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Deforestation decreases spatial turnover and alters the network 
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Highlights

•

Deforestation decreased bacterial spatial turnover rate at large geographic scale.

•

Soil pH and SOM availability strongly affected bacterial spatial turnover rate.

•

Bacterial networks were more intricate in primary than in secondary forests.

•

Bacterial taxa tended to co-occur in secondary forest network.

•

The major connectors in the secondary forest network were Proteobacteria.

Abstract

Despite important progress in understanding the influence of deforestation on the 

bacterial α diversity and community structure at local scales, little is known about 

deforestation impacts in terms of spatial turnover and soil bacterial community network 

interactions, especially at regional or global scales. To address this research gap, we 

examined the bacterial spatial turnover rate and the species networks in paired primary 

and secondary forest soils along a 3700-km north-south transect in eastern China using

high-throughput 16S rRNA gene sequencing. The spatial turnover rate of bacterial 

communities was higher in primary foreststhan in secondary, suggesting deforestation 

increased biotic homogenization at a large geographic scale. Multiple regression on 

matrices analysis revealed that both geographic distance and soil properties (especially 

soil pH and organic matter availability) strongly affected bacterial spatial turnover. 

Through the phylogenetic molecular ecological networkapproach, we demonstrate that 

the bacterial network of primary forests was more intricate than in secondary forests. 
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This suggests that microbial species have greater niche-sharing and more interactions 

in primary forests as compared to secondary forests. On the other hand, the bacterial 

network in secondary forests was more modular, and the taxa tended to co-occur, with 

positive correlations accounting for 82% of all potential interactions. In conclusion, our 

findings demonstrate that anthropogenic deforestation has clear effects on bacterial 

spatial turnover and network interactions, with potential for serious consequences such 

as microbial diversity loss in primary forests.
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1. Introduction

More and more primary forests are being cleared or strongly disturbed globally by 

human activities to make free areas for agriculture, wood production, human habitation 

and industry (Gómez-Acata et al., 2016). With increasing intensity of anthropogenic 

perturbations, more attention is being placed on secondary forests, since they may act 

as buffer zones and serve as a habitat for forest plants, animals and microorganisms 

displaced from destroyed primary forests (Brearley et al., 2004). Soil microbial 

communities are engineers of important biogeochemical processes and play a critical 

role in regulating the functions and stability of an ecosystem (Naeem and Li, 

1997; Fuhrman, 2009). Many studies showed that deforestation changed soil bacterial α

diversity, composition and community structure on local scales (Jesus et al., 

2009; Bastida et al., 2015; Gómez-Acata et al., 2016; Wood et al., 2017). However, little 

is known about the effects of deforestation on spatial turnover and species interactions 

of bacterial community at a large spatial scale, e.g. regional, continental or global.

Distance-decay relationships describe the decrease in community similarity with 

increasing geographic distance, with the slope reflecting the spatial species turnover 

rate (Nekola and White, 1999; Soininen et al., 2007; Hanson et al., 2012). This trend 

has been reported for microorganisms across a broad range of habitats and spatial 

scales (Horner-Devine et al., 2004; Martiny et al., 2006; Morlon et al., 2008; Bell, 
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2010; Wang et al., 2017; Zhou et al., 2008). Distance-decay relationships can be 

explained by two mechanisms: (1) similarity decays with distance due to environmental 

differences, which is attributable to niche-based community processes, with species 

differing in terms of their ability to adapt to environmental conditions (Nekola and White, 

1999; Soininen et al., 2007); (2) community similarity declines with distance due to an 

organisms' limited dispersal, even if the environment is completely homogeneous 

(Soininen et al., 2007). There are evidences suggesting that both mechanisms are 

important for shaping the distance-decay relationship (Fierer and Jackson, 2006; Dini-

Andreote et al., 2015; Ge et al., 2008; Chu et al., 2010; Xiong et al., 2012; Hendershot 

et al., 2017). However, most of these studies investigating spatial microbial 

community turnover rate have examined natural habitats such as those under natural 

forests, grasslands or marshes. Little is known about how microbial spatial turnover is 

affected by anthropogenic activities (e.g., long-term fertilization and elevated CO2levels) 

