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We calculate the deflection of light by a spherically symmetric body in general relativity, to second
order in the quantityGM/dc2, whereM is the mass of the body andd is a measure of the distance
of closest approach of the ray. Using three different coordinate systems for the Schwarzschild metric
we show that the answers for the deflection, while the same at orderGM/dc2, differ at order
(GM/dc2)2. We demonstrate that all three expressions are really the same by expressing them in
terms of measurable, coordinate-independent quantities. These results provide concrete illustrations
of the meaning of coordinates and coordinate invariance, which may be useful in teaching general
relativity. © 2003 American Association of Physics Teachers.
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I. INTRODUCTION AND SUMMARY

The deflection of light is one of the empirical cornerston
of general relativity, from the 1919 measurements of starli
deflection during a solar eclipse, to the latest radio telesc
observations of radio galaxies and quasars. Through the
of Very Long Baseline Radio Interferometry~VLBI ! to ob-
serve thousands of radio galaxies and quasars over the e
celestial sphere, the bending by the Sun has now been fo
to agree with general relativity to a few parts in 104 ~for a
review of the latest results, see Ref. 1!. The related phenom
enon of gravitational lensing has become a standard a
nomical tool, especially important for the study of the dist
bution of dark matter in the universe and for imaging t
most distant galaxies.

The standard general relativistic formula for the deflect
is

Df5
4GM

dc2 51.7504S M

M (
D S R(

d D arcsec, ~1!

where M is the mass of the body andd is the radius of
closest approach of the ray, andM ( and R( are the mass
and radius of the Sun. This formula is actually the lead
term in an expansion in powers ofGM/dc2, known as a
post-Newtonian~PN! expansion. For all practical purposes
date, the first-order~1PN! expression above has been suf
cient. However, plans are being developed to launch orbi
observatories that use optical interferometry to achieve
gular precisions at the level of microarcseconds~marcsec!.
Because, at the limb of the SunGM/dc2'231026, one
might expect the second-order or second post-Newton
~2PN! correction to be of order (1.75)3(231026), or a few
marcsec.

Unfortunately, to measure this tiny effect using an opti
device pointing almost directly toward the Sun presents
nificant technological challenges, not the least of which
thermal control of an on-board optical bench that must ma
tain picometer level metrology. For this reason~among oth-
ers!, the second-order deflection of light by the Sun has
been a primary goal of proposed missions such as the NA
770 Am. J. Phys.71 ~8!, August 2003 http://ojps.aip.org/
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Space Interferometry Mission~SIM!2 or the European Spac
Agency’s GAIA mission;3 instead such scientific questions
the search for extra-solar planets, and improving the cos
distance scale by extending the reach of parallax meas
ments, have been the main motivations for such missio
Still, it is not unreasonable to hope that these or poss
follow-up missions might actually have the capability to d
tect the second-order term. Therefore, it is useful to hav
clear understanding of what the prediction is at second or
These considerations have already motivated a numbe
calculations of the second-order term.4–6

A second motivation for studying the second-order defl
tion, and the main theme of this paper, is that it is a use
way for teachers to illustrate some principles of general re
tivity, in a relatively simple context. Chief among these pri
ciples isgeneral covariance. Coordinates in general relativ
ity are completely arbitrary; one has total freedom~subject to
some simple mathematical constraints of continuity! in one’s
labeling of events in space–time. Only variables that rel
to physically measurable quantities are meaningful. While
textbooks expound upon this principle at length, it is the r
text that provides a concrete example where an effect is
culated in two different coordinate systems and shown
plicitly to be the same measurable effect. Instead, a sin
convenient coordinate system is selected, and calculation
the given effect are done in that system.

The deflection of light provides such an example. The
pression of Eq. ~1! is frequently calculated using th
Schwarzschild metric, which describes the space–time e
rior to any static, spherically symmetric body. However th
space–time can be expressed in an infinity of different co
dinate systems, including Schwarzschild~or curvature! coor-
dinates, isotropic coordinates, harmonic coordinates,
others. Some derivations use, instead of the exact Schwa
child solution, an approximate solution from the lineariz
version of general relativity or from the post-Newtonia
expansion of the field equations. All derivations give E
~1!. The astute student might therefore ask a number
questions:
770ajp/ © 2003 American Association of Physics Teachers
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~1! If the coordinate systems mentioned are all differe
why is the final expression for the deflection the sam

~2! If they do differ, where does the difference first sho
up?

