
Deflating the Dimensionality Curse using Multiple Fractal Dimensions

Bernd-Uwe Pagel
SAP AG

Walldorf, Germany
Bernd-Uwe.Pagel@sap-ag.de

Flip Korn
AT&T Labs - Research

Florham Park, NJ
flip@research.att.com

Christos Faloutsos�
CMU

Pittsburgh, PA
christos@cs.cmu.edu

Abstract

Nearest neighbor queries are important in many settings,
including spatial databases (Find thek closest cities) and
multimedia databases (Find the k most similar images).
Previous analyses have concluded that nearest neighbor
search is hopeless in high dimensions, due to the notorious
“curse of dimensionality”. However, their precise analysis
over real data sets is still an open problem.

The typical and often implicit assumption in previous
studies is that the data is uniformly distributed, with in-
dependence between attributes. However, real data sets
overwhelmingly disobey these assumptions; rather, they
typically are skewed and exhibit intrinsic (“fractal”) di-
mensionalities that are much lower than their embedding
dimension,e.g., due to subtle dependencies between at-
tributes. In this paper, we show how the Hausdorff and
Correlation fractal dimensions of a data set can yield ex-
tremely accurate formulas that can predict I/O performance
to within one standard deviation.

The practical contributions of this work are our accu-
rate formulas which can be used for query optimization in
spatial and multimedia databases. The theoretical contri-
bution is the ‘deflation’ of the dimensionality curse. Our
theoretical and empirical results show that previous worst-
case analyses of nearest neighbor search in high dimensions
are over-pessimistic, to the point of being unrealistic. The
performance depends critically on the intrinsic (“fractal”)
dimensionalityas opposed to the embedding dimension that
the uniformity assumption incorrectly implies.�This material is based upon work supported by the National Science
Foundation under Grants No. IRI-9625428, DMS-9873442, IIS-9817496,
and IIS-9910606, and by the Defense Advanced Research Projects Agency
under Contract No. N66001-97-C-8517. Additional funding was provided
by donations from NEC and Intel. Additional funding was provided by
donations from NEC and Intel. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of theauthor(s) and
do not necessarily reflect the views of the National Science Foundation,
DARPA, or other funding parties.

1 Introduction

The problem we consider is that of nearest neighbor
queries. For example, the query‘Find the closest city to
San Diego,’might return‘Los Angeles’. More formally, a
1-nearest neighbor query is defined as follows. Given a data
setS of N points and a queryq, find the closest objectn,
i.e.,NN (q) = fn 2 S j 8p 2 S : jjq � njj � jjq� pjjg:
A k-nearest neighbor query finds thek � N closest points.
Henceforth, we shall use the term nearest neighbor query.
Nearest neighbor queries are useful in several applications:
GIS, where we want to find,e.g., thek nearest hospitals
from the place of an accident. Such queries are useful in ur-
ban planning, decision making,etc.; information retrieval,
where we want to retrieve similar documents; multimedia
databases, where objects (e.g., time series) are transformed
inton-d points, by extractingn features (such as the firstn
Discrete Fourier Transform (DFT) coefficients [1]). Thus,
a query of the formfind k objects similar to the query ob-
ject Q becomes the queryfind thek nearest neighbors to
the query pointq. This approach has been used in several
other settings: for medical images [24], video [23],etc.; and
DNA databases [32].

Analyzing query performance in spatial access methods
is important for query optimization and for evaluating ac-
cess method designs. Unlike more complex queries such as
spatial join, nearest neighbor queries are I/O-bound. Most
I/O cost models unrealistically assume uniformity and in-
dependence to make the analysis tractible (for a recent ex-
ample, see [7]). However, real data overwhelmingly dis-
obey these assumptions; they are typically skewed and often
have subtle dependencies between attributes, causing most
cost models to give inaccurate, pessimistic estimates [12].
In this paper, we derive formulas to estimate the num-
ber of I/Os for nearest neighbor search in an R-tree [17]
and its variants (e.g., R*-tree [2]), for real world data sets.
Furthermore, our analysis incorporates a model of a typi-
cal (and nonuniform) workload using the so-calledbiased
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query model[27], which assumes that queries are more
likely to be posed in heavily populated regions.