(Liang et al., 2015; Deng et al., 2016) and only one study has focused on deforestation 

to date (Rodrigues et al., 2013). Rodrigues et al. (2013) found that conversion of 

Amazon tropical rainforest to cropland reduced the microbial turnover rate along a 10-

km transect. However, it remains unclear whether deforestation influences microbial 

turnover rate across large spatial scales in different ecosystems and habitats. Clarifying 

the mechanisms that generate and maintain patterns of diversity is critical for 

predicting ecosystem responses to anthropogenic driven-changes.

Microorganisms coexist as complex arrays in many environments, and clarifying their 

interactions can provide insight into microbial diversity and function (Hallam and 

McCutcheon, 2015; Shi et al., 2016). Network analysis has proven a powerful way to 

study the complex community organization and member interactions in different 

ecological systems (Zhou et al., 2011). These interactions can be positive (e.g., 

mutualism) or negative (e.g., competition), and maybe depicted by a network model 

(Faust and Raes, 2012; Zhou et al., 2011; Deng et al., 2012), in which each node 

represents a species and the edge linking two nodes represent the relationship between

the two species (Zhou et al., 2011; Deng et al., 2012). Network analysis can also identify

keystone taxa that are critical for maintaining community structure and function (Power 

et al., 1996; Zhou et al., 2011; Deng et al., 2012). Recent studies have investigated 

microbial interactions in natural habitats or in response to human activities (e.g. 

elevated CO2, oil pollution, and land use change) (Zhou et al., 2011; Liang et al., 

2015; Deng et al., 2016; Ma et al., 2016), but the effects of deforestation on these 

interactions across large scales is unknown.
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Deforestation is a very common land use change practice, which has far reaching 

environmental implications. With particular relevance to microbial habitats, deforestation

leads to a broad number of environment modifications such as surface water losses and

consequently more frequent soil drought (Bagley et al., 2014), decreased litter input and

altered biochemical composition (Zou et al., 1995) and changed soil physicochemical 

characteristics (Gómez-Acata et al., 2016). Thus, we hypothesize that 1) deforestation 

may decrease the habitat differences among secondary forests, and consequently 

decrease the spatial microbial turnover rate at a large scale. In addition, the abundance 

and composition of key bacterial taxa have been shown to be sensitive to deforestation 

(Bastida et al., 2015; Navarrete et al., 2015; Gómez-Acata et al., 2016). Therefore, we 

also hypothesize that 2) deforestation may alter microbial interspecies interactions; 

bacterial taxa tend to present negative co-occurrence patterns as disturbance can 

promote microbial competition (Violle et al., 2010; Liang et al., 2015). To test these 

hypotheses, soil was sampled in paired primary and nearby disturbed secondary forests

in nine geographic regions along a 3700-km transect to investigate whether 

deforestation influences microbial spatial turnover and interaction patterns.

2. Materials and methods

2.1. Study sites and field sampling

The study was conducted at nine sites across a 3700-km north-south transect of 

eastern China (108.9° E, 18.7° N to 123.0° E, 51.8° N; Supplementary Fig. S1). The 

sampling sites ranged from cold temperate coniferous forest to tropical rainforest across

a northern latitudinal gradient from 51° to 18°. These sites ranged in terms of mean 

annual temperature from −3.67 °C to 23.2 °C, and annual precipitation from 473 to 

2266 mm. Soil physicochemical characteristic differences can be found 

in Supplementary Table S1.

Within each primary forest site, four representative plots (30 m × 40 m) were 

established. Sampled primary forests were deemed well-protected national nature 

reserves that avoid any influence of human activities. Comparable four plots were 

established in nearby secondary forests which were severely disturbed by 

anthropogenic activities in the history. Soil was sampled from each plot by collecting 20 

randomly selected cores (0–10 cm deep) that were thereafter, well mixed and 

homogenized. In total, 72 soil samples were collected in this study. Plant roots and 

leaves were carefully removed and discarded from the soil samples. A portion of each 

soil sample was transferred to a 50-ml centrifuge tube that was placed in an ice-box and
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transferred to the laboratory. The soil tubes were stored at −80 °C for DNA extraction. 

