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Abstract Weak gravitational lensing by black holes and
wormholes in the context of massive gravity (Bebronne and
Tinyakov, JHEP 0904:100, 2009) theory is studied. The par-
ticular solution examined is characterized by two integra-
tion constants, the mass M and an extra parameter S namely
‘scalar charge’. These black hole reduce to the standard
Schwarzschild black hole solutions when the scalar charge is
zero and the mass is positive. In addition, a parameter λ in the
metric characterizes so-called ‘hair’. The geodesic equations
are used to examine the behavior of the deflection angle in
four relevant cases of the parameter λ. Then, by introducing
a simple coordinate transformation rλ = S + v2 into the
black hole metric, we were able to find a massless wormhole
solution of Einstein–Rosen (ER) (Einstein and Rosen, Phys
Rev 43:73, 1935) type with scalar charge S. The programme
is then repeated in terms of the Gauss–Bonnet theorem in
the weak field limit after a method is established to deal with
the angle of deflection using different domains of integration
depending on the parameter λ. In particular, we have found
new analytical results corresponding to four special cases
which generalize the well known deflection angles reported
in the literature. Finally, we have established the time delay
problem in the spacetime of black holes and wormholes,
respectively.
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1 Introduction

At present independent observations have confirmed that
the universe is currently undergoing a phase of accelerated
expansion. The observed late time acceleration has been con-
firmed by data from type Ia Supernovae [3,4], anisotropy in
the Cosmic Microwave Background radiation [5] and SDSS
[6,7]. To describe the present expansion scenario several
models have been proposed so far. Two broad approaches
have emerged to account for the observed accelerated expan-
sion. The first is the dark energy proposal with the assumption
that nearly 70 % of the total energy-density in the universe
may be in the form of negative pressure fluid with the associ-
ated density parameter �DE of the order of �DE ∼ 0.70. One
of the simplest candidates generating the dark energy is the
cosmological constant, but its characterization has two well-
known problems, i.e., fine-tuning and cosmic coincidence.
Moreover, there is a severe discrepancy in the observed value
of the cosmological constant in contrast with the value pre-
dicted by quantum cosmology. Ellis et al. [8,9] proposed
the use of the trace-free Einstein equations which effectively
treats the cosmological constant as a mere constant of inte-
gration. This idea was first proposed by Weinberg [10] and
has also gone by the name unimodular gravity [11–13]. Sev-
eral alternative models have been suggested to incorporate
the cosmological constant problems, namely, quintessence
[14], tachyon field [15], phantom model [16] and k-essence
[17] that also predict cosmic expansion amongst others.

A second approach is that of modified gravity as an alter-
native to appealing to exotic matter distributions such as dark
energy or dark matter. Generalizations of general relativ-
ity (GR) appear to avoid introducing matter with nonstan-
dard physical properties and to solve the singularity problem.
Modified or extended theories of gravity often require higher
dimensional spacetimes. This in itself is no shortcoming as
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historically a number of higher dimensional theories have
appeared such as Kaluza–Klein theory and the brane world
concept. It is debatable whether gravitational interactions are
necessarily four dimensional. Indeed if string theory or its
generalization M-theory for quantum effects is to be consis-
tent with a theory of gravitation then higher dimensions are
necessary. The Einstein–Hilbert action may be modified to
include non-linear geometric terms. One of these proposals
is the f (R) theory [18–22], as a simple modification of the
Einstein–Hilbert Lagrangian density by a general function of
the Ricci scalar R. While f (R) theory does have the capacity
to explain the late-time expansion of the universe, the theory
does possess some difficulties in that ghost terms are mani-
fest in the presence of fourth order derivatives. Of late f (R)

theory has been shown to be equivalent to the Brans–Dicke
scalar tensor theory. A more natural generalization of gen-
eral relativity is the Lovelock [23,24] lagrangian postulate
in which the action is composed of terms quadratic in the
Ricci scalar, Ricci tensor and the Riemann tensor. Remark-
ably this higher curvature theory generates up to second order
derivative terms in the equations of motion and is accordingly
ghost-free. To zeroth order the Lovelock polynomial is iden-
tical to the cosmological constant, to first order the Einstein
action is regained while to second order the action is known
as the Gauss–Bonnet action.

In this paper, we consider massive gravity as a modifi-
cation of GR. These include massive gravitons and have
attracted much attention recently. In addition the theory
incorporates massive spin-2 particles which have two degrees
of freedom. This theory has a rich phenomenology, such as
explaining the accelerated expansion of the universe without
invoking dark energy. Additionally, the resolution of the hier-
archy problem and brane-world gravity scenarios also gen-
erate arguments for the existence of massive modes; hence
massive gravity as in the Refs. [25,26] emerged. In this direc-
tion the pioneer work was done by Fierz and Pauli [27]
in the context of linear theory. It is worthwhile to men-
tion that the original theory suffered from the existence of
vDVZ (van Dam–Veltman–Zakharov) discontinuity. Later,
Vainshtein introduced a well known mechanism [30–32] to
resolve the long standing problem of the vDVZ discontinuity
by considering a nonlinear framework but this raised another
problem of the Fierz and Pauli theory which is known as
the Boulware–Deser (BD) [28,29] ghost instability at the
non-linear level. In order to avoid such instability, de Rham,
Gabadadze and Tolley (dRGT) [33,34] have proposed a new
massive gravity theory with an extension of the Fierz-Pauli
theory. Recently other versions of massive gravity have been
proposed, namely, new massive gravity [35] and bi-gravity
[36].

Massive gravity theories are also studied in the astrophys-
ical context. Black hole solutions and their thermodynamical
properties have been analyzed in dRGT massive gravity [37–

40]. Katsuragawa et al. [41] devised a neutron star model that
demonstrated that massive gravity dynamics deviates only
slightly from GR. It was recently proposed by Bebronne and
Tinyakov [2] that vacuum spherically-symmetric solutions
do exist in massive gravity. The black hole solution depends
on the mass M and an extra parameter S which is referred
to as the ‘scalar charge’. Additionally, in Ref. [42] the valid-
ity of the laws of thermodynamics in massive gravity have
been checked for the same black hole solutions. A number
of articles on black holes in massive gravity have appeared
recently; some solutions have been reported in [43–47].

