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Defocusing of a converging electromagnetic
wave by a plane dielectric interface
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We study how a converging spherical wave gets distorted by a plane dielectric interface. The fields in the
second medium are obtained by evaluating the m-theory diffraction integral on the interface. The loss of
intensity and the form of the intensity distribution are investigated. Examples are presented for various
refractive-index contrasts and depths of focus. In general the intensity gets spread out over a volume that is
large compared with the case without refractive-index contrast. It was found that moving the focusing lens
a distance d toward the interface does not result in an equal shift of the intensity profile. This latter point
has important practical implications.  1996 Optical Society of America
1. INTRODUCTION
The focusing of a plane electromagnetic wave by a lens
has been the subject of several studies.1 – 13 In this pa-
per we study the more complex situation of a focused
wave incident on a plane interface. That is, a lens in
medium 1 produces a converging spherical wave that, af-
ter crossing an interface with medium 2, gets distorted
(see Fig. 1). Both media are assumed to be linear, ho-
mogeneous, isotropic, and nonconducting. It is the aim
of this study to describe the influence of the interface
on the intensity and on the form of the diffraction pat-
tern. The intensity is found to be no longer localized
in a small region, as is the case when there is just one
medium, but rather is spread out over a larger volume.
Our results have implications, for example, for microscopy
with immersion-fluid objectives where the interface sepa-
rates the immersion-oil/cover-glass region from the (usu-
ally watery) object. As will be discussed, the difference
in refractive indices results in a severe loss of resolution.
A highly relevant issue is how the diffraction pattern
changes when the focusing lens is moved with respect to
the interface. In general, the intensity profile is shifted
over a distance that differs a constant factor from that
over which the lens is moved.

A closely related problem has been studied by Ling
and Lee.14,15 Whereas we consider a converging spheri-
cal wave in medium 1 that gets distorted in medium 2,
they calculated which (nonspherical) form the wave front
in the first medium must have to produce a perfectly
spherical wave in the second medium. Their study has
applications in the field of hyperthermia treatment, in
which a maximum intensity (and hence a spherical wave)
is desired in medium 2. Unlike us, Ling and Lee limited
themselves to lossless media (i.e., with electric permittivi-
ties e1 and e2 that are both real).

Another study of interest16 uses a scalar theory in the
paraxial approximation to calculate the waist shift of a
Gaussian beam caused by a dielectric interface.

Also worth mentioning is a paper by Gasper et al.17
0740-3232/96/020320-06$06.00 
in which asymptotic approximations for the transmitted
and reflected fields are given.

Our approach is as follows. An incoming plane wave,
propagating perpendicular to the interface, is converted
by a perfect lens obeying the sine condition18 into a con-
verging spherical wave (see Fig. 1). In the exit pupil
the electromagnetic field on the emerging wave front S1

is determined. As will be justified, the effects of re-
fraction on the polarization are neglected. Neither the
form of the wave front nor the directions of the (time-
independent parts of the) electromagnetic vectors are
assumed to change while traveling to the interface (ray
approximation). This too will be justified. Since the
wave converges toward the interface, its amplitude will
have increased by an amount determined by the distance
traveled, which depends on the polar angle u. Addition-
ally, a phase factor that is also u dependent is introduced.
Having determined the incident fields on the interface, we
derive the transmitted field with the help of Fresnel co-
efficients. The so-called m theory of diffraction can then
be used to calculate the energy density in the region of fo-
cus in the second medium. No paraxial approximation is
necessary for the developed formalism. The m theory is
due to several authors, namely, Smythe,9 Severin,10 and
Toraldo di Francia.11 The latter treatment is probably
the clearest.

Throughout this paper we use SI units.

2. FIELD ON THE INTERFACE
Consider an incident monochromatic plane wave propa-
gating in the negative z direction that is linearly polari-
zed,

E ­ Einc expfisk1k̂ ? r 1 vtdg, sz . f d (1)

with k1 the wave number in medium 1 and the electric
field amplitude vector

Einc ­ scos a, sin a, 0d , (2)
1996 Optical Society of America
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Fig. 1. Definition of the coordinate system. Shown at left are
the unit wave vector k̂ and the electric vector Einc, both before
refraction by an objective with semiaperture angle V. The
incoming wave propagates perpendicular to the interface in the
2z direction. The origin is placed at a distance f from the exit
pupil. n̂ is the unit wave vector after refraction by the lens.

where a is the angle of polarization. From here on,
we will take a ­ 0 and suppress the harmonic time
dependence.