The remaining soil was used for physicochemical analyses.

2.2. Soil physicochemical analyses

Soil organic carbon (SOC) and total nitrogen (TN) contents were determined with a 

Vario EL III Elemental Analyzer (Elementar, Langenselbold, Germany). Soil total 

phosphorous (TP) content was determined using the ammonium molybdate method 

after H2SO4-H2O2-HF digestion. Available phosphorus (AP) content was also determined 

using the ammonium molybdate method (no prior digestion). Particulate organic 

carbon (POC) content was determined according to Cambardella and Elliott (1992). The

concentration of dissolved organic carbon (DOC) was determined according to Jones 

and Willett (2006). Humuscomposition was analyzed as reported in an earlier study 

(Kumada, 1988) with some modifications (Zhang et al., 2011). Soil pH was measured 

using a pH meter (1:2.5 w/v). Mean values for soil physicochemical properties in each 

forest sample are presented in Supplementary Table S2.

The soil organic matter (SOM) mineralization rate was used to represent SOM 

availability (Fierer and Jackson, 2006, 2007) and was estimated by measuring the rates 

of CO2production over a 14-day incubation at 25 °C after adjusting soil samples to 

60% water-holding capacity.

2.3. 16S rRNA gene amplicon sequencing and processing

DNA was extracted from 0.5 g of well-mixed soil using the PowerSoil kit (MoBio 

Laboratories, Carlsbad, CA, USA) according to the manufacturer's instructions. The V3-

V4 hypervariable regions of bacterial 16S rRNA genes were amplified using 

the primers 338F 5′-barcode-ACTCCTACGGGAGGCAGCAG-3′ and 806R 5′-

GGACTACHVGGGTWTCTAAT-3′. PCR reactions were performed in triplicate with a 

20 μL mixture containing 4 μL of 5 × FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of 

each primer (5 μM), 0.4 μL of FastPfu Polymerase, and 10 ng of template DNA. The 

following thermal program was used for amplification: 95 °C for 3 min, followed by 27 

cycles at 95 °C for 30 s, 55 °C for 30 s, 72 °C for 45 s and a final extension at 72 °C for 

10 min. PCR amplicons were extracted from 2% agarose gels and purified using an 

AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) according 

to the manufacturer's instructions and quantified using QuantiFluor™ -ST (Promega, 

USA). The purified amplicons from all samples were pooled in equimolar 

concentrations. Sequencing was conducted on an Illumina MiSeq platform at Majorbio 

BioPharm Technology Co., Ltd. (Shanghai, China).
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Raw sequences >200 bp with an average quality score >20 and without ambiguous 

base calls were quality processed using the Quantitative Insights into Microbial 

Ecology (QIIME) pipeline (version 1.17). Operational taxonomic units (OTUs) were 

clustered with a 97% similarity cutoff using UPARSE (Edgar et al., 2011) (version 

7.1 http://drive5.com/uparse/). The taxonomic assignment was performed using the 

Ribosomal Database Project (RDP) classifier (http://rdp.cme.msu.edu/). To correct for 

sampling effort (number of analyzed sequences per sample), we used a randomly 

selected subset of 18460 sequences per sample for subsequent analysis.

2.4. Network construction and analysis

Networks were, separately, constructed for primary and secondary forests based on 

16S rRNA gene sequence data. The framework for network construction can be divided 

into four key steps: (1) metagenomic sequence collection, (2) data standardization, (3) 

pair-wise similarity estimation, and (4) adjacent matrix determination according to a 

random matrix theory (RMT)-based approach (Zhou et al., 2011).