The “curse of dimensionality” is a notorious problem in
high dimensional indexing whereby performance degrades
exponentially as a function of dimensionality. It has at-
tracted a lot of recent interest [25, 9, 5, 22, 6, 8, 34]. Al-
though no convincing lower-bound has been shown, the
conventional wisdom in the theory community is that a so-
lution does not exist for worst-case search time polynomial
in d with linear storage [11]. Some empirical studies have
observed barely sublinear search time in practice; in fact,
in high dimensions, performance can degrade to worse than
exhaustive search [9].

As we argue in this paper, these results are over-
pessimistic when the intrinsic dimensionality of a data set
is significantly lower than its embedding dimension. We
show both analytically and experimentally that the fractal
dimension, rather than the dimension of the space contain-
ing the data set, is the real determinant of performance. In
this sense, the dimensionality curse is ‘deflated’ when the
intrinsic dimensionality is significantly lower than the em-
bedding dimension. Our formulas take as input five param-
eters: the number of data pointsN , the number of neigh-
borsk, the effective bucket capacityC, the dimension of
the embedding spaceE, and two measures of the intrinsic
dimensionality, namely, the Hausdorff dimensionD0 and
the Correlation dimensionD2.

The paper is organized as follows. Section 2 gives some
background on fractals and fractal dimensions and reviews
some formulas for spatial selectivity estimation. Sections 3
and 4 give our formulas, with associated derivations and
proofs. Section 5 presents empirical results from experi-
ments. Section 6 lists the conclusions.

2 Background

Here we give a brief introduction to fractals and review
some work in the analysis of spatial access methods and
spatial selectivity estimation.

2.1 Fractals and Fractal Dimensions

A set of points is a fractal if it exhibits self-similarity
over all scales. This is illustrated in Figure 1(a), which
shows the first few steps in the recursive construction of the
so-calledSierpinski triangle. Figure 1(b) gives 5,000 points
that belong to this triangle. The resulting set of points ex-
hibits ‘holes’ in any scale; moreover, each smaller triangle
is a miniature replica of the whole triangle. In general, the
essence of fractals is thisself-similarityproperty: parts of
the fractal are similar (exactly or statistically) to the whole
fractal.

B

CA A C

B

A C

B

C’

’

A’

B’

C’

B’

A’

(a) recursive construction

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b)Sierpinski data set

Figure 1. Sierpinski triangle: (a) first 3 steps
of its recursive construction; (b) sample of
5,000 points based on recursive rule.

Next we present two measures of the so-called fractal
dimension of a point set. For algorithms to compute them,
see [4].

Definition 1 (Hausdorff fractal dimension) Given
a point set embedded in anE-dimensional space, divide
this space into (hyper-)cubic grid cells of sider. LetN (r)
denote the number of cells that are penetrated by the set of
points (i.e., that contain one or more of its points). For a
point set that has the self-similarity property in the rangeof
scalesr 2 (r1; r2), its Hausdorff fractal dimensionD0 for
this range is measured asD0 � � @ log(N (r))@ log(r) = constant r 2 (r1; r2)

(1)

Definition 2 (Correlation fractal dimension) For a point
set that has the self-similarityproperty in the range of scales(r1; r2), its Correlation fractal dimensionD2 for this range
is measured asD2 � @ logXi p2i@ log r = constant r 2 (r1; r2)

(2)
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wherepi is the percentage of points which fall inside theith
cell.

An interesting observation is that the above definitions
encompass traditional Euclidean objects, that is, the frac-
tal dimension of Euclidean objects equals their Euclidean
dimension. Thus, lines, line segments, circles, and all the
standard curves haveD=1; planes, disks and standard sur-
faces haveD=2; etc.