~3! If the expressions for the deflection are ultimately diffe
ent, what must be done to them so that they can be s
to represent the same physically measured result?

In this paper, we answer these questions by calculating
deflection of light to 2PN order using the Schwarzschild m
ric, written in three different coordinate systems. The metr
in these three coordinate systems have the following fo
~henceforth we use units in whichG5c51).

Schwarzschild coordinates:

ds252~122M /r S!dt21
drS

2

122M /r S
1r S

2dV2. ~2!

Isotropic coordinates:

ds252
~12M /2r I !

2

~11M /2r I !
2 dt21~11M /2r I !

4~drI
21r I

2dV2!.

~3!

Harmonic coordinates:

ds252
12M /r H

11M /r H
dt21

11M /r H

12M /r H
drH

2

1r H
2 ~11M /r H!2dV2, ~4!

where dV2[du21sin2 udf2, which is the standard metri
on the two-sphere. The transformations among these di
ent coordinate systems involve only the radial coordina
and are given by

r S5r I~11M /2r I !
2,

~5!
r S5r H1M .

The results for the deflection in these three coordin
sytems are

Df5
4M

dS
1S M

dS
D 2F15p

4
24G Schwarzschild,

5
4M

dI
1S M

dI
D 2F15p

4
28G Isotropic,

5
4M

dH
1S M

dH
D 2F15p

4
28G Harmonic, ~6!

whered represents in each case the coordinate radius a
point of closest approach of the ray. These results agree
other work.4–7

With these results, we may answer the astute stude
questions.

~1! At first order, the deflection results from the first-ord
corrections to flat space–time in the metric. But, from E
~5!, the three coordinate systems are themselves the s
to first order in M /r , i.e., r S5r I@11O(M /r I)#5r H@1
1O(M /r H)#, consequently the deflection is the same in
three coordinates, to first order.

~2! The difference first shows up at 2PN order, as can
seen in Eq.~6!. Interestingly, the 2PN results for isotrop
and harmonic coordinates are identical. This is because t
coordinates are actually the same tosecondorder, i.e., from
771 Am. J. Phys., Vol. 71, No. 8, August 2003
t,

en

he
-
s
s

r-
,

e

he
ith

t’s

.
e,

ll

e

se

Eq. ~5!, r I5r H@11O(M /r H)2#. Consequently the differenc
between isotropic and harmonic coordinates will not sh
up in the deflection until 3PN order.

~3! To express the three results in terms of someth
physically measurable~at least in principle!, one option is
to choose the so-called ‘‘circumferential radius,’’r C , which
is 1/2p times the physically measured circumference o
circle of a given coordinate radius~holding t, r , andu fixed!.
From the three forms of the metric, Eqs.~2!, ~3! and ~4!,
it is simple to show thatr C5r S5r I(11M /2r I)

25r H1M .
~Schwarzschild coordinates are in factdefinedsuch thatr S is
the circumferential radius.! By using these expressions t
transform each formula for the deflection in~6! to dC , the
circumferentialdistance of closest approach, we obtain t
single expression

Df5
4M

dC
1S M

dC
D 2F15p

4
24G . ~7!

This is the second-order deflection of light, in coordina
independent language.

The remainder of this paper provides the details and
ther discussion. In Sec. II, we write down a general form
the static spherical metric and derive the equation of mot
for photons in a form that permits a straightforward soluti
via second-order perturbation theory. In Sec. III, we spec
ize to the three coordinate systems and derive the deflec
in each. Section IV provides concluding remarks.

II. EQUATION OF MOTION FOR PHOTONS IN A
GENERAL SPHERICAL STATIC METRIC

We begin by writing the metric for a static, spherical sy
tem in the form

ds252A~r !dt21B~r !dr21r 2C~r !dV2. ~8!

For photons, the equations of motion can be obtained
varying the LagrangianL5(ds/dl)2 with respect to a pa-
rameter l, or from the geodesic equationd2xa/dl2

1Gbg
a (dxb/dl)(dxg/dl)50, subject to the constraint tha

ds50 along the world line of a photon. Because of t
spherical symmetry, we can choose the equatorial plan~u
5p/2! to be the plane of the motion. The resulting equatio
of motion are

A
dt

dl
5const[E, ~9!

