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ABSTRACT 

The flexural response of FRP RC elements is investigated through load-deflection tests on 24 RC beams 

and slabs with glass FRP (GFRP) and carbon FRP (CFRP) reinforcement covering a wide range of 

reinforcement ratios. Rebar and concrete strains around a crack inducer are used to establish moment-

curvature relationships and evaluate the shear and flexural components of mid-span deflections. It is 

concluded that the contribution of shear and bond induced deformations can be of major significance in 

FRP RC elements having moderate to high reinforcement ratios. Existing equations to calculate short-

term deflection of FRP RC elements are discussed and compared to experimental values.  

Keywords: A. Carbon fibre; A. Glass fibre; C. Analytical modelling; D. Mechanical testing; Deformation 

behaviour. 

 

1- Introduction   

FRP reinforcement for concrete has been developed to replace steel in special applications, 

particularly in corrosion-prone RC structures. Under similar conditions, in terms of concrete strength, 

applied loading, member dimensions and area of reinforcement, FRP RC members are expected to 

develop larger deformations than steel reinforced members [1]. This can be mainly attributed to the lower 

modulus of elasticity of the FRP rebars, but also to their unique bond characteristics. As a result, the 

design of FRP RC elements is often governed by the serviceability limit state [2]. Accurate calculation of 

service deflections can be done through integration of curvatures [3, 4] and making allowance for shear 

and bond deformations. However, such calculations are time consuming and not suitable for design. It is 

therefore important to develop simplified design methods to evaluate the deflection of RC elements with 

an acceptable accuracy. The implementation of simple elastic analysis models, along with the use of an 
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effective moment of inertia to describe the reduced stiffness of a cracked element, has proven effective in 

determining service deflections of steel reinforced concrete elements and has also been adopted for FRP 

reinforced concrete elements. ACI 440.1R-06 [5], for example, has adopted a modified form of the 

effective moment of inertia equation included in ACI 318 [6] and originally developed by Branson [7]. 

Although a similar model is also discussed in the design manual published by ISIS Canada [8], the use of 

an equation derived by implementing the tension stiffening effect included in Model Code 90 [3] is 

proposed as a more reliable model for concrete elements reinforced with different types of FRP 

reinforcements. The tension stiffening model of Model Code 90 also underlies the method recommended 

in Eurocode 2 [9] to estimate service deflections for steel RC elements, and was shown to lead to 

acceptable results also for FRP RC elements [4]. CAN/CSA-S806 [10] recommends determining 

deflections by integration of curvatures along the span, but ignores the tension stiffening effect provided 

by the FRP reinforcement. Instead it proposes the use of a gross and cracked moment of inertia to 

represent the stiffness of un-cracked and cracked portions of the element, respectively. 

Although the code approaches for the prediction of short-term deflection account for a reduced 

flexural stiffness of the element due to cracking [11], this effective stiffness is treated as a global 

parameter and cannot capture the effect of localised cracking. As a result, the deflection derived using 

only cracked moment of inertia is expected to provide an upper bound limit for short-term deflections. 

However, tests on beams and slabs [12, 13, 14] show that deflections tend to exceed this upper bound 

even at relatively low load levels, when shear deformation or de-bonding are not expected to be of 

significance.  

Shrinkage can also contribute to deformations [14, 15] due to the restrain provided by the flexural bars 

in the bottom of the beams and the consequent development of a shrinkage-induced curvature. Since the 

stiffness of FRP bars is considerably lower than that of steel, this restrain is not as high as for an 

equivalent steel reinforced section. Nonetheless, any restraint can cause the development of micro cracks 

in the concrete and, as such, will have an impact on the apparent tensile strength of the concrete in the 

structural element. However, beyond the initial impact around the cracking load, shrinkage strains cannot 

justify deflections larger than predicted by the fully cracked section. 

The plane sections remain plain assumption of section analysis is considered true for flexural elements 

at the macro scale, but it does not necessarily apply in the regions around the crack. This may be 

amplified in the case of FRP RC since the neutral-axes depth can be very small. However, results from 
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lightly steel reinforced concrete elements show that there are no significant additional deformations at 

least up to the point of yielding [16]. 