2.2 Spatial Access Methods

Spatial access methods and specifically R-trees [17] have
been the subject of many papers,e.g., R+-trees [31], R*-
trees [2], and Hilbert R-trees [21]. See [16] for a survey.
Recently, the dimensionality curse has attracted a lot of in-
terest, and thus there have been many proposals for spa-
tial access methods geared specifically towards high dimen-
sional indexing [25, 9, 5, 6, 8, 34].

Formal worst-case analyses of performance of R-tree
queries in high dimensions have yielded some very pes-
simistic results [18, 34, 10]. The focus of the latter two
are on nearest neighbor queries, where the analysis in [34]
makes assumptions of uniformity and independence, and
where the analysis in [10] applies to very restricted con-
ditions of dependence between dimensions.

2.3 Selectivity Estimation

Selectivity estimation in R-trees has also attracted much
interest. The focus of [15] and [33] is on estimating disk
accesses for range queries in R-trees. Selectivities for spa-
tial joins using fractals are studied in [4]. Closer work to
ours is that of [7] and [13], in which cost models for near-
est neighbors are presented. In the former, assumptions of
independence are implicit in the formulas. In the latter, a
cost function was provided, assuming that the distance dis-
tribution F (x) from an ’anchor’ object to the rest of the
objects is given, and is the same forany object that we
choose as anchor. However, their formula needs statisti-
cal estimation ofF (x), and is unable to make any comment
with respect to the embedding dimensionalityE. In con-
trast, our analysis shows thatE does not play a role; rather,
it is the Hausdorff and Correlation fractal dimensions that
really matter. Thanks to their simplicity, our formulas al-
low for easy extrapolations and asymptotic analysis that the
formulas in [7, 13] cannot.

To the best of our knowledge, the only nearest neighbor
analysis that uses fractals is in [29], which gives upper and
lower bounds for 1-nearest neighbor queries. In contrast,
here we tackle the problem ofk-nearest neighbor queries
and give a single and more accurate average value. More-
over, our formulas can be simplified, and thus lead to funda-
mental observations that deflate the ‘dimensionality curse’.

symbol definitionN number of pointsk number of nearest neighborsE embedding dimensionD intrinsic dimensionalityD0 Hausdorff fractal dimensionD2 Correlation fractal dimensionh height of R-treeC effective bucket capacity�j avg side length of R-tree node on leveljdL1nn (k) avgL1 distance tok-th nearest neighbordL2nn(k) avgL2 distance tok-th nearest neighboranL1mbr avg number of MBR’s sensitive anchors wrtL1-normanL2mbr avg number of MBR’s sensitive anchors wrtL2-normPL1all (k) avg pages retrieved byk-nn query (L1-norm)PL2all (k) avg pages retrieved byk-nn query (L2-norm)

Table 1. Symbol table.

From the previous work, we make use of the following
two results.

Lemma 2.1 In a well-constructed R-tree, the MBRs are
square-like regions of roughly the same size. The sides�j
of these hyper-rectangles at each levelj can be estimated
using the Hausdorff dimensionD0 as follows:�j = �Ch�jN � 1D0 ; j = 0; : : : ; h� 1 (3)

whereh is the height of the tree andC is the effective bucket
capacity.

Proof: See [14]. 2
Theorem 2.2 Given a set of pointsP with finite cardinal-
ityN embedded in a unit hypercube of dimensionE and its
Correlation dimensionD2, the average number of neigh-
borsnb(�; `E-d shape0) of a point within a region of regular
shape and radius� is given bynb(�; `E-d shape0) = (N � 1) �V ol(�; `E-d shape0)D2E (4)

whereV ol(�; `E-d shape0) is the volume of a shape (e.g.,
cube, sphere) of radius�.
Proof: See [3]. 2
3 ProposedL1 Nearest Neighbor Formulas

Because the analysis is more straightforward, we first
consider theL1 distance between points, that is,d(x; y) =max1�i�E jxi � yij. Moreover, nearest neighbor search
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based on theL1-norm has been used in the literature (e.g.,
see [24]). We then proceed to theL2 case. Both cases are
analyzed similarly.