Global network properties such as average degree (connectivity), average path length, 

and average clustering coefficient were characterized for the primary and secondary 

forest networks. The definitions and calculations of these indices have been previously 

described (Zhou et al., 2011; Deng et al., 2012). The network module is a group of 

highly interconnected nodes (operational taxonomic units (OTUs) in this study) with few 

connections outside the group (Zhou et al., 2011). Modularity describes the extent, to 

which nodes attain more links within their own modules than expected for random 

linkages. Modules were detected by the greedy modularity optimization method (Deng 

et al., 2012). The connectivity of each node was determined based on its within-module 

connectivity (Zi) and among-module connectivity (Pi) (Guimera and Amaral, 2005). Node

topologies were organized into four categories: (1) module hubs (highly connected 

nodes within modules, Zi > 2.5); (2) network hubs (highly connected nodes within the 

entire network, Zi > 2.5 and Pi > 0.62); (3) connectors (nodes connecting modules, 

Pi > 0.62), and (4) peripherals (interconnected nodes in modules with few outside 

connections, Zi < 2.5 and Pi < 0.62) (Olesen et al., 2007; Zhou et al., 2011; Deng et al., 

2012). Topological network features in the primary and secondary forests were 

compared using a Student's t-test. The above analyses were carried out using the 

Molecular Ecological Network Analyses pipeline (http://ieg2.ou.edu//MENA/), with the 

networks being prepared as graphs using Cytoscape v.2.6.2software (Cline et al., 

2007).

2.5. Statistical analysis
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A geographic distance matrix was calculated using latitudinal and longitudinal 

coordinates of each sampling site using a gdist function (R package Imap). Matrices of 

pairwise taxonomic distances between bacterial communities were analyzed using the 

Bray-Curtis method. The microbial spatial turnover rate were calculated by determining 

the slope of the distance-decay relationship (Rodrigues et al., 2013; Deng et al., 2016), 

which was plotted as a logarithmic similarity against a logarithmic distance with the 

slope obtained by linear regression. To assess the significance of the distance-decay 

relationship curve, we examined whether the slopes were significantly less than zero 

with 1000 permutations (Martiny et al., 2011). The significance of slopes between 

primary and secondary forests was also evaluated by permutation.

Multiple regression on matrices (MRM) was used to assess linkages between the 

distance-decay relationship, and measured environmental variables and geographic 

distance (Legendre et al., 1994). Partial regression coefficients of an MRM model 

provided a measure of the rate of change in microbial community similarity for variables 

of interest when other variables were constant (Martiny et al., 2011; Deng et al., 2016). 

R package Ecodist was used for MRM calculations (Goslee and Urban, 2007).

2.6. Data accessibility

The raw sequence data from this study were deposited in the SRA at the NCBI 

database with the assigned study SRP136586 and Biosamples SAMN08802961-SAMN 

08803032.

3. Results

3.1. Distribution of taxa and phylotypes

Of the 72 soil samples, a total of 1,356,031 and 1,334,898 qualified sequences were 

obtained for the primary and secondary forests, respectively. When all samples were 

compared, at an equivalent sequencing depth of 18,460 per sample, soils from 

the primary forests showed higher OTU richness (1497) than those from the secondary 

forests (1360) at the 97% similarity level. The predominant phyla 

were Acidobacteria, Actinobacteria, Proteobacteria, Chloroflexi and 

Verrucomicrobia (relative abundance >3%) for both primary and secondary forests, 

which accounted for more than 84% of bacterial sequences (Table S3). In addition, the 

relative abundances at different taxonomical level were counted (Table S3). For 

example, the Acidobacteria and alphaproteobacteria are most dominant phylotypeat the
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class level, and the Rhizobiales is the most dominant phylotype at the order level (Table

S3).