Cr2
df

dl
5const[L, ~10!

d

dl S 2B
dr

dl D1A8S dt

dl D 2

2B8S dr

dl D 2

2~Cr2!8S df

dl D 2

50,

~11!

whereE andL are proportional to the conserved energy a
angular momentum of the photon at infinity, and whe
prime denotes a derivative with respect tor . Substituting
Eqs.~9! and ~10! into ~11!, definingu[1/r , and converting
from l to f as the independent variable using Eq.~10!, we
obtain the second-order differential equation foru,

d2u

df2 1S C

BDu52
1

2
u2

d

du S C

BD1
1

2b2

d

du S C2

ABD , ~12!
771J. Bodenner and C. M. Will



t

in

f

th

r

e

.

pa

q.

at,
or-

a-

es
re

la-
whereb[L/E is the ‘‘impact parameter.’’ The condition tha
the world line be null (ds250) can be cast in the form

S du

df D 2

5
C

B S C

Ab2 2u2D . ~13!

Equation~13! can be shown to be equivalent to~12! by dif-
ferentiating it with respect tof. The minimum ofr , or the
maximum ofu, denotedum , is the turning point of the mo-
tion. This occurs wheredu/df50, i.e., when

b25C~um!/A~um!um
2 . ~14!

III. SOLUTIONS FOR THE SECOND-ORDER
DEFLECTION

A. Schwarzschild coordinates

In Schwarzschild coordinates,A5B215122Mu, C51,
so Eq.~12! becomes

d2u

df2 1u53Mu2. ~15!

The homogeneous solution isu5u0 cosf, which is a
straight line with turning point atf50, andu→0 or r→`
at f56p/2. We need to find a solution to second order
the dimensionless parameterMu05M /r 0 , which we assume
to be small; to do so, we write

u5u0@cosf1Mu0du11~Mu0!2du21¯#, ~16!

substitute into~15!, and collect terms of equal powers o
Mu0 , to obtain the sequence of equations

d2du1

df2 1du153 cos2 f,

~17!d2du2

df2 1du256du1 cosf.

Recalling the standard inhomogeneous solutions to
differential equation d2y/dx21y5cos(nx), namely y5
2cos(nx)/(n221), for nÞ1, andy5(f/2)sinf, for n51, we
obtain the solution

u/u05cosf1~Mu0!~32cos 2f!/2

13~Mu0!2~20f sinf1cos 3f!/16. ~18!

The maximum ofu can be shown by differentiation to occu
at f50, whereuponum5u0@11Mu013(Mu0)2/16#. As-
suming thatu→0 atf5p/21d we can solve ford to obtain
d52Mu0115p(Mu0)2/81O(Mu0)3. Because the solution
is symmetric aboutf50, the total deflection angle is twic
this. Converting fromu0 to um , we obtain

Df54Mum1~Mum!2S 15p

4
24D . ~19!

Substitutingum51/dS , we obtain the first equation of Eq
~6!.

B. Isotropic coordinates

Isotropic coordinates have the property that the spatial
of the metric is proportional to the flat space metric,dr2
772 Am. J. Phys., Vol. 71, No. 8, August 2003
e
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1r2dV25dx21dy21dz2. In these coordinates,A5@(1
2Mu/2)/(11Mu/2)#2, B5C5(11Mu/2)4, so Eq. ~12!
becomes

d2u

df2 1u5
2M

b2

~11Mu/2!5

~12Mu/2!3 ~12Mu/4!

5
2M

b2 S 11
15

4
Mu1O~Mu!2D . ~20!

Substituting Eq.~16!, we obtain the sequence

d2du1

df2 1du152~u0b!22,

~21!d2du2

df2 1du25
15

2
~u0b!22 cosf,

with the solution

u/u05cosf12Mu0 /~u0b!2115~Mu0!2f sinf/4~u0b!2.
~22!

The maximum um is again at f50, with um5u0@1
12Mu0 /(u0b)2#. Also, from Eq. ~14!, we have b2

5um
22(11Mum/2)6/(12Mum/2)2'um

22(114Mum). In
this case, u→0 at f5p/21d where d5@2Mu0

115p(Mu0)2/81O(Mu0)3#/(u0b)2. Eliminating u0 andb
in favor of um , and doubling the angle, we obtain

Df54Mum1~Mum!2S 15p

4
28D . ~23!

Substitutingum51/dI , we obtain the second equation of E
~6!.