It is important to understand the deflection of light in the
presence of a mass distribution. This becomes an important
and effective tool for probing a number of interesting phe-
nomena. As early as 1919 Eddington [48] studied the weak
gravitational lensing of the Schwarzschild spacetime. This
seminal work initiated the study of gravitational lensing (GL)
theory [49–52]. It is also known that in the vicinity of mas-
sive compact objects (such as neutron stars or black holes)
electromagnetic radiation is generated. The importance of
examining light deflection in the weak field limit lies in the
ability to probe large-scale structures, as well as exotic mat-
ter, wormholes, naked singularity, etc (The reader is referred
to the more detailed review in [53–57]). It is thus imperative
to investigate the GL effect of black holes in massive grav-
ity and to search for their possible observational signatures
in the weak field limit. In contrast to the lensing situation
already studied in the literature, we apply the higher cur-
vature Gauss–Bonnet theorem (GTB) [86] to calculate the
deflection angle.

It is well known that the deflection of light (i.e. Grav-
itational lensing) is now one of useful tools to search not
only for dark and massive objects, but also wormholes. In
recently past, several attempts have been made to calculate
the elliptical integral by Virbhadra and Ellis [58,59]. Soon
after the Eiroa et al. have studited Riessner–Nordstrom black
hole lensing in strong gravitational region [60]. The black
hole gravitational lenses have been widely demonstrated in
[61–72]. In addition, after the pioneer works by Kim and
Cho [79], the gravitational lensing by a negative Arnowitt–
Deser–Misner (ADM) mass was studied in [80–85]. As a
consequence, several forms of the deflection angle by the
Ellis wormhole (particular example of the Morris–Thorne
traversable wormhole) have been studied in the strong field
limit [73–78]. The computation of the deflection angle in
the weak field limit for spherically symmetric static space-
times may be accomplished through a simple algorithm. Very
recently, Werner [87] extended and applied the optical geom-
etry to the case of stationary black holes. Further, under some
physically realistic assumptions GBT was used in studies of
various astrophysical objects, such as Ellis wormholes by
Jusufi [88], wormholes in Einstein–Maxwell-dilaton theory
[89–91], black holes with topological defects and deflection
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angle for finite distance by Ishihara et al. [88,98–103]. In Ref.
[105], the authors have studied the strong deflection limit
from black holes and explored the role of the scalar charge
in massive gravity. In the present work, we aim to investigate
the deflection angle by black holes and charged wormholes
in massive gravity in the weak limit approximation using the
optical geometry as well as the geodesic method.

This paper is structured as follows. In Sect. 2 we review the
black hole solution in massive gravity. In Sect. 3 we consider
the geodesic equations in massive gravity theory and analyse
the deflection angle in four special cases. In Sect. 4 we con-
sider the same problem viewed in terms of the Gauss–Bonnet
theorem. In Sect. 5 the time delay problem is considered. In
Sect. 6 we shall consider deflection of light by wormholes.
By applying the GBT of gravitational lensing theory to the
optical geometry, we calculate the deflection angle produced
by charged and massless wormhole in massive gravity. In
Sect. 7 we consider the time delay problem in the context of
wormholes. Finally in Sect. 8 we comment on our results.

2 Black hole solution in massive gravity

We commence with a brief discussion about black holes in
massive gravity. An action of a four-dimensional massive
gravity model which is used in this paper, is given by:

S =
∫

d4x
√−g

[
R

16π
+ �4F(X,Wi j )

]
, (1)

where R is as usual the scalar curvature and F is a function
of the scalar fields φi and φ0, which are minimally coupled
to gravity. These scalar fields play the crucial role for spon-
taneously breaking Lorentz symmetry. Actually, this action
in massive gravity can be treated as the low-energy effective
theory below the ultraviolet cutoff �. The value of � is of
the order of

√
mMpl , where m is the graviton mass and Mpl

is the Plank mass. The function F which depends on two
particular combinations of the derivatives of the Goldstone
fields, X and Wi j , are defined as

X = ∂0φi∂0φ
i

�4 , (2)

Wi j = ∂μφi∂μφi

�4 − ∂μφi∂μφ0∂νφ j∂νφ
0

�4X
, (3)

where the constant � has the dimension of mass. From this,
one can arrive at the new type of black hole solution, namely,
massive gravity black hole (for detailed derivation can be
found in [2]). The ansatz for the static spherically symmetric
black hole solutions can be written in the following form:

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (4)

where the metric function with the scalar fields are assumed
in the following form

f (r) = 1− 2M

r
− S

rλ
, φ0 = �2(t+h(r)) and φi = �2xi ,

(5)

with

h(r) = ±
∫

dr

f (r)

[
1 − f (r)

(
Sλ(λ − 1)

12m2

1

rλ+2 + 1

)−1
] 1

2

,

where M accounts for the gravitational mass of the body
and λ is a parameter of the model which depends on the
scalar charge S. The presence of the scalar charge represents
a modification of the Einstein’s gravitational theory. When
S = 0 the usual Schwarzschild potential is regained. How-
ever, at large distances with positive M the solution (2) has
an attractive behavior, whereas with negative M the Newton
potential is repulsive at large distances and attractive near the
horizon. Our goal is to study the when M > 0 and S > 0,
so that black hole has attractive gravitational potential at all
distances and the size of the event horizon is larger than 2M .
Another reason for considering such a solution is that the
asymptotic behaviour of the gravitational potential is Newto-
nian with finite total energy, featuring an asymptotic behavior
slower than 1/r and generically of the form 1/rλ. Therefore,
the attraction the modified black hole solution exhibits is
stronger than that of the usual Schwarzschild black hole due
to the presence of “hair λ”.

3 Geodesic equations

Let us turn our attention to the problem of the deflection angle
in massive gravity theory in the framework of the geodesic
equations. Recently a new black hole solution in the context
of the massive gravity theory was found to be [2]

ds2 = −
(

1 − 2M

r
− S

rλ

)
dt2 +

(
1 − 2M

r
− S

rλ

)−1

dr2

+ r2
(
dθ2 + sin2 θdϕ2

)
. (6)

This solution does not describe asymptotically flat space
in the case λ < 0. For λ = −2 the metric coincides with
the familiar Schwarzschild de-Sitter spacetime consisting of
a constant stress energy tensor in the form of the (positive)
cosmological constant [106]. In the present paper we shall
focus on the case λ ≥ 1. Immediately it may be recognized
that the caseλ = 2 corresponds with the Reissner–Nordström
solution for the exterior of a charged perfect fluid sphere.
Applying the variational principle to the metric (6) we find
the Lagrangian

123



349 Page 4 of 15 Eur. Phys. J. C (2018) 78 :349

2L =
(

1 − 2M

r(s)
− S

rλ(s)

)
ṫ2(s) + ṙ2(s)(

1 − 2M
r(s) − S

rλ(s)