An outline of our analysis is given as follows. First,
we determine how far away from the anchor point of the
query thekth nearest neighbor is located on average, in ef-
fect, transforming a nearest neighbor query into an equiv-
alent range query. Based on this distance, we compute the
number of query anchors which cause a typical page to be
accessed. Since in the biased model data points are cho-
sen as query anchors and each point is equally likely to be
taken, this directly gives us the access probability of that
page. By summing up over the access probabilities of all
R-tree pages, we finally get the average number of page ac-
cesses, that is, the averagek-nearest neighbor performance
of the structure.

Lemma 3.1 The averageL1-distance of a data point to itskth nearest neighbor is given bydL1nn (k) = 12 �� kN � 1� 1D2 : (5)

Proof: In order to reach all neighbors~n of a query an-
chor~q with L1-distance less than�, that is,k~q � ~nk1 =maxi=1;:::;E jqi � nij < �, a hypercube of radius� (of side
length2�) centered at~q has to be explored. On the other
hand, the average number of neighbors of a data point in a
hypercube of radius� is given bynb(�; `E-d cube0) = (N � 1) � V ol(�; `E-d cube0)D2E (6)

due to Eq. 4. SubstitutingV ol(�; `E-d cube0) by the volume
formula for hypercubes,(2�)E , as well asnb(�; `E-d cube0)
by k, and performing some simple algebraic manipulations
to solve the resulting equation for� yields the desired result.2

Lemma 3.1 provides the average search radius around an
arbitrary data point in order to find itsk nearest neighbors.
SincedL1nn (k) is a constant, the nearest neighbor problem
hence turns into a specific range query problem from the
point of an average analysis, namely, asking square range
queries of radiusdL1nn (k), where each data point is equally
likely to be chosen as square center. In [27] it is shown that
all anchors of square range queries with radius�which force
a certain page to be accessed (query-sensitive anchors, for
short) must be located within the page’s Minimum Bound-
ing Rectangle (MBR) dilated (à la Minkowski sum) by a
frame of width�. The next lemma gives the average num-
ber of data points located in such a region if the MBR is
roughly a square by itself.

Lemma 3.2 Assume the biased model, square range
queries of radius� (= nearest neighbor queries withL1

search radius�). Then the average number of query-
sensitive anchors of an MBR with side lengthl is given byanL1mbr(l; �) = (N � 1) � (l + 2�)D2 + 1: (7)

Proof: We assume the center of the MBR to be a data point.
Since every MBR wraps a large number of data points on
average, it can be expected that there exists a data point
within a very small distance to the center. The inflated MBR
(with the query-sensitive anchors in it) is a square of side
lengthl + 2�, so that we can directly use Eq. 4 to estimate
the number of data points falling into it. ComputingV ol(l+2�; `E-d cube0), substituting the term in Eq. 4, and adding
the MBR’s center as a further anchor completes the proof.2

We are ready now to estimate the number of page ac-
cesses needed to answer ak-nearest neighbor query (that is,
the query performance) with respect to theL1-norm.

Theorem 3.3 Assume a set ofN points with Hausdorff di-
mensionD0 and Correlation dimensionD2 indexed by an
R-tree with effective page capacityC and heighth. Then
the average number of accesses of R-tree pages needed to
answer ak-nearest neighbor query is given byPL1all (k) = h�1Xj=0 anL1mbr(�j ; dL1nn (k))Ch�j =h�1Xj=08<: (N � 1)2D2 �Ch�j  �Ch�jN � 1D0 + � kN � 1� 1D2 !D2 + 1Ch�j9=;

(8)