3.2. Bacterial community spatial turnover rate and driving factors in primary and 
secondary forests

There were significant distance-decay relationships for bacterial communities in both 

types of forests based on the OTU level (p < 0.001; Fig. 1). The slope for primary forests

(r = 0.075) was steeper than that for secondary forests (r = 0.068; p < 0.001, permutation

test). At the class level, we also observed steeper slopes for primary forests (r = 0.047) 

than that for secondary forests (r = 0.042) (Fig. S2; p < 0.001, permutation test). These 

results suggest that spatial turnover rate of soil bacterial community is higher in primary 

as compared to secondary forests. The average community β diversity was lower in 

secondary forests than in primary forests (p < 0.05; Fig. S3).
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Fig. 1. Distance-decay relationships of bacterial communities in primary and secondary 
forest soils.
For the geographic distances of any two samples among the nine forests, the slope 
of primary forestswas 0.075, and the slope of secondary forests was 0.068; the 
permutation test indicated that two slopes were significantly different (p < 0.001).
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MRM was used to assess the relative contribution of geographic distance and soil 

properties to the observed β diversity (Table 1). A large and significant proportion of the 

variability in bacterial communities were explained by the MRM model (63.9% and 

80.3% for primary and secondary forests, respectively; p < 0.001). Soil pH had the 

greatest influence, with partial regression coefficients of b = 0.452 for primary and for 

1.05 secondary forests, followed by SOCmin (b = 0.128–0.139) (Table 1). Available P and 

geographic distance contributed minimally, but showed significant partial regression 

coefficients (b = 0.024–0.037) in both primary and secondary forests. In addition, total P 

content (b = 0.131), DOC (b = 0.125), and POC (b = −0.168) showed strong effects on β 

diversity in primary forests. Humic acid carbon (HUC) showed the significant influence 

on soil bacterial β diversity only in secondary forests.

Table 1. Contribution of environmental factors to the correlations by MRM on matrices analysis.

Factors Primary forests (R2 = 0.639, p = 0.01) Secondary forests (R2 = 0.803, p = 0.01)

Coefficient p Coefficient p

distance 0.031 0.01a 0.029 0.01

pH 0.452 0.01 1.05 0.01

SOCb −0.005 0.87 0.029 0.02

TN −0.0017 0.98 −0.052 0.01

SOC:TN 0.0008 1.00 0.012 0.27

SOCmin 0.139 0.01 0.128 0.01

TP 0.131 0.01 0.039 0.01

AP 0.037 0.01 0.024 0.03

DOC 0.125 0.01 0.021 0.16

POC −0.168 0.01 −0.119 0.01

HUC −0.023 0.53 0.124 0.01

a

Bold indicates significant effects p < 0.01.

b

SOC, soil organic carbon; TN, total nitrogen; SOCmin, potential SOM mineralization rate; TP, total 

phosphorous; AP: available phosphorous; DOC, dissolved organic carbon; POC, particulate 

organic carbon; HUC, humic acid carbon.

3.3. Distinct bacterial networks in primary and secondary forests

The network in primary forests was larger and more complex than that in secondary 

forests. The primary forest contained ∼2 times more nodes and a greater number of 
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links among nodes with a higher average connectivity (Table 2, Fig. 2). The average 

geodesic distance was lower, whereas the average clustering coefficient and modularity 

were higher in secondary as compared to primary forest networks (Table 2; p < 0.05). 

This indicates that secondary forest networks are more modular, with closer and better-

connected nodes.

Table 2. Topological properties of the empirical ecological networks (MENs) of microbial communities in 

primary and secondary forests and their associate random MENs.

Community Empirical networks Random networks

Similarity
threshold

(St)

Network
size (n)a

Links Avg.
Connectivity

(avgK)

Avg.path
length
(GD)

Avg.clustering
coefficient
(avgCC)

Modularity
(No.of

modules)

Avg.path
length (GD)

Avg.clustering
coefficient
(avgCC)

Primary 
forest

0.81 142 458 6.45 3.19b 0.333c 0.433d 2.929 ± 0.055 0.116 ± 0.014

Secondary 
forest

0.81 78 161 4.13 2.89b 0.344c 0.508d 3.016 ± 0.082 0.093 ± 0.019

a

Number of nodes in a network.

b

Significant difference (p < 0.001) in average path length between primary and secondary forests 

based on the students t-test with standard deviations derived from corresponding random 

networks.

c

Significant difference (p < 0.001) in average clustering coefficient between primary and secondary

forests based on the students t-test with standard deviations derived from corresponding random 

networks.

d

Significant difference (p < 0.001) in modularity between primary and secondary forests based on 

the students t-test with standard deviations derived from corresponding random networks.
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Fig. 2. Network interactions in primary and secondary forest soils.
Colors of nodes indicate different major phyla. A red link indicates negative interaction 
between two individual nodes, whereas a blue link indicates positive interaction. (For 
interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.)