)

+ r2(s)
(
θ̇2(s) + sin2 θϕ̇2(s)

)
. (7)

It is worth noting that L is +1, 0, and −1, for timelike,
null, and spacelike geodesics, respectively. Taking the equa-
torial plane θ = π/2, the spacetime symmetries implies two
constants of motion, namely l and E , given as follows

pϕ = ∂L
∂ϕ̇

= r(s)2ϕ̇ = l, (8)

pt = −∂L
∂ ṫ

=
(

1 − 2M

r(s)
− S

rλ(s)

)
ṫ = E . (9)

To proceed further we need to introduce a new variable,
say u(ϕ), which is can be given in terms of the radial coor-
dinate as r = 1/u(ϕ) which yields the identity

ṙ

ϕ̇
= dr

dϕ
= − 1

u2

du

dϕ
(10)

After some algebraic manipulations one can show that the
following relation can be recovered

− ṫ2(s)

ϕ̇2(s)
+ 2

ṫ2(s)

ϕ̇2(s)
Mu + Suλ ṫ2(s)

ϕ̇2(s)

+
(
du

dϕ

)2 1

u4
(
1 − 2Mu − Suλ

) + 1

u2 = 0. (11)

On the other hand, from Eqs. (8) and (9) we find

ṫ(s)

ϕ̇(s)
= E

l
(

1 − 2Mu − S
uλ

)
u2

. (12)

Hence we can recast Eq. (11) in terms of the impact param-
eter b as follows(

2Mu + Suλ − 1
)

b2
(

1 − 2Mu − S
uλ

)2
u4

+
(
du

dϕ

)2 1

u4
(
1 − 2Mu − Suλ

) + 1

u2 = 0. (13)

where b is defined as

b = l

E . (14)

We proceed by considering four special cases for different
values of the parameter λ in the metric (6).

3.1 Case λ = 1

To begin, we shall consider the affine parameter along the
light rays to be E = 1, therefore one should find the following
condition umax = 1/r0, where r0 gives the distance of the

closest approach. Next, we can evaluate the constant l from
Eq. (14) in leading order terms as

l =
(√

4MS

r2
0

+ S

r0
+ 2M

r0
+ 1

)
r0. (15)

This leads us to the following differential equation

(
du

dϕ

)2 1

u4K + 1

u4r2
0 ϒ2K2

− 2M

u3r2
0 ϒ2K2

− S

r2
0 ϒ2K2

− 1

u2 = 0, (16)

where

K = Su + 2Mu − 1, (17)

ϒ = 4MS

r2
0

+ S

r0
+ 2M

r0
+ 1. (18)

From the above equation we find

dϕ

du
= ±

√
C1

A1u3 − C1u2 + 1
, (19)

where

A1 = 2M2S + 4M2r0 + 4MS2

+ 4MSr0 + 2Mr2
0 + S2r0 + Sr2

0 , (20)

C1 = 2Mr2
0 + 4MS + Sr0 + r2

0 . (21)

It is well known that the solution to the above equation in
the weak limit can be written as follows [107]

�ϕ = π + α̂, (22)

where α̂ is the deflection angle which should be calculated.
Moreover, from the above equation the deflection angle is
shown to be calculated as follows [107]

α̂ = 2|ϕu=1/b − ϕu=0| − π. (23)

Using this relation, from Eq. (19) the deflection angle is
found to be

α̂λ=1 � 4M

r0
+ M2

r2
0

(
15π

4
− 4

)
+ 2 S

r0

− MS

r2
0

(
4 − 15π

4

)
− S2

r2
0

(
1 − 15π

16

)
. (24)

Furthermore if we let S = 0, we find the Schwarzschild
deflection angle with second-order correction terms which is
in perfect agreement with [104].
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3.2 Case λ = 2

Our second case will be λ = 2. Going through the same
procedure as in the last example the constant l is found to be

l =
(√

4MS

r3
0

+ S

r2
0

+ 2M

r0
+ 1

)
r0. (25)

We obtain the following differential equation
(
du

dϕ

)2 1

u4M + 1

u4r2
0 �2M2

− 2M

u3r2
0 �2M2

− S

r2
0 �2M2

− 1

u2 = 0, (26)

where

M = Su2 + 2Mu − 1, (27)

� = 4MS

r3
0

+ S

r2
0

+ 2M

r0
+ 1. (28)

From the above equation we get that

dϕ

du
= ±

√
C2

A2u4 + B2u3 − C2u2 + r0
, (29)

where

A2 = 2MSr2
0 + Sr3

0 + 4MS2 + S2r0, (30)

B2 = 4M2r2
0 + 2Mr3

0 + 8M2S + 2MSr0, (31)

C2 = 2Mr2
0 + 4MS + Sr0 + r3

0 . (32)

Consequently the deflection angle has the form

α̂λ=2 � 4M

r0
+ M2

r2
0

(
15π

4
− 4

)
+ 3 S π

4 r2
0

+ MS

r3
0

(
14 − 3π

2

)
+ 57 π S2

64 r4
0

(33)

Now as a special case we can find the charged black hole
deflection angle by simply letting S = −Q2. In that case we
find the RN deflection angle

α̂RN � 4M

r0
+ M2

r2
0

(
15π

4
− 4

)
− 3 Q2 π

4 r2
0

− MQ2

r3
0

(
14 − 3π

2

)
+ 57 π Q4

64 r4
0

(34)

3.3 Case λ = 3

In a similar way, letting λ = 3 we found

l =
(√

4MS

r4
0

+ S

r3
0

+ 2M

r0
+ 1

)
r0. (35)

The differential equation takes the form
(
du

dϕ

)2 1

u4N + 1

u4r2
0 �N 2

− 2M

u3r2
0 �N 2

− S

r2
0 �N 2

− 1

u2 = 0, (36)

where

N = Su3 + 2Mu − 1, (37)

� = 4MS

r4
0

+ S

r3
0

+ 2M

r0
+ 1. (38)

From the above equation we find

dϕ

du
= ±

√
C3

A3u5 + B3u3 − C3u2 + r2
0

, (39)

where

A3 = 2MSr3
0 + Sr4

0 + 4MS2 + S2r0, (40)

B3 = 4M2r3
0 + 2Mr4

0 + 8M2S + 2MSr0, (41)

C3 = 2Mr3
0 + 4MS + Sr0 + r4

0 . (42)

The deflection angle is given by

α̂λ=3 � 4M

r0
+ M2

r2
0

(
15π

4
− 4

)
+ 8 S

3 r3
0

+ MS

r4
0

(
10 + 105π

16

)
+ 315 π S2

128 r6
0

(43)