It is assumed that the lens obeys the sine condition,18

i.e., rays traveling parallel to the z axis emerge at the
same lateral distance from the axis as they entered it.

The meridional plane is spanned by the incident unit
wave vector k̂ and the unit wave vector after refraction
n̂, with

k̂ ­

0BB@ 0
0

21

1CCA, n̂ ­ 2

0BB@sin u cos f

sin u sin f

cos u

1CCA . (3)

The effect of refraction on the polarization angle will be
neglected. From the Fresnel equations it follows that
this is justified as long as the incoming wave vector does
not make an appreciable angle with the normal of the
refracting surfaces that make up the lens system. For
practical objectives, this seems to be a reasonable assump-
tion. Now the field ES1 in the exit pupil can be written
as the sum of an unchanged component sEsd of Einc that
is perpendicular to the meridional plane and a rotated
component sEpd that lies in the meridional plane.2,13 The
first component lies in the direction of k̂ 3 n̂. The second
component is normal to both k̂ and k̂ 3 n̂, and to points
after refraction in the direction of n̂ 3 sk̂ 3 n̂d. Hence

Es ­
Einc ? sk̂ 3 n̂d

jk̂ 3 n̂j2
sk̂ 3 n̂d , (4)

Ep ­
Einc ? fk̂ 3 sk̂ 3 n̂dg

jk̂ 3 sk̂ 3 n̂djjn̂ 3 sk̂ 3 n̂dj
fn̂ 3 sk̂ 3 n̂dg . (5)

The now normalized directions of decomposition are given
by

k̂ 3 n̂
jk̂ 3 n̂j

­

0BB@2 sin f

cos f

0

1CCA , (6)

n̂ 3 sk̂ 3 n̂d
jn̂ 3 sk̂ 3 n̂dj

­

0BB@cos u cos f

cos u sin f

2 sin u

1CCA , (7)
k̂ 3 sk̂ 3 n̂d
jk̂ 3 sk̂ 3 n̂dj

­

0BB@cos f

sin f

0

1CCA . (8)

Indulging in a little algebra, we find for the components
Es and Ep

Es ­ cos1/2 u sin f

0BB@ sin f

2 cos f

0

1CCA , (9)

Ep ­ cos1/2 u cos f

0BB@cos u cos f

cos u sin f

2 sin u

1CCA . (10)

Both components have been multiplied by a factor cos1/2 u

to account for the aplanatic energy projection by the
lens.15 (Note that Es has no z component, as is ex-
pected.) So the field in the exit pupil S1 is given by

E ­ ES1 expfik1n̂ ? rg, sin exit pupild (11)

where

ES1 ­ Es 1 Ep . (12)

The reader may be assured that indeed = ? E ­ 0, since
n̂ ? ES1 ­ 0.

Next consider how the field through the spherical seg-
ment on S1 between the angles u and u 1 du is changed
upon reaching the corresponding ring at the interface.
Two factors have to be considered, namely, a phase factor
and an amplitude factor, both angle dependent, which we
are now about to determine.

The path length for a ray traveling at an angle u from
S1 to the interface equals f 2 tsud, with

tsud ­ s f 2 ddy cos u , (13)

where f is the focal length of the lens and d is the distance
from the exit pupil to the interface (see Fig. 1). So the
phase factor F sud that is introduced is

F sud ­ exp

"
ik1

√
f 2

f 2 d
cos u

!#
. (14)

ki is the wave number in medium i, for which

ki ; sv2eimid1/2, si ­ 1, 2d (15)

where v denotes the angular frequency and the square
root is taken such that Im skid # 0.

