) plots total accesses.
The plots graphically depict that the predicted values fell
within one standard deviation of the observed values. Asgj o, pi nski data set. To ensure fair comparisons, we
Fig. 4 shows, performance in the two norms is approxi- increased the page size by the same factor thatas in-
mately the same. _ creased, in order to achieve approximately constant branch

To see how our formulas compared with others, we ing factor (= effective bucket capacity). The average re-
looked at the results reported in [29]. Table 2(a)-(b) pese  gjts are given, along with one standard deviation. To gain
a comparison withk = 1, the only value ok that the pre- 5o me perspective, we also present values that the unifprmit

Table 2. Comparison to the results in[29]. The
first column gives the average 1/O observed in
experiments, the second gives the estimate
according to our formula, and the third and
fourth give lower- and upper-bound estimates
from the formulas in [29].

vious formulas can estimate, fpf ane with ' = 2. Ta-  gn4 independence assumptions would predict for the same
ble 2(c) presents a comparison with= 1 for a random ¢ eries. Note that these values are overpessimistic.
SamP'e oMscty with N = 9, 552. Note that, whereas th_e Figure 5(b) shows the leaf accesses as a function of the
previous results are reported as a range, our formulas give ginsic dimensionality for thevani f ol d data set with
single number. N=100K andk=50, in both graphical and tabular form. We

. . . increasedD, (= D2) from 1 to 6 while keeping the em-
5.2 Effect of Dimensionality bedding dimension fixed & = 10. The I/O performance

_ _ appears to depend dn (not &), worsening ag) increases.

In this set of experiments, our goal was to understand theNote that the uniformity and independence assumptions are
effects of embedding dimension and intrinsic dimensional- jnsensitive to the increase in.
ity. Figure 5(a) shows leaf accesses as a function of embed-
ding dimensionk for the pl ane data set withV=100K
andk = 50, in both graphical and tabular form. We in-
creasedF over a wide range, from 2 to 100 dimensions,
while keepingD, and D, constant. Table 3 displays the We focused on the performance of R-treesKarearest
results from a similar set of experiments performed on the neighbor queries. Contrary to previous approaches that

Tavailable aht tp: // gi st.. cs. ber kel ey. edu make the uniformity or independence assump_tlo_n (or both),

2The results from theBet y data set were similar and are notreported W€ ONly assumed that real data sets are self-similar, and tha
here for brevity. they are characterized by their fractal (more specifically,

6 Conclusions
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M=ty data set, varying k, L., norm: (a) leaf

L, norm: (c) leaf accesses and (d) total page accesses.

E | predicted| observed | unif/ind
2 2.53 472+ 1.81| 3.49
10 2.53 6.42+ 2.11 | 847.26
20 2.53 7.76+ 4.12 all
50 2.53 6.15+ 2.82 all
100 2.53 5.64+ 2.32 all

Table 3. Leaf accesses for increasing

E with

Dy(= D) fixed at 1.58, Si er pi nski data set

(N =100K and % = 50).

HausdorffD, and CorrelatiorD,) dimensions. Using these
two fractal dimensions, we derived closed formulas for the
problem at hand. The practical contribution of this work is
the derivation of accurate formulas to predict the number of
I/Os in an R-tree for nearest neighbor queries, which could
be used for spatial query optimization. These formulas have
the following advantages over previous cost models:

e They accurately predict I/O performance, to witbime
standard deviatiomof that observed. At the same time,
they are closed-form and easy to use, requiring only
fiveparametersiv, k, C', Dy and Ds;

e They apply to real data sets because they do not make
any implicit assumptions of uniformity and indepen-
dence;

e They are valid fork-nearest neighbors, for any arbi-
trary k£, and as such are more general than the older
formulas €.g, [29] and [7]) that only estimate for the
case ofk = 1;



teresting because they show that data sets with low fractal

plane: Leaf Accesses manifold: Leaf Accesses
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E | predicted| observed | unif/ind D | predicted observed unif/ind
2 3.49 475+ 154 | 3.49 1 1.79 3.55+1.70 | 899.31
5 3.45 6.40+ 1.98| 28.26 2 3.36 6.56+ 2.71 851.1
10 3.34 6.42+ 2.11| 847.26 3 6.53 11.04+ 3.08 | 829.89
20 3.36 6.90+ 2.24 all 4 12.85 20.21+ 7.33 | 818.32
50 3.32 6.37+ 2.02 all 5 25.30 | 48.90+ 18.69| 806.89
100 3.32 5.43+ 1.58 all 6 49.77 | 60.94+ 21.67| 794.35
() pl ane data set, increasing (b) mani f ol d data set, increasinB, (= D-)

Figure 5. Leaf accesses for increasing (a)  E with Dy(= D») fixed at 2, pl ane data set; and (b) Dy(= D»)
with F fixed at 10, mani f ol d data set. In both data sets, N =100K and & = 50.

e They are exceptionally accurate in high dimensions Acknowledgements
when compared to other cost models, which are over-

pessimistic; for example, whereas our formulas gave e would like to thank @&li Hjaltason for providing an

an estimate for 100-dimensional data that is correct to R*-tree implementation with incremental nearest neighbor
within one or two 1/Os, other cost models will ‘blow  ¢gde.

up’ under these circumstances.
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