3.4 Case λ = 4

Finally, in our last case we let λ = 4, it follows

l =
(√

4MS

r5
0

+ S

r4
0

+ 2M

r0
+ 1

)
r0. (44)

We find the following differential equation

(
du

dϕ

)2 1

u4�
+ 1

u4r2
0 ζ�2

− 2M

u3r2
0 ζ�2

− S

r2
0 ζ�2

− 1

u2 = 0,

(45)

where

� = Su4 − 2Mu − 1, (46)

ζ = 4MS

r5
0

+ S

r4
0

+ 2M

r0
+ 1. (47)

From the above equation we obtain

dϕ

du
= ±

√
C4

A4u6 + B4u3 − C4u2 + r3
0

, (48)
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Fig. 1 We plot the deflection angle as a function of x = r0/2M . In the
first plot we have chosen M = 1 and S = 0.8. One can observe that
with the increase of λ the deflection angle decreases for fixed valued of
M and the scalar charge being positive i.e. S > 0

where

A4 = 2MSr4
0 + Sr5

0 + 4MS2 + S2r0, (49)

B4 = 4M2r4
0 + 2Mr5

0 + 8M2S + 2MSr0, (50)

C4 = 2Mr4
0 + 4MS + Sr0 + r5

0 . (51)

Expanding in Taylor series and integrating we derive the
expression

α̂λ=4 � 4M

r0
+ M2

r2
0

(
15π

4
− 4

)
+ 15π S

16 r4
0

+ MS

r5
0

(
118

5
− 15π

4

)
+ 1545 π S2

1024 r8
0

(52)

In Figs. (1 and 2) the deflection angle for different para-
metric values are plotted as a function of x = r0/2M . From
Fig. 1, one may observe that deflection angle is monotonic
decreasing for fixed valued of M with the increase of λ when
the scalar charge being positive i.e. S > 0. In Fig. 2, we show
that deflection angle is monotonic increasing when scalar
charge being negative i.e. S < 0.

4 Gauss–Bonnet (GB) method

4.1 Gaussian optical curvature

In this subsection we consider null geodesics deflected by a
black hole in massive gravity models. We start by considering
the optical metric from spacetime metric (6), by choosing

Fig. 2 The plot depicts deflection angle as a function of x = r0/2M ,
for the values of M = 1 and S = −0.8. In this case with the increase
of λ the deflection angle increases

the null geodesic equations ds2 = 0. In the equatorial plane
θ = π/2 we find

dt2 = dr2

(1 − 2M
r − S

rλ )2
+ r2

(1 − 2M
r − S

rλ )
dϕ2

≡ dr�2 + ( f (r�))2dϕ2. (53)

For the following considerations, it is convenient to intro-
duce a radial Regge–Wheeler tortoise coordinate r�, with a
new function f (r�) as follows:

dr� = dr

(1 − 2M
r − S

rλ )
, (54)

f (r�) = r

(1 − 2M
r − S

rλ )
1
2

. (55)

This prescription allows us to write the line element of the
optical metric in the form

dt2 ≡ gopabdx
adxb = dr�2 + f (r�)

2dϕ2. (56)

Using this static coordinates system, it is now clear that
the equatorial plane in the optical metric is a surface of revo-
lution when it is embedded, in R

3. We utilized the following
mathematical formulae to calculate the Gaussian curvature
K , of the optical surface as

K = − 1

f (r�)

d2 f (r�)

dr�2

= − 1

f (r�)

[
dr

dr�

d

dr

(
dr

dr�

)
d f

dr
+
(
dr

dr�

)2 d2 f

dr2

]
.

(57)
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With the help of Eq. (54) the optical Gaussian curvature may
be expressed as (for further review see [86])

K = λ(λ + 2)S2

4r2λ+2 + (λ2 + 2)SM

rλ+3

− λ(λ + 1)S

2rλ+2 − M

(
2

r3 − 3M

r4

)
. (58)

4.2 Deflection angle

Theorem Let SR be a non-singular region with boundary
∂SR = γgop ∪ γR, and let K and κ be the Gaussian opti-
cal curvature and the geodesic curvature, respectively. Then
GBT reads [86]

∫∫

SR

K d A +
∮

∂SR

κ dt +
∑
i

θi = 2πχ(SR), (59)

in which θi are the exterior angles at the i th vertex. In our
setup, however, the Euler characteristic is χ(SR) = 1 due to
the fact that we consider a non-singular domain outside of
the light ray. It is worth noting that for a singular domain we
have χ(SR) = 0.

Furthermore, for computing the deflection angle of light,
we need first to compute the geodesic curvature in terms of
the following relation

κ = gop (∇γ̇ γ̇ , γ̈
)
. (60)

In doing so we should take into account the unit speed
condition which is stated as follows gop(γ̇ , γ̇ ) = 1, with γ̈

being the unit acceleration vector. Next, if we simply allow
R → ∞, one can show that our two jump angles (θO, θS )
yield π/2. Put it differently, if we take the total sum of our
jump angles at S and O, we find θO + θS → π [86]. It
follows from the simple geometry that κ(γgop ) = 0 due to
the simple fact that γgop is a geodesic. Hence we are left with
the following relation

κ(γR) = |∇γ̇R γ̇R |, (61)

in which γR := r(ϕ) = R = constant. In this way, one is
left with the following non-zero radial part

(∇γ̇R γ̇R
)r = γ̇

ϕ
R

(
∂ϕγ̇ r

R

)+ �̃r
ϕϕ

(
γ̇

ϕ
R

)2
, (62)

note that �̃r
ϕϕ is the Christoffel symbol associated with the

optical metric geometry. While is clear that the first term in
this equation must vanish, we can calculate the second term
via the condition g̃ϕϕγ̇

ϕ
R γ̇

ϕ
R = 1. Finally we find

lim
R→∞ κ(γR) = lim

R→∞
∣∣∇γ̇R γ̇R

∣∣ ,
→ 1

R
. (63)

But for very large radial distance Eq. (53), suggest that

lim
R→∞ dt = lim

R→∞

⎡
⎢⎣ R(

1 − 2M
R − S

Rλ

)1/2

⎤
⎥⎦ dϕ

→ R dϕ, (64)

provided that λ > 0. From GBT we find

∫∫

SR

K d A +
∮

γR

κ dt
R→∞=

∫∫

S∞

K dA +
π+α̂∫

0

dϕ = π, (65)

where the surface element is given byd A = √
det gop dr�dϕ.