Proof: According to Lemma 2.1, a page’s MBR on levelj has side length�j on average. According to Lemmas
3.1 and 3.2 the number of query-sensitive anchors forcing
a page access isanL1mbr(�j; dL1nn (k)). Since in the biased
model the probability of each point to be chosen as query
anchor is identical, that is,1N , a page on levelj is accessed
with probability 1N � anL1mbr(�j; dL1nn (k)) on average. Eq. 8
sums up the access probabilities of every single page from
the root to the leaf level (N=Ch�j pages on levelj). 2

Note that whenj = h� 1, Eq. 8 and 9 provide the aver-
age number ofleaf accesses. We can simplify Eq. 8 under
the reasonable assumptions thatN is large (N � 1) andD = D0 = D2 (which holds for any mathematical fractal).
Corollary:PL1all (k) � h�1Xj=00@ 1Ch�j +  1 + � kCh�j� 1D!D1A (9)

Proof: By substituting the formulas foranL1mbr, �j, anddL1nn (k) and performing some asymptotic manipulations asN !1. 2
4



With respect to the above formulas, we make the fol-
lowing observation. Contrary to previous results, the search
effort doesnotsuffer from the ‘dimensionality curse’ whenD � E as a result of the fact that the embedding dimen-
sionalityE does not appear in Eq. 8 and 9. Even whenE is
large, thek-nearest neighbor search performance is dictated
by the fractal dimension of the data set.

4 ProposedL2 Nearest Neighbor Formulas

In this section, we analyze nearest neighbor queries in

theL2 norm, that is,d(x; y) = nPEi=1(xi � yi)2o1=2. For-

tunately, this slightly modified scenario can be handled in
a manner very similar to that of theL1-norm. While the
ideas behind the analysis remain the same, the formulas are
more complicated. The first lemma determines the average
Euclidean distance between neighbors.

Lemma 4.1 The average Euclidean distance of a data
point to itskth nearest neighbor is given bydL2nn(k) = ��(1 + E2 )� 1Ep� �� kN � 1� 1D2 : (10)

Proof: We proceed analogously to the proof of Lemma 3.1.
All neighbors of a query anchor with Euclidean distance
less than� appear in the surrounding hypersphere of radius�. Again we use Eq. 4 to estimate the number of data points
located in this sphere, that is,nb(�; `E-d sphere0) = (N � 1) � V ol(�; `E-d sphere0)D2E ;

(11)
Using the volume formula forE-d hyperspheres [26],V ol(�; `E-d sphere0) = �E2 � �E�(1 + E2 ) ; (12)

we solve Eq. 11 for�. 2
The next step concerns the estimation of the number of

query-sensitive anchors of a certain page. In the Euclidean
case, the nearest neighbor query again is transformed into
a range query in the biased model, this time with spherical
queries of radiusdL2nn(k). In [28] it is shown that all anchors
of spherical queries with radius� are located in the page’s
MBR inflated by a rounded frame of width� as depicted
in Fig. 2. These geometric solids, however, become more
difficult to describe with every additional (embedding) di-
mension. The following lemma provides a solution for the
cases ofE = 2; 3.

Lemma 4.2 Assume the biased model, spherical queries of
radius� (= nearest neighbor queries with Euclidean search

ε

l

ε

l

(a) (b)

Figure 2. MBR of side length l dilated by
rounded frame of width � in (a) 2-d and (b)
3-d.

radius�). Then the average number of query-sensitive an-
chors of an MBR with side lengthl is given byanL2mbr(l; �) =8>>><>>>: (N � 1) � �l2 + 4l�+ ��2�D22 + 1;

if E = 2(N � 1) � �l3 + 6l2�+ 3�l�2 + 43��3�D23 + 1;
if E = 3

(13)

Proof: The proof is identical to that of Lemma 3.2, except
that the volume for the2- and3-dimensional solids, as de-
picted in Fig. 2, are used instead of the cube volume. Note
that Theorem 2.2 is still applicable to these solids due to
their regularity. 2
Using Eq. 13 we can now derive an exact formula forPL2all (k), just as we did in Eq. 8:PL2all (k) = h�1Xj=0 anL2mbr(�j ; dL2nn(k))Ch�j (14)

For higher than 3 dimensions we come up with an upper
and lower bound of the average number of query-sensitive
anchors rather than the exact value. Since theL1-variation
of the problem can be solved more easily, we reduce the
Euclidean case appropriately.