C. Harmonic coordinates

In harmonic coordinates,A5B215(12Mu)/(11Mu),
C5(11Mu)2. These coordinates have the property th
when first transformed to Cartesian coordinates via the n
mal transformationsx5r sinu cosf, y5r sinu sinf, and z
5r cosu, the resulting metric satisfies the differential equ
tions

]

]xn ~A2ggmn!50, ~24!

whereg is the determinant of the metric,gmn is the inverse
of the metric, and a summation over the four valu
(t,x,y,z) of the indexn is assumed. These coordinates a
used mostly in analyzing the weak field limit of general re
tivity and the generation of gravitational radiation.

Equation~12! then becomes

d2u

df2 1u5
2M

b2 ~11Mu!312M2u3

5
2M

b2 ~113Mu!12M2u31O~M3u4!. ~25!

Substituting Eq.~16!, we obtain the sequence

d2du1

df2 1du152~u0b!22,

~26!d2du2

df2 1du256~u0b!22 cosf1
1

2
~cos 3f13 cosf!,
772J. Bodenner and C. M. Will
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with the solution

u/u05cosf12~Mu0!/~u0b!21~Mu0!2

3$12~114/~u0b!2!f sinf2cos 3f%/16. ~27!

The maximum um is again at f50, with um'u0@1
12Mu0 /(u0b)2#. Also, from Eq. ~14!, we have b2

5um
22(11Mum)3/(12Mum)'um

22(114Mum). The angle
d at which u50 is given by d5@2Mu013p(Mu0)2(4
1(u0b)22)/81O(Mu0)3#/(u0b)2. Eliminating u0 andb in
favor of um , and doubling the angle, we obtain

Df54Mum1~Mum!2S 15p

4
28D . ~28!

Substitutingum51/dH , we obtain the third equation of Eq
~6!.

IV. DISCUSSION

In Sec. I, we showed explicitly how the seemingly diffe
ent second-order expressions could be seen to be equiv
when expressed in terms of the proper circumferential rad
of the circle of closest approach. This radius is obtained
calculating the proper distance around a circle of cons
coordinate radiusr and fixed time (dt50), say withu5p/2,
and dividing by 2p. From the general form of the metric, Eq
~8!, we see that, around this circle,ds5rC(r )1/2df, so that
r C5rC(r )1/2. For the three coordinate systems, we obt
r C5r S5r I(11M /2r I)

25r H(11M /r H). In terms of dC
then, all three formulas for the deflection collapse to Eq.~7!.

An alternative coordinate-independent variable is the
pact parameterb5L/E; it is coordinate independent becau
L and E are the physically measurable angular moment
and energy of the photon by an observer at rest far from
solar system. From Eq.~14! and the expressions in Sec. II
we see that, to first order inM /d, b5dS(11M /dS)5dI(1
12M /dI)5dH(112M /dH). Converting each expression i
Eq. ~6! to b, we find the common, coordinate independe
result

Df5
4M

b
1

15p

4 S M

b D 2

. ~29!

An alternative way to demonstrate explicitly that the d
flection angle must ultimately be independent of the cho
of radial coordinate is via Eq.~13!; inverting and integrating
with respect tou, we obtain an exact expression for th
deflection

Df52E
0

um AB/C

AC/Ab22u2
du2p, ~30!
773 Am. J. Phys., Vol. 71, No. 8, August 2003
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where um is the value whereu25C/Ab2. Any change of
integration variableu5 f (v) cannot alter the value ofDf,
only its explicit expression in terms ofum . Note that, be-
cause the integral depends only on the impact parameteb,
and onM ~which appears in the functionsA, B, and C),
there must be a unique answer forDf in terms ofb, inde-
pendent of coordinate system. Equation~29! is that answer to
second order.

Although the circumferential radiusdC and the impact pa-
rameterb are formally observable quantities, neither is ve
practical for real-world measurements of the deflection
light, for obvious reasons. Instead, one combines the eq
tion of motion for the light signal with an equation of motio
for the observer receiving the signal~such as a telescope o
Earth!, and calculates the angle of the received signal~usu-
ally relative to a similarly calculated angle from a referen
source nearby in the sky! as a function of proper~atomic!
time measured at the receiver. In observations that use r
interferometry, this angle can be directly related to a ph
difference in the radio signal between the two telescopes
that the measurable, coordinate-independent quantity isF~t!,
the phase difference as a function of proper time. The m
suredF~t! can then be compared with the predictedF~t!,
using least-squares or other estimation techniques, to
how well theory matches the observations. These kinds
analyses are standard in Very Long Baseline Interferom
~VBLI !.
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