It is clear now that we should integrate over the domain S∞
to find the deflection angle. This the deflection angle is found
to be

α̂GB = −
π∫

0

∞∫

rγ

K
√

det gop dr�dϕ. (66)

One can now compute the deflection angle by choosing
the light ray as r(ϕ) = b/ sin ϕ. However, this equation cor-
responds to the straight-line approximation and gives the cor-
rect result only for the linear terms in the deflection angle. In
this paper, we will make use of the following choice for the
light ray which is a solution of our geodesic equation (13):

1

rγ
= sin (ϕ)

b
+ 1

2

M (3 + cos (2 ϕ))

b2

+ 1

16

M2 (37 sin (ϕ) + 30 (π − 2 ϕ) cos (ϕ)−3 sin (3 ϕ))

b
.

(67)

Let us now elaborate on the following special cases:

4.2.1 λ = 1

Let us first calculate the Gaussian optical curvature from Eq.
(58) in the case when λ = 1. One can easily find that

Kλ=1 � −2 M + S

r3 + (3 S + 6 M) (2 M + S)

4 r4 . (68)

Substituting into Eq. (66) generates the value of the deflec-
tion angle in terms of the integral
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α̂GB
λ=1 = −

π∫

0

∞∫

rγ

(
−2 M + S

r3

+ (3 S + 6 M) (2 M + S)

4 r4

)√
det gop dr�dϕ. (69)

In order to evaluate the above integral note that

√
det gop dr� = r dr(

1 − 2M
r − S

r

)3/2 (70)

and expanding in a Taylor series the previous equation results
in the expression

√
det gop dr� = r dr

[
1 + 3M

r
+ 15M2

2r2

+
(

3

2r
+ 15M

2r2

)
S + · · ·

]
(71)

Using the above result for the deflection angle we find

α̂GB
λ=1 � 4M

b
+ 15M2π

4 b2 + 2S

b
+ 9πMS

4b2 + 3π S2

16b2 . (72)

On the other hand we can use the relation (15) to express
the last result in terms of the minimal distance r0 in terms of
the impact parameter

1

b
= 1

r0

(
1 − M

r0
− S

2r0
+ · · ·

)
(73)

Consequently the deflection angle takes the form

α̂GB
λ=1 � 4M

r0
+ M2

r2
0

(
15π

4
− 4

)
+ 2S

r0
− S2

r2
0

(
1 − 3π

16

)
.

(74)

Thus we have shown that by modifying the integration
domain our result is in perfect agreement up to the second
order in M , and agrees only in the linear term in S. In order to
find the exact result including the second order terms in S we
have to modify the equation for the light ray (65). However
this goes beyond the scope of this paper.

4.2.2 λ = 2

Let us substitute this equation into Eq. (66) then we find that
the deflection angle is given in terms of the following integral

α̂λ=2 = −
π∫

0

∞∫

rγ

(
−2

M

r3 + 3 M2 − 3 S

r4 + 6
MS

r5

+2
S2

r6

)√
det gop dr�dϕ. (75)

where

√
det gop dr� = r dr

[
1 + 3M

r
+ 15M2

2r2 +
(

3

2r2

+ 15M

2r3

)
S + · · ·

]
(76)

The deflection angle in terms of the impact factor is found
to be

α̂GB
λ=2 � 4M

b
+ 15M2π

4 b2 + 3π S

4 b2 + 32MS

3 b3 + 15π S2

64 b4 . (77)

As already noted, the disagreement in the last two terms is
to be expected due to the integration domain. Finally, neglect-
ing these terms and letting S = −Q2, if we expand (25) in
series form the last result we recover Eq. (34) up to the second
order terms in M and Q.

4.2.3 λ = 3

Let us substitute this equation into Eq. (66) then we find that
the deflection angle is given in terms of the following integral

α̂λ=3 = −
π∫

0

∞∫

rγ

(
3
M2

r4 − 2
M

r3 + 11
MS

r6

− 6
S

r5
+ 15 S2

4 r8

)√
det gop dr�dϕ. (78)

where

√
det gop dr� = r dr

[
1 + 3M

r
+ 15M2

2r2 +
(

3

2r3

+ 15M

2r4

)
S + · · ·

]
(79)

The deflection angle has the form

α̂GB
λ=3 � 4M

b
+ 15M2π

4 b2 + 8S

3b3 + 75πMS

16 b4 + 35π S2

128 b6 .

(80)

Hence in a similar way using Eq. (35) we recover Eq. (43)
up to the second order in M , but in leading order in S.

4.2.4 λ = 4

Let us substitute this equation into Eq. (66) then we find that
the deflection angle is given in terms of the following integral

α̂λ=4 = −
π∫

0

∞∫

rγ

(
−2

M

r3 + 3
M2

r4 − 10
S

r6

+ 18
MS

r7 + 6
S2

r10

)√
det gop dr�dϕ. (81)
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where

√
det gop dr� = r dr

[
1 + 3M

r
+ 15M2

2r2 +
(

3

2r4

+ 15M

2r5

)
S + · · ·

]
(82)

The deflection angle is given by

α̂GB
λ=4 � 4M

b
+ 15M2π

4 b2 + 15π S

16 b4 + 96MS

5b5
+ 315π S2

1024
.

(83)

Or, after we use Eq. (44) the deflection angle in terms of
the distance of the closest approach reads

α̂GB
λ=4 � 4M

r0
+ M2

r2
0

(
15π

4
− 4

)
+ 15π S

16 r4
0

. (84)

5 Time delay

We analyze here the time delay due to the massive gravi-
tational field of the black hole solution. Suppose that two
photons emitted at the same time but follow different paths to
reach the observer. They will take two different times to reach
the observer and this time difference is called the time delay.
It is important to discuss the time delays between lensed
multiple images which is directly related to determining the
Hubble constant H0 and was first pointed out by Refsdal
[108].

We consider light propagation in a static spherically sym-
metric spacetime given by the line element

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdφ2).

(85)

The time delay of a light signal passing through the gravita-
tional field of this configuration is express as

�T = 2
∫ r1

r0

⎡
⎢⎢⎢⎢⎣

1√[
A(r)
B(r) − A2(r)

B(r)C(r)
C(r0)
A(r0)

] − 1√[
1 − r2

0
r2

]

⎤
⎥⎥⎥⎥⎦ dr

+ 2
∫ r2

r0

⎡
⎢⎢⎢⎢⎣

1√[
A(r)
B(r) − A2(r)

B(r)C(r)
C(r0)
A(r0)

] − 1√[
1 − r2

0
r2

]

⎤
⎥⎥⎥⎥⎦ dr,

(86)

where r1 and r2 are distances of the observer and the source
from the configuration and r0 is the closest approach to the
configuration. With help of this algorithm we will calculate
the time delay due to the massive gravitational field of the
black hole. Let re and rs be distances of the observer (Earth)

and the source from the black hole respectively. Further r0 is
the closest approach to the black hole.