Lemma 4.3 For each MBR-sizel, search distance�, and
dimensionE holdsanL1mbr(l; �=pE) � anL2mbr(l; �) � anL1mbr(l; �): (15)

Proof: Assume an arbitrary MBR. Then for this MBR
the region of possible query-sensitive anchors correspond-
ing to anL2mbr(l; �) includes the region corresponding toanL1mbr(l; �=pE), sincek~xk1 = maxi jxij = �pE ) k~xk2 �sE �� �pE�2 = �:

(16)
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Therefore, k~xk1 � k~xk2; (17)

so that the same property holds for the regions correspond-
ing to anL1mbr(l; �) andanL2mbr(l; �). These inclusion rela-
tionships of the regions, however, provide an ordering of
the region volumes, which is preserved by the number of
query anchors located in it (see Theorem 2.2 for the propor-
tionality of volumes and number of anchors). 2
Lemma 4.4 Nearest neighbor searching according to the
two distance functions is related bydL2nn(k) = dL1nn (k0) fork0 =  2p� ���(1 + E2 )� 1E!D2 �k:

(18)

Proof: SolvedL1nn (k0) = dL2nn(k) for k0. 2
Theorem 4.5 Let k0 = ( 2p� � (�(1 + E2 )) 1E )D2 � k. Then
the average number of accesses of R-tree pages needed to
answer ak-nearest neighbor query with respect to the Eu-
clidean distance, is estimated ash�1Xj=0 anL1mbr(�j; dL1nn (k0)pE )Ch�j � PL2all (k) � h�1Xj=0 anL1mbr(�j ; dL1nn (k0))Ch�j

(19)

Proof: Directly by applying Theorem 2.2 and Lemmas 4.3
and 4.4. 2

Analogously to the last section, we perform some
asymptotic manipulations to simplify Eq. 19. Herek0 de-
pends on the embedding dimensionE and so do both the
upper and lower bound ofPL2all (k). However,k0 ! ( 2p� )D2
for E ! 1, and thus both bounds monotonously decrease
asE becomes large. In addition, by assumingN � 1 andD0 = D2 and using Eq. 9, we get the following estimation
for PL2all (k), E !1:h+ 1C � PL2all (k) � h�1Xj=00@ 1Ch�j + 2p� 1 +� kCh�j� 1D!D1A

(20)

5 Experiments

In this section, we present results from nearest neigh-
bor experiments on both real and synthetic data sets. We
designed experiments to determine the accuracy of our for-
mulas for increasing nearest neighbors (k) and for increas-
ing dimensionalities (D andE).
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Figure 3. Real data sets: road intersections
from (a) Montgomery County, MD; and (b) and
Long Beach County, CA.

Data sets: We used the following data sets:� MGcty - road intersections in Montgomery County
from the TIGER database
of the U.S. Bureau of Census (E=2,N= 27,282,D0 =
1.719 andD2 = 1.518 );� LBcty - road intersections in Long Beach County
from TIGER census data
(E=2,N= 36,548,D0 = 1.728, andD2 = 1.732 );� Sierpinski - a synthetic, non-uniform fractal de-
picted in Fig 1, known as Sierpinski’s triangle [30].
It was generated by embedding a Sierpinski triangle
in E = 10 dimensional space, withD0 = D2 =
1.585. The Sierpinski triangle was on a two dimen-
sional plane, which was deliberatelynot aligned with
any of the axes;� plane - uniformly generated points for a range of
sizesN (from 1-500K) lying on a 2-d plane (i.e.,D0 = D2 = 2), embedded inE-d space (E ranges
from 2-100). Two orthonormal vectors were randomly
generated (via Gram-Schmidt) and points were uni-
formly sampled from the plane spanned by these vec-
tors;� manifold - uniformly generated points lying on a
randomly oriented,D0 = D2)-dimensional linear
manifold inE-space. Thus, for a fixedE, the intrinsic
dimensionalityD0 = D2 can be adjusted.
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Queries: For each data set, we ran 100 queries. The
workloads were composed of query anchor points randomly
sampled from each data set in accordance with the biased
query model. For the first set of experiments, we ran each
workload to produce a variety of result sizes (i.e., nearest
neighbors)k. For the second set, we ran each workload
data sets of fixed intrinsic dimensionality with embedding
dimensionsE ranging from 2-100, and of fixed embedding
dimension withD0 andD2 ranging from 1-6. Below we
tabulate and plot I/O results from the experiments.