Mota et al [17] and Rafai and Nadjai [18] examined several existing deflection models for FRP RC 

beams and slabs and concluded that their performance is highly dependent on the accuracy of the 

calculated cracking moment. The results of their study indicate that there is a critical need for reliability 

analysis of FRP code equations to develop more accurate load-deflection formulas for FRP RC members. 

Despite extensive research on the behaviour of FRP RC members, less research has been conducted 

on deflection prediction of FRP RC elements considering the effects of different stress levels and 

reinforcement ratio (for example [19] and [20]). To examine these, an experimental study was undertaken 

to investigate the deflection behaviour of FRP RC concrete beams and slabs at service ability and ultimate 

load levels. The experimental programme comprised twelve beams and twelve slabs with glass FRP 

(GFRP) and carbon FRP (CFRP) with a wide range of reinforcement ratios. The experimentally 

determined deflections are used to examine the accuracy of the predictive models discussed above and 

presented in detail in the following sections. 

 

 

2- Deflection prediction of FRP RC elements 

To calculate short-term deflections of FRP RC beams, ACI 440.1R-03 [21] adopts the following 

expression for effective moment of inertia (Ie), which accounts for the lower FRP modulus of elasticity 

(Ef) and different FRP bond characteristics. 
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where Ig and Icr are the gross and cracked moment of inertia; Mcr and Ma are the cracking and applied 

moment; Ef and Es are the FRP and steel modulus of elasticity respectively; and αb is a bond dependent 

coefficient, which equals 0.5 for steel rebars. In the absence of more research data, a value of 0.5 has been 

recommended for all FRP rebar types. ACI 440.1R-06 [5] abandons the reliance of dβ  on bond, and 

takes dβ  as proportional to the ratio of reinforcement ratio (ρf) to the balanced reinforcement ratio (ρfb). 
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Using the balanced reinforcement ratio (ρfb) in this equation implies that deflection depends on the 

ultimate tensile stress of the FRP reinforcement.  

After cracking, the composite action between the concrete and FRP rebars may not be as perfect as it 

is usually assumed [7, 12]. In addition, shrinkage and the non-linear behaviour of concrete in the 

compression zone can affect the stiffness of an RC element [15]. To address this issue, a possible 

approach is to provide a transition between Ig and a certain fraction of Icr in the calculation of Ie. Such an 

equation was proposed by Benmokrane et al [12], but was calibrated using a limited number of tests 

(Equation 4). 
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where α0 and β0 are equal to 0.84 and 7, respectively. Naturally, this equation offers more flexibility 

compared to the current ACI 440.1R-06 [5] equation. The factor α0  can reflect the reduced composite 

action between the concrete and FRP rebars. The factor β0 was introduced in the equation to enable a 

faster transition from Ig to Icr, since the degradation in stiffness due to the 3
rd

 power component was 

considered to be too low.  

Bischoff [7] and Bischoff and Scanlon [22] analyzed extensively the ACI 318 [6] expression for Ie 

from a tension-stiffening standpoint. The results of their studies indicate that the ACI 318 [6] proposed 

method is not suitable for GFRP RC. The following equation was proposed for Ie, which is analogous to 

the equation that can be deduced by implementing the provisions of CEB-FIP Model Code 90 [3] to 

determine instantaneous curvatures or deflections. This equation is claimed to be equally applicable for 

FRP and steel RC beams.   
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To predict the deformation of RC beam elements, Eurocode 2 [9] tries to account for the tension 

stiffening effect based on the CEB-FIP Model Code 90 [3] approach. Based on Eurocode 2 [8], the 

following equation can be used to calculate the short-term deflection (∆). 