Therefore, the total time required for a light signal passing
through the gravitational field of the black hole to go from
the observer (Earth) to the source and back after reflection
from the source is given by the following equation [107].

Te,s = 2 [t (re, r0) + t (rs, r0)] , (87)

where

t (re, r0) =
∫ re

r0

(
1 − 2M

r
− S

rλ

)−1

×

⎛
⎜⎜⎝1 −

(
1 − M

r − S
rλ

)
(

1 − M
r0

− S
rλ

0

) r2
0

r2

⎞
⎟⎟⎠

− 1
2

dr, (88)

and

t (rs, r0) =
∫ rs

r0

(
1 − 2M

r
− S

rλ

)−1

×

⎛
⎜⎜⎝1 −

(
1 − M

r − S
rλ

)
(

1 − M
r0

− S
rλ

0

) r2
0

r2

⎞
⎟⎟⎠

− 1
2

dr, (89)

for our considered metric, given in the Eq. (6).
Considering the approximations (as re,rs , r0 >> 2M) the

integrand of these expressions

α =
(

1 − 2M

r
− S

rλ

)−1

⎛
⎜⎜⎝1 −

(
1 − M

r − S
rλ

)
(

1 − M
r0

− S
rλ

0

) r2
0

r2

⎞
⎟⎟⎠

− 1
2

(90)

assume the form

α ≈
(

1 − r2
0

r2

)− 1
2
[

1 + 2M

r
+ S

rλ
+ Mr0

r(r + r0)

+ S(1 + r0
r + ( r0

r )2 + · · · ( r0
r )λ−1)

2r(r + r0)r
λ−2
0

]
(91)

So, we can express the Eq. (85) as

Te,s = 2
∫ re

r0

(
1 − r2

0

r2

)− 1
2
[

1 + 2M

r
+ S

rλ
+ Mr0

r(r + r0)

+ S
(
1 + r0

r + ( r0
r )2 + · · · ( r0

r )λ−1
)

2r(r + r0)r
λ−2
0

]
dr

+ 2
∫ rs

r0

(
1 − r2

0

r2

)− 1
2
[

1 + 2M

r
+ S

rλ
+ Mr0

r(r + r0)

+ S
(
1 + r0

r + ( r0
r )2 + · · · ( r0

r )λ−1
)

2r(r + r0)r
λ−2
0

]
dr (92)
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In the absence of gravitational field (M = S = 0) the time
is

T
′
e ,s = 2

⎡
⎣
∫ re

r0

(
1 − r2

0

r2

)− 1
2

+
∫ rs

r0

(
1 − r2

0

r2

)− 1
2
⎤
⎦ . (93)

Now, the delay in time is express as the following equation

�Te,s = Te,s −T
′
e ,s . (94)

Finally, we can estimate the time delay due to the gravi-
tational field of the black hole as

�Te,s = 2
∫ re

r0

(
1 − r2

0

r2

)− 1
2
[

2M

r
+ S

rλ
+ Mr0

r(r + r0)

+ S
(
1 + r0

r + ( r0
r )2 + · · · ( r0

r )λ−1
)

2r(r + r0)r
λ−2
0

]
dr

+ 2
∫ rs

r0

(
1 − r2

0

r2

)− 1
2
[

2M

r
+ S

rλ
+ Mr0

r(r + r0)

+ S
(
1 + r0

r + ( r0
r )2 + · · · ( r0

r )λ−1
)

2r(r + r0)r
λ−2
0

]
dr, (95)

and we may proceed to calculate the delay in time for the
cases corresponding to the values of λ = 1, 2, 3, and 4
respectively.

5.1 Case λ = 1

�Te,s |λ=1 = 2
∫ re

r0

(
1 − r2

0

r2

)− 1
2 [2M

r
+ S

r

+ Mr0

r(r + r0)
+ Sr0

2r(r + r0)

]
dr

+ 2
∫ rs

r0

(
1 − r2

0

r2

)− 1
2 [2M

r

+ S

r
+ Mr0

r(r + r0)
+ Sr0

2r(r + r0)

]
dr. (96)

Therefore, the required delay in time corresponding to λ = 1
is

�Te,s |λ=1 = 2 (2M + S)

× ln

⎛
⎜⎜⎝

(
re +

√
r2
e − r2

0

)(
rs +

√
r2
s − r2

0

)

r2
0

⎞
⎟⎟⎠

+ (2M + S)

[√
re − r0

re + r0
+
√
rs − r0

rs + r0

]
. (97)

5.2 Case λ = 2

�Te,s |λ=2 = 2
∫ re

r0

(
1 − r2

0

r2

)− 1
2 [2M

r

+ S

r2 + Mr0

r(r + r0)
+ S(1 + r0

r )

2r(r + r0)

]
dr

+ 2
∫ rs

r0

(
1 − r2

0

r2

)− 1
2 [2M

r

+ S

r2 + Mr0

r(r + r0)
+ S(1 + r0

r )

2r(r + r0)

]
dr, (98)

Therefore, the required delay in time corresponding to λ = 2
is

�Te,s |λ=2

= 4M ln

⎛
⎜⎜⎝

(
re +

√
r2
e − r2

0

)(
rs +

√
r2
s − r2

0

)

r2
0

⎞
⎟⎟⎠

+ 2M

[√
re − r0

re + r0
+
√
rs − r0

rs + r0

]

+ 3S

r0

⎡
⎣tan−1

⎛
⎝
√
r2
e − r2

0

r0

⎞
⎠+ tan−1

⎛
⎝
√
r2
s − r2

0

r0

⎞
⎠
⎤
⎦ .

