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Deflection and Maximum Load of
Microfiltration Membrane Sieves

Made with Silicon Micromachining
Cees van Rijn, Michiel van der Wekken, Wietze Nijdam, and Miko Elwenspoek

Abstract—With the use of silicon micromachining, an inorganic
membrane sieve for microfiltration has been constructed having a
silicon nitride membrane layer with thickness typically 1�m and
perforations typically between 0.5�m and 10 �m in diameter.
As a support a h100i-silicon wafer with openings of 1000�m
in diameter has been used. The thin silicon nitride layer is
deposited on an initially dense support by means of a suitable
chemical vapor deposition method (LPCVD). Perforations in
the membrane layer are obtained with use of standard photo
lithography and reactive ion etching (RIE). The deflection and
maximum load of the membrane sieves are calculated in a
first approximation. Experiments to measure the maximum load
of silicon-rich silicon nitride membranes have confirmed this
approximation. [215]

Index Terms—Filtration membranes, micro filtration, mem-
brane filtration, membrane strength, membrane deflection.

I. INTRODUCTION SIEVE FILTERS

SIEVE filters are characterized by thin membrane layers
with uniformly sized pores, and for most applications,

the membrane layer is sustained by a support. Until now,
lithographic techniques have not been used for the construction
of microfiltration membrane layers made of such inorganic
materials as silicon nitride and silicon [1].

Inorganic membranes, and in particular ceramic membranes
[2], have a number of advantages above polymeric membranes,
such as they are stable at high temperature, relatively inert
to chemicals, applicable at high pressures, easy to sterilize,
and recyclable. However, they have not been used extensively
because of their high costs and relatively poor control in pore
size distribution (see Fig. 1). Also, the effective membrane
layer is very thick in comparison to the mean pore size
(typically 50–1000 times), which results in a reduced flow rate.

A composite filtration membrane having a relatively thin
filtration or sieving layer with a high pore density and a
narrow pore size distribution on a macroporous support will
show good separation behavior and a high flow rate (see
Fig. 2). The support contributes to the mechanical strength
of the total composite membrane. The openings in the support
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Fig. 1. Pore size distribution of various membrane filters.

Fig. 2. Clear water flux of various membrane filters.

should be made as large and numerous as possible in order to
maintain the flow rate of the membrane layer and to reduce
the interaction of the support with the fluid. An established
use of inorganic membranes with very thin membrane layers,
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in particular microsieves with high flow rates, will result in
an energy- and cost-saving separation technology for present
and future innovative applications, like micro liquid handling,
modular fluidic systems or micro total analysis systems [3].

II. CONSTRUCTION

Figs. 3–6 show in cross section subsequent stages of a
process for production of the membrane consisting of a sup-
port and a membrane layer. On a surface of the support 1,
a single crystalline 3-in -silicon wafer with thickness
of 380 m a layer 2 of silicon nitride with thickness 1

m is deposited by means of chemical vapor deposition
(CVD). This layer 2 is formed by reaction of dichloresi-
lane (SiH Cl ) and ammonia (NH) at elevated tempera-
ture 850 C and low pressure (LPCVD). Silicon-rich sili-
con nitride (nonstochiometric) with reduced internal stress
properties may be grown in an excess dichloresilane (70
SiH Cl /18 NH at 850 C) ambient. On the silicon ni-
tride layer 2 a photosensitive lacquer layer 3 is formed by
spin coating at 4000 r.p.m., as in Fig. 3 (in this example
Shipley Europe Resist S1818 with a thickness of 1.8m).
The lacquer layer 3 is then exposed to a mask pattern with
the use of a suitable ultra violet source, here with a Karl
Süss projection system using proximity projection. The mask
pattern is made of a square field of 1010 membrane areas
of 1000 m 1000 m. The membrane areas are separated
at spacings of 200 m. Each membrane area has 100100
circular perforations with diameter 4m. The mutual distance
between the centre of the perforations is 10m. After exposure
the lacquer layer 3 is developed for 45 s in a diluted NaOH
solution giving a mask pattern in the lacquer layer 4 on the
silicon nitride layer 2 (see Fig. 4). In the silicon nitride layer
2, the mask pattern is then etched by means of CHF/O
reactive ion etching at 10 mTorr and 75 W for 15 min,
forming the perforations 5 in the membrane layer (Fig. 5).
Next, perforations 6 of 1000m 1000 m are etched using
the backside silicon nitride layer 2 as an etch mask in the
silicon support 1 with an anisotropic etch along the -
planes with a 10% KOH solution at 70C until the membrane
layer is reached (Fig. 6).