The area of the spherical segment on S1 is proportional
to f 2, whereas the area of the corresponding ring on the
interface is proportional to t2sudy cos u. Conservation of
energy requires that the amplitude of the electric field
is inversely proportional to the root of the ratio of the
respective areas. Hence the amplitude factor Ksud that
is introduced reads

Ksud ­
f cos3/2 u

f 2 d
. (16)

So we get for the electric field E incident on the left-hand
side of the interface at zi ­ f 2 d

Ed#0su, f, zi 1 dd ­ KsudF sudES1 su, fd . (17)
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It should be noted that the use of a vectorial diffraction
theory instead of a geometrical approach to calculate the
field on the interface would have yielded the very same re-
sult. Such a theory, as is due to Wolf [Eq. (3.3) of Ref. 1]
and Richards and Wolf [Eq. (2.17) of Ref. 2], describes the
focused field as a superposition of plane waves. These
waves travel in the direction of the focus (i.e., the ori-
gin O in Fig. 1) and have an amplitude ES sud given by
Eq. (12). Consequently, application of this theory also
leads to Eq. (17).

At the right-hand side of the interface, in medium 2,
the amplitudes of the electric field components are mul-
tiplied by hs and hp, the Fresnel coefficients for trans-
mission of the s and p components, respectively. These
coefficients depend on the angle of incidence u and the
refractive indices on either side of the interface. The in-
dex of refraction ni is given by ni ­ c

p
eimi si ­ 1, 2d, with

c the speed of light in vacuo. Whereas the s component
of the field remains otherwise unaffected, the component
parallel to the plane of incidence sEpd is also rotated. To
find its new form consider the (normalized) direction of
propagation q̂ of the refracted wave. It is obviously given
by

q̂ ­ 2

0BB@sin u0 cos f

sin u0 sin f

cos u0

1CCA , (18)

with u0 given by Snell’s law as u0 ­ sin21fsn1 sin udyn2g.
After refraction, Ep is perpendicular to both q̂ and
q̂ 3 n̂; i.e., it is then directed along q̂ 3 sq̂ 3 n̂d.
Hence

Ep;d#0szi 2 dd ­ hpjEp;d#0szi 1 ddj
q̂ 3 sq̂ 3 n̂d
jq̂ 3 sq̂ 3 n̂dj

. (19)

Also,

Es;d#0szi 2 dd ­ hsEs;d#0szi 1 dd , (20)

where the su, fd dependence is temporarily suppressed.
So we find for the total electric field on the right-hand
side of the interface

Ed#0szi 2 dd ­ Es;d#0szi 2 dd 1 Ep;d#0szi 2 dd ,

­ KsudF sudcos1/2 u

2664hs sin f

0BB@ sin f

2 cos f

0

1CCA
26641hp cos f

0BB@cos u0 cos f

cos u0 sin f

2 sin u0

1CCA
3775 , (21)

where we have used Eqs. (9), (10), and (19). This is
the final expression for the electric field after it has just
traversed the interface.

In the formalism that we use, the factor m̂ 3 E fully
determines the electric field at any point in medium 2.20

The normal m̂ to interface equals (0, 0, 1) (see Fig. 1). So
m̂ 3 Esu, f, zid ­ KsudF sudcos1/2 u

2664hs sin f

0BB@cos f

sin f

0

1CCA
26641hp cos f

0BB@2 cos u0 sin f

cos u0 cos f

0

1CCA
3775 . (22)

We have now arrived at our first goal. The relevant field
quantity immediately to the right of the interface has been
determined. The diffraction integral can now be applied
to produce an expression for the field near its new focal
region in medium 2.

3. DIFFRACTION INTEGRAL
The so-called m-theory integral9 – 11 is used to calculate the
diffracted field in medium 2. The solutions satisfy the
Maxwell equations. The diffraction integral expresses
the diffracted electric field Esxd in terms of an integral
over a plane of a function of the tangential component of
E. In a medium with material parameters e2 and m2,
the integral reads

Esxd ­ 2
Z

S
sm̂ 3 Ed 3 =G ds . (23)

For S we take the illuminated (circular) region of the
interface, which means that we use Eq. (22) for m̂ 3 E.
The Green function G is defined as

Gsp, xd ­
expsik2jx 2 pjd

4pjx 2 pj
, (24)

from which

=G ­

√
1

jx 2 pj
2 ik2

!
GêG . (25)

The unit vector êG is directed from a point p on S, where
the integrand is evaluated, to a point x where the field
is calculated:

êG ­
x 2 p
jx 2 pj

. (26)