 4 



Al-Sunna R, Pilakoutas K, Hajirasouliha I & Guadagnini M (2012) Deflection behaviour of FRP reinforced 

concrete beams and slabs: An experimental investigation. Composites Part B: Engineering, 43(5), 2125-2134. 

cr

a

cr

g

a

cr

M

M

M

M
∆−+∆=∆ ))(1()( 22 ββ                                             (6) 

where ∆g and ∆cr are the uncracked-state and cracked-state deflections, respectively. The coefficient β is a 

duration or repetition of load factor (1.0 for short-term loading and 0.5 for sustained or cyclic loading). 

Equation (5) can be derived directly from equation (6) by using the β value for short-term loading. 

 

 

3- Experimental programme 

The experiments consisted of three series of GFRP and three series of CFRP tests on RC beams and 

slabs. To ensure repeatability, each series comprised two identical elements (i.e. in total 24 tests). One 

series of steel RC beams and slabs was also tested for comparison purposes. 

3.1. Materials 

Aslan 100 CFRP and GFRP rebars were used for the main flexural reinforcement of the beams and 

slabs. The surface treatment of these rebars is characterized by helically over-wound fibres and sand 

coating. The tensile properties were obtained by testing a representative number of samples in uni-axial 

tension, using resin filled steel tubes in the grips, and are shown in Table 1. Most of the bars failed away 

from the grips, so the results reflect the tensile strength of the composite. It should be noted that the 

strength of the larger diameter GRFP bars was similar to the strength of the smaller diameter bars, 

contrary to the manufacturer's supplied data. The steel rebars had a nominal diameter of 12 mm and a 

mean yield strength of 590 MPa and mean ultimate strength of 675 MPa.  

In this study, concrete was produced using 25 mm maximum aggregate size, 0.48 water to cement 

ratio and 380 kg/m
3
 cement content. The fresh concrete slump was about 75 mm, and the average 28-day 

cube compressive strength and module of elasticity was found to be around 35 MPa and 29500 MPa, 

respectively. 

3.2. Details of beam and slab elements 

The beam series were designated as BG#, BC#, BS# and slab series as SG#, SC#, SS#. B and S stand 

for beam and slab, while G, C and S identify the type of reinforcement used, GFRP, CFRP or steel, 

respectively. Notation # represents the series number, and the two identical elements within each series 

are identified by adding a or b to the end of the series name.  
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The beam elements were 150 mm wide, 250 mm high, 2550 mm long, with the distance between the 

end-supports being 2300 mm (see Figure 1). The shear span (767 mm) was reinforced with steel stirrups 

to avoid shear failure, while no shear reinforcement was provided in the constant bending moment zone. 

GFRP and CFRP rebars with nominal diameter of 6 mm were used as top reinforcement within the shear 

span to hold the stirrups in place. The clear concrete cover to the main rebars was 25 mm in all cases. 

Each beam series was designed to be under-reinforced, balanced or over-reinforced, with failure 

occurring by rupture of bars or crushing of concrete. The geometric and reinforcement details of GFRP 

and CFRP RC beams are given in Figure 1 and Table 2. The reinforcement ratio of the corresponding 

beam and slab series is almost identical to enable comparison between the deflection behaviour of beam 

and slab elements with similar reinforcement ratios. 

The slab elements were 500 mm wide, 120 mm high, 2350 mm long, whilst the distance between the 

end-supports was 2100 mm. The geometric and reinforcement details of the GFRP and CFRP RC slabs 

are shown in Figure 2 and Table 3. The clear concrete cover to the main rebars was specified at 25 mm. 

However, the flotation of the FRP mesh reinforcement during casting resulted in slightly different cover 

values as reported in Table 3. Similar to the beam elements, each slab series had a different reinforcement 

ratio (under-reinforced, balanced and over-reinforced). 

3.3. Instrumentation and Test Procedure 

The two elements in each beam and slab series, along with eight control cubes and eight control 

cylinders were constructed from the same batch of concrete. All the specimens in each series, including 

the control cubes and cylinders, were cured under similar conditions and tested on the same day. The 

cubes were used to determine the compressive strength, while the cylinders were used to determine the 

tensile strength of the concrete according to ASTM C496-96 [23]. Table 4 shows the compressive and 

tensile strength of concrete for different beam and slab series. 