III. D EFLECTION AND MAXIMUM LOAD

OF A CLAMPED RECTANGULAR MEMBRANE

The deflection curve of a rectangular plate with
dimension clamped at two edges stretched
by an axial distributed force and uniformly loaded under a
pressure is given by the well-known differential equation

(1)

with flexural rigidity

( Poisson’s ratio, Young’s modulus).

Fig. 3. Process step of the microseive.

Fig. 4. Process step of the microseive.

Fig. 5. Process step of the microseive.

Fig. 6. Process step of the microseive.

The general solution symmetrical in following
Timoshenko [4] is given by

(2)

with definition .
The deflection near the center of the membrane is mainly

determined by the parabolic term, whereas the deflection near
the edge of the membrane is mainly determined by the first
term.
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Fig. 7. Deflectionw(x) of a two-edge, clamped membrane stretched with
axial distributed forceS and uniformly loaded with pressureq.

Fig. 8. SEM picture of microsieve with LPCVD silicon nitride layer�1 �m
in thickness and perforations�3 �m in diameter.

The points of inflection of the deflec-
tion curve are determined by the dimensionless parameter

. For small values the inflection points are almost
independent of and given by

(3)

At a large axial force the points of inflection will move
toward the edges. For these points are located at

(4)

For very thin plates or membraneswill be already large at
moderately values of the axial force.

The general solution is fully determined by the constants
and . For large deflections the axial force will

increase due to elastic extension of the plate clamped
between the edges. We will show thatmay be expressed
as a simple function of and in the limit for large
values of . In this limit is still a constant (dependent only
on other constants) and is independent on, so the deflection
curve is still a solution of the differential equation.

The increment is related to the increment

(5)

It can be shown that the latter term is almost indepen-
dent on for all type of deflections under the condition

, or . Scales then with .
For a parabolic deflection curve we have .
Using

(6)

one obtains

(7)

Alternatively is determined by the deflection curve, for
at .

For large deflections the inflection parameterrelated to
the initial axial force density may be neglected, i.e., ,
hence the following relation using (2) and (7) is found for:

(8)

The maximum deflection at is given by

(9)
The constant tensile stress in the plate is then estimated for

large values of

(10)

and the maximum bending stress at the edge of the membrane
is estimated by

(11)

The above expressions are valid for a rectangular plate
clamped at two edges and may be valid for a thin membrane
plate under a substantial load at large deflections .
Equation 10 gives a good scaling relation for for all
type of deflections under the condition , whereas
(11) gives a similar scaling relation for at the edge of
the membrane.

The actual case to be considered here is a rectangular
membrane clamped at all four edges. With the principle of
virtual work Timoshenko [5] has calculated the deflection
of the centre of a square membrane clamped at four edges:

(12)

and corresponding tensile stress in the middle of the
membrane

(13)
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TABLE I
THE MAXIMUM LOAD OF MEMBRANES (WITH l = 1 mm, h = 1 mm). VALUES FOR E, �yield, qultimate ARE

BULK VALUES FROM TIMOSHENKO MECHANICS OF MATERIALS, EXCEPT THE VALUES FOR SrichNpoor [9]

The values for and are reasonably well corresponding
with the values found for and for the two
clamped case. The value for the maximum deflection
in the two edge clamped case is slightly larger than in the four
edge clamped case due to the extra constraint, thus limiting
the value of the deflection in the middle of the membrane.