The infinitesimal surface element ds equals the surface
element of a sphere with radius tsud projected from the
lens onto the interface [see Eq. (13)]:

ds ­ t2sudtan u dudf s0 # u # Vd , (27)

with V the semiaperture angle of the lens. An equation
similar to Eq. (23) for the diffracted field H can also be
derived.10,11 However, since we are interested in the in-
tensity (which is proportional to jEj2), we do not need that
expression here. Notice that it is also possible to express
the diffracted fields in terms of the tangential component
of H rather than the tangential component of E.10

For the moment we restrict ourselves to the case in
which the observation point x lies on the optical or z axis.
There the intensity distribution is independent of the
polarization angle a (because of rotational symmetry).
We then have for êG
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Fig. 2. Axial intensity distribution (in arbitrary units) for
n1 ­ 1.51 and n2 ­ 1.33 (curve a). At center is shown the
intensity profile without contrast, i.e., n1 ­ n2 ­ 1.51 (curve b).
Curve c depicts the intensity for n1 ­ 1.33 and n2 ­ 1.51 . (For
all curves V ­ 60±, m1 ­ m2 ­ m0, f ­ 1022 m, f 2 d ­ 50 mm,
and l ­ 632.8 nm.) As in all following examples both media
are lossless.

êG ­ 2
f 2 d
ssu, zd

0BB@ tan u cos f

tan u sin f

1 2 zys f 2 dd

1CCA , (28)

with jx 2 pj abbreviated as ssu, zd:

ssu, zd ­ ft2sud 1 z2 2 2zs f 2 ddg1/2, (29)

where we have used Eq. (13). Computation of the in-
tegral as in Eq. (23) yields (using v2 ­ ki

2yeimi and
k0 ­ 2pyl0, with l0 the free-space wavelength) that the
f dependence of the y and z components of the field is
such that they vanish on integration. So after integra-
tion with respect to f the total electric field on the axis
is given by its x component, viz.

Exs0, 0, zd ­ C
Z V

0
expfisk2s 2 k1tdggsu, zddu , (30)

with

Cszd ­
f
2

s f 2 dd2

√
z

f 2 d
2 1

!
expfik1f g , (31)

gsu, zd ­

√
1
s3

2
ik2

s2

!
shs 1 hp cos u0dtan u . (32)

When the point of observation x is not on the axis
of symmetry, the function ssu, zd gets an additional
f dependence, and hence both G and =G in Eq. (23)
change. Reduction to a one-dimensional integral as just
demonstrated is then no longer possible.

4. RESULTS
First, a refractive index mismatch gives rise to an aberra-
tionlike diffraction pattern. An example is presented in
Fig. 2. Compared with the intensity distribution with-
out refractive-index contrast (curve b), we see that the
interface induces a dramatic asymmetry and broadening
of the intensity profile. A long tail with many relatively
high secondary maxima extends in the direction of the
interface (curve a). The intensity peak is shifted in the
same direction.

Using geometrical reasoning it can be shown that the
light can reach only a part of the optical axis behind the
interface. Let h be the distance from the interface at
which a ray with an angle of incidence u1 crosses the
z axis. We then have

hsu1d ­ s f 2 dd
tan u1

tan u2
­ s f 2 dd

n2

n1

cos u2

cos u1

. (33)

Here u2 is the angle of propagation after refraction. The
index of refraction ni for lossless media is given by ni ­
cseimid1/2 with i ­ 1, 2 and c being the speed of light
in vacuo. So only the part of the axis between hs0d and
hsVd is illuminated. For the parameters used for curve a
of Fig. 2 we find that the geometrical shadow boundaries

Fig. 3. Isointensity lines (a.u.) in the xy plane of maximum in-
tensity sz ­ 7.54 nmd. (V ­ 60±, m1 ­ m2 ­ m0, f ­ 1022 m,
f 2 d ­ 50 mm, and l ­ 632.8 nm.)