As shown in Figures 1 and 2, the elements were tested under four-point loading. The total load was 

applied by means of a 600 kN hydraulic actuator and a loading beam was used to subject both beams and 

slabs to two equal concentrated loads symmetrically placed about mid-span. One rebar of every beam and 

slab was instrumented with a total of fourteen strain gauges. Four strain gauges were used to evaluate 

strain development and average bond stresses within the shear span. The other ten strain gauges were 

concentrated around a crack inducer at mid-span to investigate tension stiffening and bond profiles. Two 

dial gauges were used to measure settlements at the end supports and five linear variable displacement 
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transducers (LVDT) were used to measure deflections (Figures 1 and 2). One strain gauge was also used 

to measure the top surface concrete strain at mid-span. The testing was carried out in displacement control 

and the load was paused at about 5 kN intervals to mark and measure the cracks and to take notes. Two 

load cycles were performed for each specimen. In the first cycle, the load was increased to a service load 

level corresponding to a stress of about 45% of the estimated concrete compressive strength in the top 

concrete fibre at mid-span. In the second cycle, the load was increased until failure occurred, either by 

rupture of bars or by crushing of concrete. All data (load, strains and deflections) were collected by a data 

acquisition system at a sampling frequency of 1Hz.  

 

4- Test results and discussion 

Figure 3 shows the experimental load-deflection response at mid-span for all tested beams and slabs. 

It is clear from this figure that the results of the two replicate elements within each series are very similar. 

The only exception is in the SC3 series (Figure 3-d), where the clear cover is significantly different for 

SC3a and SC3b slabs. Therefore, it can be confirmed that in general the materials used, the production of 

the elements and the test procedure were all well controlled. Due to limitations of space, only some of the 

results are discussed in this paper in detail. Similar behaviour was observed for all of the tested specimens. 

4.1. Modes of failure  

The three series of FRP RC beams and slabs were designed to investigate different flexural failure 

modes including rupture of the rebars (under-reinforced), compressive failure of the concrete (over 

reinforced) and balanced failure (compressive concrete failure followed immediately by rupture of the 

rebars). The modes of failure for all tested beam and slab elements are given in Tables 2 and 3. It should 

be mentioned that under-reinforced FRP RC sections are not usually of interest for design purposes, since 

the failure is brittle and drastically catastrophic; however, they result in much higher stress levels in the 

FRP bars which is of interest in terms of deflection behaviour.    

4.2. Strain in the concrete and rebars  

A cracked-section analysis was performed to estimate the load deflection response of each of the 

tested specimens. The assumption of plane sections remain plane was implemented in this analysis. A 

linear elastic behaviour for the FRP reinforcement was considered, while the stress-strain relationship for 

the concrete in compression was based on the Eurocode 2 model [9]. The concrete was assumed to resist 

no tension. Typical experimental load-rebar strain relationships for BG2 are shown in Figure 4-a. The 
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results show that cracked-section analysis predicts reasonably well the maximum rebar strain at the 

location of the pre-formed crack. Beyond cracking, the rebar strains around the crack inducer follow 

almost a linear relationship with load up to failure. From the analysis of Figure 4.a it can be seen that 

cracking at the location of the crack inducer takes place at 13 kN, as captured by gauge No. 10. However, 

the first natural crack takes place at 18 kN and its development was captured by gauge No. 14. At higher 

load levels, the natural crack developed wider than the induced crack and hence the rebar undergoes 

additional strain when moving away from mid-span induced crack. 

The load-concrete strain relationships shown in Figure 4-b indicate that the concrete strain at the 

extreme top fibre (above the location of the crack) considerably exceeds that predicted by cracked-section 

analysis. This can be attributed to the fact that cracked-section analysis assumes a linear strain 

distribution in the section that may not be accurate enough for FRP RC beams, as the low modulus of 

elasticity of FRP rebars leads to wider cracks, and therefore, more localized effects compared to steel RC 

beams. 