(99)

5.3 Case λ = 3

�Te,s |λ=3 = 2
∫ re

r0

(
1 − r2

0

r2

)− 1
2
[

2M

r
+ S

r3 + Mr0

r(r + r0)

+ S
(
1 + r0

r + ( r0
r )2
)

2r(r + r0)r0

]
dr

+ 2
∫ rs

r0

(
1 − r2

0

r2

)− 1
2
[

2M

r
+ S

r3 + Mr0

r(r + r0)

+ S
(
1 + r0

r + ( r0
r )2
)

2r(r + r0)r0

]
dr. (100)

Therefore, the required delay in time corresponding to λ = 3
is

�Te,s |λ=3

= 4M ln

⎛
⎜⎜⎝

(
re +

√
r2
e − r2

0

)(
rs +

√
r2
s − r2

0

)

r2
0

⎞
⎟⎟⎠

+ 2M

[√
re − r0

re + r0
+
√
rs − r0

rs + r0

]

+ 2S

⎡
⎣
√
r2
e − r2

0

rer2
0

+
√
r2
s − r2

0

rsr2
0

⎤
⎦
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+ S

r2
0

[√
re − r0

re + r0

(
r0 + 2re

re

)]

+ S

r2
0

[√
rs − r0

rs + r0

(
r0 + 2rs

rs

)]
. (101)

5.4 Case λ = 4

�Te,s |λ=4 = 2
∫ re

r0

(
1 − r2

0
r2

)− 1
2
⎡
⎣2M

r
+ S

r4 + Mr0

r(r + r0)

+
S
(

1 + r0
r + (

r0
r )2 + (

r0
r )3
)

2r(r + r0)r2
0

⎤
⎦ dr

+ 2
∫ rs

r0

(
1 − r2

0
r2

)− 1
2
⎡
⎣2M

r
+ S

r4 + Mr0

r(r + r0)

+
S
(

1 + r0
r + (

r0
r )2 + (

r0
r )3
)

2r(r + r0)r2
0

⎤
⎦ dr. (102)

Therefore, the required delay in time corresponding to
λ = 4 is

�Te,s |λ=4

= 4M ln

⎛
⎜⎜⎝

(
re +

√
r2
e − r2

0

)(
rs +

√
r2
s − r2

0

)

r2
0

⎞
⎟⎟⎠

+ 2M

[√
re − r0

re + r0
+
√
rs − r0

rs + r0

]

+ 5S

2r3
0

⎡
⎣tan−1

⎛
⎝
√
r2
e − r2

0

r0

⎞
⎠+ tan−1

⎛
⎝
√
r2
s − r2

0

r0

⎞
⎠
⎤
⎦

+ 3S

r2
0

⎡
⎣
√
r2
e − r2

0

r2
e

+
√
r2
s − r2

0

r2
s

⎤
⎦ . (103)

6 Light deflection by charged and massless Wormholes
in massive gravity

Let us set the mass to zero i.e. M = 0 and introduce the
following coordinate transformation rλ = S + v2 into the
metric (6), in that case we find the wormhole solution given
by the Einstein–Rosen (ER) bridge form

ds2 = − v2

v2 + S
dt2 + 4dv2

λ2(S + v2)
λ−2
λ

+ (S + v2)2/λd�2
2.

(104)

The throat of the wormhole is located v = 0, with radius
Rthro. = S

1
λ . This metric represents a massless wormhole

with scalar charge S, and as far as we know this is a new
metric. One can check by setting λ = 2 and S = −Q2 the

above metric takes the form of usual charged ER wormhole.
From now on, we shall consider v = r , in this way from the
metric (104) the Lagrangian yields

2L =
(

r(s)2

r(s)2 + S

)
ṫ2(s) + 4ṙ2(s)

λ2
(
S + r(s)2

)(λ−2)/λ

+ (r2(s) + S)2/λ
(
θ̇2(s) + sin2 θϕ̇2(s)

)
(105)

Going through same procedure and introducing a new
variable r = 1/u as in the black hole case, we find the fol-
lowing equation

4

λ2u4Z
(
du

dϕ

)2

−
(
S + 1

u

)(4+λ)/λ u2

b2

+
(
S + 1

u

)2/λ

= 0 (106)

where

Z = S(
S + 1

u

)2/λ
+ 1(

S + 1
u

)2/λ
u2

. (107)

On the other hand the wormhole optical metric reads

dt2 = 4(S + r2)2/λdr2

λ2r2 + (S + r2)(2+λ)/λ

r2 dϕ2, (108)

with

dr� = 2(S + r2)1/λdr

λr
, f (r�) = (S + r2)(2+λ)/2λ

r
. (109)

The Gaussian optical curvature is found to be

K = − Sλ
[
(λ + 1)r2 + Sλ

2

]
2(r2 + S)2(λ+1)/λ

. (110)

We shall consider the deflection angle by the spacetime
metric (104) in terms of the GB method.

6.1 Case λ = 1

The Gaussian optical curvature from Eq. (109) in the case
when λ = 1 reads

Kλ=1 � − S

r6 (111)

Substituting this result into Eq. (66) generates the value
of the deflection angle in terms of the integral

α̂GB
λ=1 = −

π∫

0

∞∫

rγ

(
− S

r6

)√
det gop dr�dϕ. (112)

In order to evaluate the above integral we need to find the
equation for the light ray which can be found from Eq. (106)
which yields
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4

u2(S + u)2

(
du

dϕ

)2

−
(
S + 1

u

)5 u2

b2 +
(
S + 1

u

)2

= 0

(113)

If we linearize Eq. (113) around S, and then consider the
equation which corresponds to straight line approximation
we are left with the following equation

2

(
du

dϕ

)2

+ 2u
d2u

dϕ2 + u2 = 0. (114)

Solving this differential equation and using the condition
u(0) = 0 and u(π/2) = 1/b we find

u =
√

sin ϕ

b
. (115)

Finally the light ray equation in terms of the old coordinate
gives

rγ = b√
sin ϕ

. (116)

The deflection angle is found to be

α̂GB
λ=1 � −

π∫

0

∞∫

b√
sin ϕ

(
− S

r6

)√
det gop dr�dϕ = 2S

b2 . (117)

6.2 λ = 2

In this case when λ = 2 the Gaussian optical curvature yields

Kλ=2 � −3S

r4 (118)

We Substitute this equation in the deflection angle led to
the following integral

α̂GB
λ=2 = −

π∫

0

∞∫

rγ

(
−3S

r4

)√
det gop dr�dϕ. (119)

Considering a series expansion around S in Eq. (106) and
then take only the straight line approximation led to the fol-
lowing differential equation

d2u

dϕ2 + u = 0. (120)

Solving this equation we find the light ray equation

rγ = b

sin ϕ
. (121)

Using the above result for the deflection angle we find

α̂GB
λ=2 � −

π∫

0

∞∫

b
sin ϕ

(
−3S

r4

)√
det gop dr�dϕ = 3π S

4b2 . (122)

6.3 λ = 3

The Gaussian optical curvature in the case when λ = 3 is
found to be

Kλ=3 � −6S

r4 (123)