A total of 458 links were identified in primary forests, including 255 (55%) positive and 

203 (45%) negative interactions (Fig. 2). In contrast, bacterial taxa tended to co-occur in

secondary forest networks, with positive correlations accounting for 82% of potential 

interactions observed (Fig. 2). We assessed possible topological roles of taxa in the 
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networks based on Zi and Pi values. The majority of nodes in the two networks were 

peripheral, and most of their links were inside the modules (Fig. 3). Only one node, 

belonging to phylum Acidobacteria, was identified as a module hub in the primary forest 

network (Fig. 3). Four nodes were classified as connectors in the primary forest 

network: one each belonging to Acidobacteria and Actinobacteria and two belonging 

to Proteobacteria (Fig. 3). Four of five identified connectors in the secondary forest 

network were Proteobacteria (primarily Alphaproteobacteria) and one 

was Acidobacteria (Fig. 3).
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Fig. 3. Z-P plot showing the classification of nodes to identify putative keystone 
species in primary and secondary forests.
Each symbol represents an OTU. Modules hubs have Zi > 2.5, whereas connectors 
have Pi > 0.62. One module hub was classified as Acidobacteria in the primary 
forest network. Four connectors in the primary forest network: one each belonging 
to Acidobacteria and Actinobacteria and two belonging to Proteobacteria. Four 
connectors in the secondary forest network 
were Proteobacteria (primarily Alphaproteobacteria) and one connector 
was Acidobacteria.

4. Discussion

4.1. Effects of deforestation on bacterial community spatial turnover rate

Understanding the patterns of microbial diversity and the mechanisms that maintain 

them are critical for predicting the response of an ecosystem to environmental changes.
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Our hypothesis that bacterial community similarity decreased with increasing distance in

both primary and secondary forests (Fig. 1) was verified. Furthermore, the bacterial 

spatial turnover rate was reduced by deforestation (Fig. 1), resulting in more similar 

bacterial communities over space. Changes in β diversity can be caused by 

environmental variations and efficient dispersal (Martiny et al., 2006; Ramette and 

Tiedje, 2007; Ge et al., 2008; Hendershot et al., 2017). Indeed, we found that a large 

and significant proportion of the variability in β diversity is explained by environmental 

variation and geographic distance (R2 = 0.64 and 0.80; Table 2). However, based on the 

MRM model, environmental factorshad strong effects on bacterial community similarity 

with high partial regression coefficients(Table 2). This suggests that environmental 

selection plays an important role in shaping the similarity of bacterial communities 

spatially after deforestation. Among environmental factors, soil pH was the most 

important factor with a partial regression coefficient of b = 0.45–1.05, followed by 

SOCmin (b = 0.128–0.139) (Table 1). Consequently, changes in soil pH and SOM 

availability (as determined by SOM mineralization) caused by deforestation are major 

contributors to the decrease in β diversity. This is in agreement with previous studies 

demonstrating the importance of soil pH in influencing bacterial diversity on a large 

spatial scale (Fierer and Jackson, 2006; Liu et al., 2014; Chu et al., 2010; Griffiths et al.,

2011; Rousk et al., 2010) and showing that SOC availability combined with taxa traits 

(e.g., abundance and distribution of dominant taxonomic groups) determines 

geographic distribution patterns (Fierer et al., 2007; Tian et al., 2018).