4.3. Curvature  

FRP rebars have high tensile strength and their stress-strain behaviour is linear up to failure. Using the 

experimental top-fibre concrete strain (εc), an average of the rebar strains around the crack inducer (εfave), 

and the effective reinforcement depth (d), the curvature (φ) at every load level was evaluated from the test 

results according to the general approach of CEB, as follows. 

d

favec εε
ϕ

+
=                                                                   (7)  

The experimentally derived load-curvature relationships, in general, compare well to those derived by 

cracked-section analysis (Figure 5-a). In this study, the experimentally derived moment-curvature 

relationships were used to calculate the mid-span deflections that are associated with the flexure 

behaviour as shown in Figure 5-b. It can be seen that for SG2 (balanced reinforced slab) the measured 

deflections are larger than the predicted flexural deflections, and they start to deviate shortly after shear 

cracking (14.8 kN). The difference between the measured and flexural deflections can be investigated 

further by examining the strain profiles along the rebar at different load levels. The small difference in the 

cracking loads observed in Figures 5-a and 5-b is attributable to the fact that deflections are affected by 

localised effects to a lesser extent than section curvatures. Figure 6 shows the experimental profile of 

strains along a rebar in slab element SG2. Any noticeable increase in the rebar strain is caused by the 
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development of a nearby crack (i.e. mid-span induced crack and adjacent cracks). The strain profiles 

along the rebar in the shear span indicate that the rebar undergoes additional strains, in excess of the 

strains due to flexure, since the strains at the centre span are lower than in the region near the loading 

points. This behaviour is not observed in steel RC since the considerably higher steel stiffness controls 

crack widths and restricts the spread of additional deformations. In other words, due to the low modulus 

of elasticity of the FRP rebars (especially GFRP rebars), the contribution of shear and bond-slip induced 

deformations could be of major significance for FRP RC elements. For example, this additional deflection 

for beam BG2 was estimated to be 20% of the measured deflection at failure [16]. 

4.4. Deflection 

Calculated load-mid-span flexural deflections of beams BG1a (low reinforcement ratio) and BG3a 

(high reinforcement ratio) are compared to the measured deflections in Figure 7. Figure 8 shows the 

calculated flexural deflections and experimental measured deflections of their corresponding slab 

elements SG1a (low reinforcement ratio) and SG3a (high reinforcement ratio). 

As shown in Figures 7-a and 8-a, the effect of the additional component of the mid-span deflection is 

not prominent for series BG1 and SG1 (low reinforcement ratio elements) because premature failure 

occurred by rupture of the rebars, when the load level was relatively low. For BG3 and SG3 (Figures 7-b 

and 8-b) the high amount of reinforcement could provide better control over the additional deformations 

(shear or bond-slip induced deformations) at the lower load levels. As a result, the additional deflections 

were observed at the higher load level. It is therefore suspected that the additional deformations are more 

important in beams and slabs with a moderate reinforcement ratio (see Figure 5-b). Based on the above 

discussion, for GFRP RC elements with moderate to high reinforcement ratios, it would be important to 

evaluate the additional deformations [16].  

 

5. Prediction of deflection 

Figures 9 to 12 compare experimental mid-span deflections for all tested beams and slabs to the 

deflections predicted using different simple prediction equations. It should be noted, the results of this 

study showed that, in general, the accuracy of the predicted deflection is highly dependent on the 

accuracy of the calculated cracking moment. Accurate estimation of concrete cover is also important for 

thin RC slabs where a small variation in the concrete cover would result in a considerable variation in the 

cracked moment of inertia. To better evaluate the accuracy of different analytical methods, the ratio of the 
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analytical to the experimental mid-span deflection was calculated for all FRP RC elements at both service 

and ultimate limit states (Table 5). In the present study, the service load is that corresponding to a stress 

level in the top concrete fibre of about 40% of the concrete compressive strength. 