Software: For optimized performance, we used an im-
plementation oflibGiST1 [19] with R*-tree heuristics
(see [2]) and the nearest neighbor algorithm from [20]. We
presorted the points into an insertion order ensuring tight,
square-like MBRs.

5.1 Accuracy

The plot in Fig. 4 demonstrates the accuracy of our
formulas for both theL1 and L2 norms on theMGcty
data set, plotting I/O as a function ofk nearest neigh-
bors retrieved.2 Fig. 4(a) plots the predicted (based on the
formula in Eq. 8) and observed number ofleaf page ac-
cesses for theL1 norm; Fig. 4(b) plotstotal page accesses.
Fig. 4(c) plots the predicted (Eq. 14) and observed number
of leaf accesses forL2 norm; Fig. 4(d) plots total accesses.
The plots graphically depict that the predicted values fell
within one standard deviation of the observed values. As
Fig. 4 shows, performance in the two norms is approxi-
mately the same.

To see how our formulas compared with others, we
looked at the results reported in [29]. Table 2(a)-(b) presents
a comparison withk = 1, the only value ofk that the pre-
vious formulas can estimate, forplane with E = 2. Ta-
ble 2(c) presents a comparison withk = 1 for a random
sample ofMGcty with N = 9; 552. Note that, whereas the
previous results are reported as a range, our formulas give a
single number.

5.2 Effect of Dimensionality

In this set of experiments, our goal was to understand the
effects of embedding dimension and intrinsic dimensional-
ity. Figure 5(a) shows leaf accesses as a function of embed-
ding dimensionE for the plane data set withN=100K
andk = 50, in both graphical and tabular form. We in-
creasedE over a wide range, from 2 to 100 dimensions,
while keepingD0 andD2 constant. Table 3 displays the
results from a similar set of experiments performed on the1available athttp://gist.cs.berkeley.edu2The results from theLBcty data set were similar and are not reported
here for brevity.

N observed our estimate lower upper
1K 1.63 1.44 1.34 4.66
10K 1.70 1.44 1.34 4.66
20K 1.80 1.44 1.34 4.66
50K 2.04 1.44 1.34 4.66
100K 1.88 1.44 1.34 4.66
200K 2.28 1.44 1.34 4.66C observed our estimate lower upper

10 2.68 2.13 1.84 5.55
20 2.19 1.77 1.56 5.07
50 2.03 1.43 1.34 4.66
100 1.90 1.29 1.23 4.46C observed our estimate lower upper
10 3.06 3.12 2.70 7.01
20 2.36 2.61 2.33 6.24
50 2.27 2.16 1.98 5.44
100 1.89 1.92 1.77 4.94

Table 2. Comparison to the results in [29]. The
first column gives the average I/O observed in
experiments, the second gives the estimate
according to our formula, and the third and
fourth give lower- and upper-bound estimates
from the formulas in [29].

Sierpinski data set. To ensure fair comparisons, we
increased the page size by the same factor thatE was in-
creased, in order to achieve approximately constant branch-
ing factor (= effective bucket capacity). The average re-
sults are given, along with one standard deviation. To gain
some perspective, we also present values that the uniformity
and independence assumptions would predict for the same
queries. Note that these values are overpessimistic.