Fig. 4. Isointensity lines (a.u.) in the xz plane s y ­ 0d. (V ­
60±, m1 ­ m2 ­ m0, f ­ 1022 m, f 2 d ­ 50 mm, and
l ­ 632.8 nm.) Note: the scale of the two axes is different.
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Fig. 5. Distance between the peak and the interface plotted
versus the position of the lens. (Note: the distance between
the lens and the interface is given by d ­ f 2 zi .) Only if n1 ­ n2
(curve b) does the peak precisely follow the movement of the lens.
If n1 . n2 (curve c) the peak position shifts less than that of the
lens. For n1 , n2 (curve a) the opposite holds. In all cases
V ­ 60±, m1 ­ m2 ­ m0, f ­ 1022 m, and l ­ 632.8 nm. In
curve a n1 ­ 1.33, n2 ­ 1.51, in curve b n1 ­ n2 ­ 1.33, and
in curve c n1 ­ 1.51, n2 ­ 1.33.

Fig. 6. Peak intensity (a.u.) versus n1. The index of refraction
n2 is fixed at 1.33. (V ­ 60±, m1 ­ m2 ­ m0, f ­ 1022 m,
f 2 d ­ 50 mm, and l ­ 632.8 nm.)

are at z ­ 6.0 mm and z ­ 21.8 mm. We find that the
intensity profile indeed falls within this range.

Whereas for curve a of Fig. 2 n1 . n2, curve c repre-
sents the intensity profile for the reverse case, namely,
n1 , n2. We find that the global appearance of the dis-
tribution is mirror imaged with respect to the z ­ 0 plane.
In this case the geometrical shadow boundaries are at
z ­ 26.8 mm and z ­ 223.5 mm. Again we find good
agreement. All three curves have been normalized to
100 (see also Fig. 6 below).

In Figs. 3 and 4 the isointensity lines (isophotes) in the
xy and xz planes, respectively, are shown for the same
parameters. In Fig. 3 polarization is along the horizon-
tal axis. Note that the intensity profile along that axis
is substantially broader than that along the other axis.

In Fig. 4 polarization is along the x axis. In this plane
the intensity peak is narrower in the x direction than in
the z direction. Also, a large number of minima is seen.
Figures 3 and 4 clearly differ in appearance from their re-
spective counterparts without refractive-index contrast.7

If we move the lens closer to the interface, how
much deeper will the point of maximum intensity then
lie? This question is answered in Fig. 5. For n1 ­ n2

(curve b) the intensity peak follows the movement of the
lens precisely. For n1 . n2 (curve c), however, the peak
shift lags behind. For the case that n1 , n2 (curve a), the
peak moves further than the lens does. From Eq. (33)
it follows that the paraxial geometrical prediction of the
slope equals

Dpeak

Dlens
­ 2

≠hsu ­ 0d
≠d

­
n2

n1

. (34)

As it turns out, this is an acceptable approximation for
this range of ni, even though V is large (i.e., nonparaxial).

This effect has great consequences for (confocal) three-
dimensional microscopy, in which one commonly uses oil-
immersion objectives sn1 ­ 1.51d to study watery objects
sn2 ­ 1.33d. The shift of the object stage is frequently
mistaken for the shift in the point that is imaged. As
demonstrated in Ref. 21, objects may appear much larger
(in the z direction) than they actually are when this effect
is not taken into account.

In Fig. 6 the peak intensity is shown for increasing re-
fractive contrast. That is, n2 is kept at 1.33 while n1

varies between 1.33 and 1.51. With increasing n1 the
intensity drops dramatically. This is due to two factors:
(1) increasing phase differences between waves emanat-
ing from different points on the interface and (2) a de-
crease in transmission through the interface.

In our examples we have used parameters in the range
of practical optics. However, the developed formalism is
generally applicable.

5. CONCLUSIONS
We have studied the effects of a plane interface on an inci-
dent focused electromagnetic wave. The interface causes
a strong broadening of the intensity distribution com-
pared with the case where there is no interface. Also,
the intensity profile becomes highly asymmetrical.

We found that an increase in the difference in refractive
indices n1 2 n2 leads to a dramatic drop in intensity.

Moving the lens over a distance Dlens with respect to
the interface causes a shift in the position of the peak
intensity called Dpeak. A result with important applica-
tions (e.g., for microscopy) is that the intensity peak does
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not precisely follow the movement of the lens. Instead
we found that DpeakyDlens , n2yn1. In practice, this fac-
tor can differ significantly from 1.
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