5.1. Service limit state 

The results show that ACI 440.1R-06 [5] approach, in general, overestimates deflections (up to 18%) 

for FRP RC elements with low reinforcement ratio (beams: BG1 and BC1; slabs: SG1 and SC1) at 

service limit state. However, for FRP RC beams and slabs with moderate to high reinforced ratio this 

method always underestimates the service level deflections (on average by 11% and 34% for FRP 

reinforced beams and slabs, respectively).  

As mentioned before, the effective moment of inertia (Ie) proposed by Bischoff [7] and Eurocode 2 [9] 

are both based on the tension stiffening provisions of CEB-FIP Model Code 1990 [3]; and therefore, lead 

to identical deflection predictions. Figures 9 to 12 show that the deflections predicted according to 

Eurocode2 [9] and Bischoff [7] approach in general compare well with the measured deflections at low 

load levels. However, the predicted deflections for the FRP RC elements were on average 17% less than 

the measured deflections. 

Benmokrane et al [12] equation is found to considerably overestimate (up to 42%) the deflection of 

FRP RC beams and slabs at service load level (see Table 5). The reason could be attributed to the use of 

β0 factor in this equation that leads to a high degradation in stiffness at service load level as shown in 

Figures 9 to 12. 

5.2. Ultimate limit state 

The results of this study indicate that both ACI 440.1R-06 [5] and Eurocode 2 [9] (and Bischoff [7]) 

equations underestimate the measured deflections of FRP RC elements by up to 25% at high levels of 

load. Table 5 indicates that predicted mid-span deflections are on average 12% and 20% less than the 

measured deflections of low and moderate to high reinforced ratio FRP RC elements, respectively. As 

discussed in previous sections, the difference between the calculated and measured deflections in 

moderate to high reinforced ratio FRP RC elements may be mainly attributed to the additional 

deformations induced by shear and bond-slip. It is shown in Figures 9 to 12 that, except for two GFRP 

RC slabs (SG1and SG3), Benmokrane et al [12] proposed method was fairly accurate in predicting the 

ultimate mid-span deflection of FRP RC elements. Table 5 shows that this method underestimates the 

ultimate deflection of Slab SG1 by 37% and overestimates the ultimate deflection of Slab SG3 by 23%. 
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The results of this study indicate that additional deformations other than those induced by pure flexure 

could be significant particularly in FRP RC beams and slabs with moderate to high reinforced ratio. 

However, it seems that most of the existing simplified methods to predict deflections of FRP RC elements 

do not adequately take into account these additional deformations. This usually leads to un-conservative 

predictions especially at higher load levels. It should be mentioned that additional deformations may not 

always be significant at the serviceability load. Nevertheless, it is still important to predict deformation of 

FRP RC elements over the entire loading range with good accuracy. This requires developing more 

fundamental methods to evaluate shear and bond-slip induced deflections [24, 25]. Further analytical 

investigations will be published by the authors in a separate, forthcoming paper. 

 

6- Conclusions 

This study experimentally investigated the deflection behaviour of 24 GFRP and CFRP RC beams and 

slabs covering a wide range of reinforcement ratios. Based on the results, the following conclusions can 

be drawn: 

• For FRP RC beams and slabs, the plain section remains plain assumption across the entire section 

may not be valid for high levels of loading. 

• Existing approaches to estimate deflections of RC elements by considering solely their flexural 

behaviour tend to underestimate overall deformations. The contribution to overall deflections of 

other possible stiffness-reducing mechanisms (e.g. shear cracking, shrinkage and loss of bond) can 

be significant, particularly in FRP RC elements having moderate to high reinforcement ratios and 

should be further investigated. The accuracy of the predicted deflection for FRP RC elements 

(particularly in thin slabs) is highly dependent on the accuracy of the calculated cracking moment 

and concrete cover. 

• The ACI 440.1R-06 [5] equation leads to overestimated service level deflections at low reinforced 

ratios, and underestimated deflections at moderate to high reinforced ratio FRP RC beams and slabs. 

This method underestimates the measured ultimate deflections especially for moderate to high 

reinforced ratio FRP RC elements.  