Because and scale identical at the edge of
the membrane1 [6], it is assumed that the ratio between
both stresses remains unchanged for the two clamped and
four clamped case, Moreover, in the four clamped case the
maximum stress [7] is found near the middle of the edges. The
deflection curve will resemble there the most the two clamped
case. The total tensile stress at the edge is the addition of the
constant tensile stress due to stretching and the bending stress
near the middle of the edge

(14)
In above approximate equation (14) internal stresses in the
materials are not taken into account. It is well known that
stochiometric silicon nitride membranes fracture at relatively
low pressures due to high intrinsic tensile stress of the order
of 1 GPa [8]. The intrinsic tensile stress in a silicon-
rich silicon nitride membrane with thickness 1m is much
smaller [9], ranging from 0.8 10 to 1.6 10 Pa. The
maximum tensile stress before rupture occurs is for
silicon-rich silicon nitride [10] about 4.010 Pa. The intrinsic
tensile stress may according to the above safely be neglected
in calculating the maximum pressure before fracture
occurs . Using Young’s modulus for silicon nitride
2.9 10 Pa and we find bar for a dense
square silicon nitride membrane with width m. The

1For round membranes similar scaling relations for�bend and �tensile
have been proposed at the edge of the membrane for large deflections by M.
P. Di Giovanni.

inflection parameter then is . The inflection points of
the membrane are then located at 25m from the edge.

In Table I some theoretical estimates for the maximum load
have been given for some inorganic materials, including

some metals.
For nonductile inorganic materials, the ultimate stress

at which the membrane breaks at pressure
coincides with the pressure when the stress in
the membrane reaches in the middle of the edge

. The maximum load for these
materials is calculated here with (14) using both and

in the middle of the edge of the membrane because for
nonductile (brittle) materials there is no stress regime above

for plastic deformation.
For ductile metals like Al, Ni, Cu, Stainless Steel, and Ti,

there is a linear relation between the strain and the applied
stress up to . The membrane will not break when the
pressure is reached, and the stress in the middle of
the edge may increase up to . Between and

the strain of the membrane strongly increases. In this
region cannot be considered as a constant, in factwill
diminish as a result of plastic deformation. Interpreting (14),
this means that will strongly increase in this region.
So, a more elongated membrane may be loaded more before
it breaks, resulting in . For ductile materials
therefore only an under-estimate of the maximum load
can be given. The under-estimate for the maximum load
for these materials is calculated here with (14) using only

in the middle of the edge of the membrane. For ductile
materials, the local stress originating from bending will be
released due to local plastic deformation (in the middle of the
edge) when this local stress reaches a value above .

Also, for ductile materials this under-estimate is mainly
determined by the contribution in (14). When
is reached near the edge of the membrane local plastic de-
formation (i.e., drops) of this material will occur and the
bending stress will severely reduce.
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Fig. 9. Test setup.

Applying a higher load such that the lateral strain increases
above , the membrane will then break when is
reached. Equation (14) is still valid although the diminished
value of is not known. The under-estimate of the maximum
load in this case is therefore higher than the pressure

defined as the pressure necessary for creating plastic
deformation due to tensile stresses only, i.e., is calculated
from (14) leaving out .

For a perforated membrane, the above equations may be
used choosing a different value forand . In a first-order
approximation, both and are smaller and proportional
with the unperforated fraction of the membrane [11]. This will
result in a smaller maximum load that is also proportional
to the unperforated fraction and which can be obtained from
scaling equation (14) for .

IV. EXPERIMENTS

To determine the maximum load of membranes, a small test-
device has been made in which membranes can be clamped
(see Fig. 9). With pressurized air, the membranes can be
deflected to a certain load. This maximum pressure can be
measured with a pressure sensor (Honeywell, 24PC, 7Bar)
connected to a digital multimeter with a peak-hold function
to memorize the maximum applied pressure before fracture
occurs.

A. Silicon Nitride Membranes

The dependence of the maximum load on the
membrane width, membrane thickness, membrane perforation,
membrane shape, and some membrane materials has been
determined.

In Figs. 10–12 the dependence of the maximum load
on the membrane width is shown for various membrane
thicknesses . seems to be reasonably well inversely
proportional to in accordance with the earlier presented
theoretical equation (14).

In the three figures, straight lines have been drawn corre-
sponding with MPa. These lines correspond
quite well in all three figures with the data, herewith verifying
that also the thickness scales according to (14).