Figure 5(b) shows the leaf accesses as a function of the
intrinsic dimensionality for themanifold data set withN=100K andk=50, in both graphical and tabular form. We
increasedD0(= D2) from 1 to 6 while keeping the em-
bedding dimension fixed atE = 10. The I/O performance
appears to depend onD (notE), worsening asD increases.
Note that the uniformity and independence assumptions are
insensitive to the increase inD.

6 Conclusions

We focused on the performance of R-trees fork-nearest
neighbor queries. Contrary to previous approaches that
make the uniformity or independence assumption (or both),
we only assumed that real data sets are self-similar, and that
they are characterized by their fractal (more specifically,
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Figure 4. Observed versus predicted performance for MGcty data set, varying k, L1 norm: (a) leaf
accesses and (b) total page accesses; L2 norm: (c) leaf accesses and (d) total page accesses.E predicted observed unif/ind

2 2.53 4.72� 1.81 3.49
10 2.53 6.42� 2.11 847.26
20 2.53 7.76� 4.12 all
50 2.53 6.15� 2.82 all
100 2.53 5.64� 2.32 all

Table 3. Leaf accesses for increasing E withD0(= D2) fixed at 1.58, Sierpinski data set
(N = 100K and k = 50).

HausdorffD0 and CorrelationD2) dimensions. Using these
two fractal dimensions, we derived closed formulas for the
problem at hand. The practical contribution of this work is
the derivation of accurate formulas to predict the number of
I/Os in an R-tree for nearest neighbor queries, which could
be used for spatial query optimization. These formulas have
the following advantages over previous cost models:� They accurately predict I/O performance, to withinone

standard deviationof that observed. At the same time,
they are closed-form and easy to use, requiring only
fiveparameters:N , k, C,D0 andD2;� They apply to real data sets because they do not make
any implicit assumptions of uniformity and indepen-
dence;� They are valid fork-nearest neighbors, for any arbi-
trary k, and as such are more general than the older
formulas (e.g., [29] and [7]) that only estimate for the
case ofk = 1;
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E predicted observed unif/ind
2 3.49 4.75� 1.54 3.49
5 3.45 6.40� 1.98 28.26
10 3.34 6.42� 2.11 847.26
20 3.36 6.90� 2.24 all
50 3.32 6.37� 2.02 all
100 3.32 5.43� 1.58 all

D predicted observed unif/ind
1 1.79 3.55� 1.70 899.31
2 3.36 6.56� 2.71 851.1
3 6.53 11.04� 3.08 829.89
4 12.85 20.21� 7.33 818.32
5 25.30 48.90� 18.69 806.89
6 49.77 60.94� 21.67 794.35

(a)plane data set, increasingE (b)manifold data set, increasingD0(= D2)
Figure 5. Leaf accesses for increasing (a) E with D0(= D2) fixed at 2, plane data set; and (b) D0(= D2)
with E fixed at 10, manifold data set. In both data sets, N = 100K and k = 50.� They are exceptionally accurate in high dimensions

when compared to other cost models, which are over-
pessimistic; for example, whereas our formulas gave
an estimate for 100-dimensional data that is correct to
within one or two I/Os, other cost models will ‘blow
up’ under these circumstances.

From a theoretical point of view, our formulas are in-
teresting because they show that data sets with low fractal
dimension donotsuffer from the dimensionality curse whenD0 � E, in contrast to the recent pessimistic analyses. In-
deed, nearest neighbor search does not necessarily exhibit
the curse of dimensionality when the embedding dimension
is high. Our experiments produced results not sensitive to
increasing embedding dimension, for values ofE ranging
from 2 to as high as 100. Furthermore, as intuitively ex-
pected, we observed that the I/O performance degraded with
fixed embedding dimension as the intrinsic dimensionality
increased.

Future work could involve analyzing nearest neighbor
queries on data sets of non-point objects.
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