• The faster transition to a fully cracked response assumed in the model proposed by Benmokrane et 

al [12] can overestimate service deflections, especially for moderate to high reinforcement ratios. 
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• The performance of the approach recommended in Eurocode 2 [9] and the analogous model 

proposed by Bishoff [7] offer more consistent predictions throughout the range of reinforcement 

ratios explored in this experimental programme. These methods, however, tend to underestimate 

deflections at service load (on average by 17%) and to a larger extent at ultimate limit states, 

especially for moderate to high reinforced ratio (up to 25%).  
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Table 1. Tensile properties of GFRP and CFRP rebars. 

Rebar 

Type 

Nominal 

diameter (mm) 

Manufacturer 

modulus of 

elasticity 

(MPa) 

Test modulus   

of elasticity 

(MPa) 

Manufacturer 

guaranteed tensile 

strength (MPa) 

Test tensile strength, 

(MPa) 

Average 
Standard 

Deviation 

GFRP 

6.35 40800 38900 830 600 70 

9.53 40800 42800 760 665 35 

12.7 40800 41600 690 620 40 

19.05 40800 42000 620 670 10 

CFRP 

6.35 120000 133000 1450 1450 40 

9.53 123000 132000 1380 1320 170 

12.7 112000 119000 1230 1475 60 

 

 

 

Table 2.  Reinforcement details of the test beams 

        (1)
 Two layers, with 25 mm clear spacing between them. 

 

 

 

 

 

 

 

 

Series 

Designation 

Beam 

Designation 
Rebar Details 

Reinforcement 

Ratio 
Type of Failure 

GFRP 

Beams 

BG1 
BG1a 

2Φ9.53 0.0043 Rupture of rebars 
BG1b 

BG2 
BG2a 

2Φ12.7 0.0077 Almost balanced 
BG2b 

BG3 
BG3a 

4Φ19.05 
(1)

 0.0391 
Concrete 

crushing BG3b 

CFRP 

Beams 

BC1 
BC1a 

3Φ6.35 0.0029 Rupture of rebars 
BC1b 

BC2 
BC2a 

3Φ9.53 0.0065 Almost balanced 
BC2b 

BC3 
BC3a 

3Φ12.7 0.0116 
Concrete 

crushing BC3b 

Steel 

Beams 
BS 

BSa 
2Φ12 0.0069 

Yielding of 

reinforcement BSb 
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Table 3. Reinforcement details of the test slabs 

 

 

Table 4. Mechanical properties of the concrete 

 

Series 
Designation 

Slab 
Designation 

Cover 
(mm) 

Main 
Rebar  

Transverse 
Rebar  

Reinforcement 

Ratio 
Type of Failure 

GFRP 
Slabs 

SG1 
SG1a 27.5 

5Φ6.35 7Φ9.53 /m 0.0035 
Rupture of 

rebars SG1b 27.5 

SG2 
SG2a 31 

5Φ9.53 7Φ9.53 /m 0.0079 
Almost 

balanced SG2b 31 

SG3 
SG3a 40 

5Φ19.05 7Φ9.53 /m 0.0333 
Concrete 
crushing SG3b 40 

CFRP 
Slabs 

SC1 
SC1a 31 

4Φ6.35 6Φ6.35 /m 0.0028 
Rupture of 

rebars SC1b 33 

SC2 
SC2a 38 

4Φ9.53 6Φ6.35 /m 0.0063 
Almost 

balanced SC2b 35 

SC3 
SC3a 42.5 

4Φ12.7 6Φ6.35 /m 0.0114 
Concrete 
crushing SC3b 36 

Steel 
Slabs 

SS 
SSa 25 

4Φ10 5Φ8 /m 0.0070 
Yielding of 

reinforcement SSb 25 

Series 
Designation 

Cube Compressive Strength (MPa) Split Cylindrical Tensile Strength (MPa) 