As can be seen in Fig. 13, the maximum load of a perforated
membrane is nearly two times smaller than the maximum load
of an unperforated membrane. The perforations are here circu-
lar holes with a diameter of 5m. The total perforated area is

Fig. 10. Results obtained from maximum load measurements (silicon nitride
membrane: 0.5�m thick) for square membranes with widthl. Drawn line
corresponds with�yield = 4000.

Fig. 11. Results obtained from maximum load measurements (silicon nitride
membrane: 1.0�m thick) for unperforated square membranes with widthl.
Drawn line corresponds with�yield = 4000.

Fig. 12. Results obtained from maximum load measurements (silicon nitride
membrane: 2.0�m thick) for unperforated square membranes with widthl.
Drawn line corresponds with�yield = 4000.

approximately 25%. The yield strength and Young’s Modulus
of the material silicon nitride will decrease upon perforation. If
the yield strength and Young’s Modulus decrease 25% (both in
first-order proportional to the perforated fraction) the estimated
maximum load will decrease about 15% according to (14).
The enlarged decrease of the measured maximum load (nearly
50% reduction) can not be explained herewith. Apparently, the
perforated fraction is too large for a first-order approximation,
second- and higher-order terms probably have a larger effect
on the maximum load.

In Fig. 14 it is seen that the maximum load values are
nearly constant for unperforated rectangular membranes with
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Fig. 13. Difference in maximum load of an unperforated membrane and a
perforated membrane (silicon nitride membrane 0.5�m thick) for unperforated
square membranes with widthl. Drawn lines correspond to�yield = 4000

MPa (dotted) and�yield = 2500 MPa (solid).

Fig. 14. Dependence on membrane shape; maximum load data of a rect-
angular membrane (silicon nitride, 1.0�m thick), with a fixed width of 1
mm.

size 1 mm 2 mm, 1 mm 3 mm, up to 1 mm 6
mm. The square membrane with size 1 mm1 mm has a

roughly 30% higher. Qualitatively this difference may
easily be understood as the difference in maximum load for a
membrane clamped at four edges (good model for a square
membrane) and a membrane clamped at two edges (good
model for a rectangular membrane with an infinite length and a
fixed width; an approximating model for a square membrane).

B. Ductile Membranes

Maximum load values for breaking of the membranes of the
ductile materials titanium, aluminum, and copper are depicted
in Figs. 15–17. The data indicate also a linear relation between
the maximum breaking load and the width. As discussed in
the former section for ductile materials the maximum breaking
load may be much higher than the maximum load for
reaching a stress at the middle of the edge in the
membrane.

In comparing the experimental found maximum breaking
load for these ductile materials with the calculated as
presented in Table I (membrane width mm) it is found that
the maximum breaking load for titanium membranes is slightly
higher and that for aluminum and copper membranes it is
much higher than . Apparently, the materials aluminum
and copper have a broader plastic deformation regime than
the material titanium (Fig. 18).

Fig. 15. Results obtained from maximum load measurements (titanium
membrane: 1.0�m thick) of an unperforated square membrane with widthl.

Fig. 16. Results obtained from maximum load measurements (aluminum
membrane: 1.0�m thick) of an unperforated square membrane with widthl.

Fig. 17. Results obtained from maximum load measurements (copper mem-
brane: 1.0�m thick) of an unperforated square membrane with widthl. The
pressure of our system (4 bar) was not high enough to break membranes
smaller than 1.75 mm.

V. CONCLUSION

Maximum load values for silicon nitride membranes
have been experimentally determined by varying the width,
the thickness, and the shape of the membranes. The results
are in accordance with the theoretically predictions for
based on the derived formula (14). The maximum load values

for perforated membranes are found to be smaller than
the values for the unperforated membranes.

The maximum load values for unperforated mem-
branes composed of a ductile material are higher than the
estimated values for . For ductile materials may
be considered as a save under-estimate for .

In a next study, the theory of plastic deformation will be
incorporated in order to estimate more precise the maximum
load value for these materials. Also, some more results
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Fig. 18. An aluminum membrane1 mm� 1 mm with thickness 1�m after
loading aboveqyield (0.03 bar) showing plastic deformation. The arrow in
the figure indicates the middle of the edge of the membrane.

on the influence of the pore size and density on will
be presented.
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