From the GBT we find

α̂GB
λ=3 = −

π∫

0

∞∫

rγ

(
−6S

r4

)√
det gop dr�dϕ. (124)

On the other hand the light ray equation in this case reduces
to a nonlinear differential equation. However we can approx-
imate this equation from Eq. (106) as follows

4

9

d2u

dϕ2 + u = 0. (125)

Solving this equation one finds

rγ = b√
2 sin(

3ϕ
2 )

(126)

Using the above result for the deflection angle we find

α̂GB
λ=3 = −

π∫

0

∞∫

b√
2 sin(

3ϕ
2 )

(
−6S

r4

)√
det gop dr�dϕ

=
15 S �

(
5
6

)
�
( 2

3

)√
3 21/3

16 b8/3
√

π
(127)

6.4 λ = 4

We start by calculating first the Gaussian optical curvature
when λ = 4 to find

Kλ=4 � −10S

r3 . (128)

This result with the help of GBT gives

α̂GB
λ=4 = −

π∫

0

∞∫

rγ

(
−10S

r3

)√
det gop dr�dϕ. (129)

From Eq. (106) we find as follows

d3u

dϕ3 + 4
du

dϕ
= 0, (130)

with the following equation for the light ray

rγ = 2b

1 − cos(2ϕ)
. (131)
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Using the above result for the deflection angle we find

α̂GB
λ=4 � −

π∫

0

∞∫

2b
1− cos(2ϕ)

(
−10S

r3

)√
det gop dr�dϕ = 15Sπ

16b2 .

(132)

Thus we have shown that the deflection angle increases
with the increase of the parameter λ for a constant value of
the scalar charge S, which is shown in Fig. 3. From Fig. 3
we can see that for a fixed value of S = 0.5, the deflection
angle increases when increase of λ. It is a straightforward
calculation to show and check these results in terms of the
geodesic approach (Fig. 3).

7 Time delay due to massless wormhole in massive
gravity

Here, we focus to estimate the time delay due to the massless
wormholes in the massive gravity. Using the same technique

Fig. 3 We plot the deflection angle as a function of the impact factor
b. We have chosen S = 0.5. We see that with the increase of λ the
deflection angle actually increases

as above, we calculate the delay in time for the cases corre-
sponding to the values of λ = 1, 2, 3 and 4 respectively.

7.1 Case λ = 1

Here, we find the time delay as

�T |λ=1 = (2S)ln

⎛
⎜⎜⎝

[
(S + v2

e ) +
√

(v2
e − v2

0)(v2
e + v2

0 + 2S)

] [
(S + v2

e ) +
√

(v2
s − v2

0)(v2
s + v2

0 + 2S)

]

(S + v2
0)2

⎞
⎟⎟⎠

×S

[√
v2
e − v2

0

v2
e + v2

0 + 2S
+
√

v2
s − v2

0

v2
s + v2

0 + 2S

]
. (133)

7.2 Case λ = 2

Here S + v2 = r2, hence S + v2
e = r2

e and S + v2
0 = r2

0 . In
this case, we obtain the time delay as

�T |λ=2 = 3S√
S + v2

0

⎡
⎣tan−1

⎛
⎝
√

(v2
e − v2

0)√
S + v2

0

⎞
⎠

+ tan−1

⎛
⎝
√

(v2
s − v2

0)√
S + v2

0

⎞
⎠
⎤
⎦ . (134)

7.3 Case λ = 3

Corresponding the value of λ = 3, time delay is found as

�T |λ=3 = 2S

⎡
⎣
√

(S + v2
e )

2
3 − (S + v2

0)
2
3

(S + v2
e )

1
3 (S + v2

0)
2
3

+
√

(S + v2
s )

2
3 − (S + v2

0)
2
3

(S + v2
s )

1
3 (S + v2

0)
2
3

⎤
⎦

+ S

(S + v2
0)

2
3

⎡
⎣
⎛
⎝
√√√√ (S + v2

e )
1
3 − (S + v2

0)
1
3

(S + v2
e )

1
3 + (S + v2

0)
1
3

⎞
⎠

×
(

(S + v2
0)

1
3 + 2(S + v2

e )
1
3

(S + v2
e )

1
3

)]

+ S

(S + v2
0)

2
3

⎡
⎣
⎛
⎝
√√√√ (S + v2

s )
1
3 − (S + v2

0)
1
3

(S + v2
s )

1
3 + (S + v2

0)
1
3

⎞
⎠

×
(

(S + v2
0)

1
3 + 2(S + v2

s )
1
3

(S + v2
s )

1
3

)]
. (135)
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7.4 Case λ = 4

In this case we calculate the time delay as

�T |λ=4

= 5S

2(S + v2
0)

3
4

⎡
⎣tan−1

⎛
⎝
√

(S + v2
e )

1
2 − (S + v2

0)
1
2

(S + v2
0)

1
4

⎞
⎠

+ tan−1

⎛
⎝
√

(S + v2
s )

1
2 − (S + v2

0)
1
2

(S + v2
0)

1
4

⎞
⎠
⎤
⎦

+ 3S

(S + v2
0)

1
2

⎡
⎣
⎛
⎝
√

(S + v2
e )

1
2 − (S + v2

0)
1
2

(S + v2
e )

1
2

⎞
⎠

+
⎛
⎝
√

(S + v2
s )

1
2 − (S + v2

0)
1
2

(S + v2
s )

1
2

⎞
⎠
⎤
⎦ . (136)

8 Conclusions

In this paper we have studied the weak gravitational lensing
for a black hole and wormhole in massive gravity. The black
hole solution is governed by a parameter λ dependent further
on the mass M and scalar charge S. In the case of vanish-
ing S, the results of the standard Schwarzschild geometry
are recovered. By deforming the black hole solution in terms
of the following coordinate transformation rλ = S + v2 we
constructed a wormhole solution of ER type bridge which is
regular in the interval −∞ < v < ∞. The deflection angle
is then computed for four different values of the parameter
λ. The extension of this work via Gauss–Bonnet theorem is
nontrivial. First we derive a result showing how the Gaussian
optical curvature and deflection angle is to be computed. The
analysis is aided through the use Taylor series expansions.
The time delay function is also established and computed for
each of the four cases of λ of interest in this investigation.
Graphical plots indicate that for a fixed value of the mass and
positive scalar charge, the deflection angle decreases with
increasing λ, while for negative scalar charge, the deflection
angle increases with an increase in λ. Whereas in the worm-
hole case we found that the deflection angle increases with
the increase of the parameter λ for a constant value of the
scalar charge S, provided S > 0.
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