Average Standard Deviation Average Standard Deviation 

GFRP 
Beams 

BG1 47.7 3.56 4.1 0.29 

BG2 47.7 3.56 3.8 0.15 

BG3 46.5 0.92 3.6 0.08 

CFRP 
Beams 

BC1 55.4 2.86 3.9 0.20 

BC2 52.6 2.38 3.6 0.05 

BC3 51.8 2.59 3.6 0.19 

Steel 
Beams 

BS 52.0 1.40 4.1 0.28 

GFRP 
Slabs 

SG1 51.0 1.44 3.9 0.23 

SG2 46.2 1.55 3.4 0.24 

SG3 45.9 2.02 3.8 0.17 

CFRP 
Slabs 

SC1 50.1 2.50 3.9 0.21 

SC2 51.0 2.41 3.4 0.11 

SC3 49.8 3.95 3.8 0.24 

Steel 
Slabs 

SS 50.6 2.56 3.6 0.24 

 15 



Al-Sunna R, Pilakoutas K, Hajirasouliha I & Guadagnini M (2012) Deflection behaviour of FRP reinforced 

concrete beams and slabs: An experimental investigation. Composites Part B: Engineering, 43(5), 2125-2134. 

Table 5. Analytical to experimental mid-span deflection for FRP reinforced elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Series 
Designation 

Load State 
Ratio of analytical to experimental mid-span deflection 

ACI 440.1R- 06 Eurocode 2, Bischoff Benmokrane 

CFRP 
Beams 

BC1 
Service 1.13 0.75 1.21 

Ultimate  0.95 0.90 1.13 

BC2 
Service 0.90 0.78 1.15 

Ultimate  0.80 0.78 0.95 

BC3 
Service 0.88 0.87 1.25 

Ultimate  0.76 0.75 0.90 

GFRP 
Beams 

BG1 
Service 1.14 0.76 1.15 

Ultimate  0.84 0.81 0.97 

BG2 
Service 0.89 0.81 1.28 

Ultimate  0.77 0.75 1.01 

BG3 
Service 0.87 0.86 1.34 

Ultimate  0.79 0.79 0.95 

CFRP 
Slabs 

SC1 
Service 1.08 0.73 1.13 

Ultimate  0.92 0.88 1.08 

SC2 
Service 0.61 0.72 1.05 

Ultimate  0.83 0.82 1.01 

SC3 
Service 0.71 0.81 1.13 

Ultimate  0.82 0.85 1.11 

GFRP 
Slabs 

SG1 
Service 1.18 0.95 1.10 

Ultimate  0.79 0.93 0.63 

SG2 
Service 0.66 0.92 1.24 

Ultimate  0.79 0.84 1.06 

SG3 
Service 0.65 0.97 1.42 

Ultimate  0.84 0.86 1.23 

Average 0.89               0.83 0.83                     0.83 1.20             1.00 

Standard Deviation 0.20               0.06 0.09                     0.06 0.11             0.15 
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Figure 1. Geometric and reinforcement details of the test beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Geometric and reinforcement details of the test slabs 
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Figure 3. Experimental load vs. mid-span deflection; series (a): BG, (b): BC, (c): SG, (d): SC 

 

 

 

 

 

 

 

Figure 4. Typical experimental load vs. strain relationships for beam BG2; (a): Rebar strain; (b): 

Concrete strain 

 

 

 

 

 

 

 

 

Figure 5. Typical experimental load vs. (a): curvature, and (b): mid-span deflection, slab SG2a 
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Figure 6. Typical experimental profile of strains along a rebar, SG2 

 

 

 

 

 

 

 

 

 

Figure 7.  Experimental load vs. mid-span deflection for (a): BG1, and (b): BG3 

 

 

 

 

 

 

 

 

 

Figure 8.  Experimental load vs. mid-span deflection for (a): SG1, and (b): SG3 
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Figure 9. Experimental and predicted deflections � CFRP beams 
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Figure 10. Experimental and predicted deflections � GFRP beams 
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Figure 11. Experimental and predicted deflections � CFRP slabs 
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Figure 12. Experimental and predicted deflections � GFRP slabs 
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