An increase in spatial similarity of bacterial communities following deforestation 

indicates spatial biotic homogenization, which offers a simple prediction of the human 

impact on global biodiversity (Olden and Poff, 2003). Biotic homogenization describes 

the gradual transition to nonnative-dominated communities which results in increased 

spatial and temporal similarity in the taxonomic characteristics of once-disparate biota 

(Olden and Poff, 2003). Biotic homogenization of macro-organisms (e.g., plants and 

animals) is a common outcome of ecosystem conversion (McKinney and Lockwood, 

1999; Smart et al., 2006), but is seldom investigated in microorganisms (Rodrigues et 

al., 2013). Biotic homogenization of microorganisms can occur through loss of taxa with 

restricted geographic ranges (endemic taxa) or invasion of taxa with broad spatial 

ranges (Olden and Poff, 2003). There was no evidence for invasion by broadly 

distributed microbial taxa in this study, but we found that the deforestation reduced 

endemic taxa (Supplementary Fig. S4). This study purely focuses on the effects of 

deforestation on soil bacterial communities. However, it should be noted that soil fungi 

are also critical components of microbial communities and play crucial functional 
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roles in forest soils (Peay et al., 2008; He et al., 2017). In contrast to bacterial 

communities, the fungal communities are more strongly affected by the vegetation 

(Peay et al., 2013). Therefore, it is expected that the effect of soil variables on fungal 

communities is less than that on bacterial composition. Nevertheless, further studies are

necessary to investigate whether deforestation reduces fungal diversity and spatial 

turnover across a large scale. Biotic homogenization is now regarded as one of the 

most prominent forms of global biotic impoverishment. The long-term impact of diversity 

loss resulting from deforestation is unknown; additional studies are necessary to clarify 

the mechanisms underlying current trends to guide conservation efforts.

4.2. Effects of deforestation on bacterial network interactions

Understanding interactions between microbial taxon can reveal the structure of complex

microbial communities across spatial gradients (Barberán et al., 2012). The RMT-based 

approach (which provides objectively defined thresholds for network construction) was 

used to model phylogenetic molecular ecological networks (Fig. 2) (Zhou et al., 

2011; Deng et al., 2012). Soil bacterial communities in primary forests formed larger 

(i.e., more nodes and links) and more complex (i.e., higher average K value) networks 

than those in secondary forests (Table 2 and Fig. 2). Greater network complexity can 

stabilize communities with mixed interaction types (Mougi and Kondoh, 2012; Liang et 

al., 2015); on the other hand, deforestation can reduce the stability of microbial 

communities.

Microbial networks in secondary forests were more modular than those in primary 

forests (Fig. 2). Modularity measures the connectivity between nodes within their own 

modules that would not occur by chance (Zhou et al., 2011; Deng et al., 2012). 

In ecology, a module is a group of species that interact strongly among themselves but 

little with species in other modules (known as compartmentalization) (Olesen et al., 

2007). The modularity increased in secondary forests; meanwhile, the constituent nodes

were more highly connected (Table 2and Fig. 2). This indicates that functional 

association and/or phylogenetic clustering of closely related species was higher in 

deforested areas. Interestingly, we found that covariation within modules was 

predominantly positive (82%) in secondary forests, suggesting the occurrence of 

extensive mutualism or commensalism (Faust and Raes, 2012). This disagrees with 

studies reporting that increasing disturbance promotes interspecies competition (Violle 

et al., 2010; Liang et al., 2015), although this has been contradicted by others (Grime, 

1979; Huston, 1979). This result is also not consistent with our second hypothesis. 

Secondary forests have a higher SOC availability than primary forests (student's t-
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test = 0.04, Table S2), presumably, a resource-rich environment reduced competitive 

pressures after deforestation (Dini-Andreote et al., 2015). This is supported by our 

finding that the main keystone nodes (OTUs) of secondary forests networks 

were Proteobacteria (Fig. 3). According to the growth processes of a network, keystone 

nodes are recognized as initiating components in networks (Barabási, 2009; Ma et al., 

2016). Proteobacteria are mainly copiotrophic; they are the initial metabolizers of labile 

carbon, and are therefore more abundant in soils with higher organic matter availability 

(Fierer et al., 2007). However, the extent of positive interactions among natural 

populations of bacteria is still debated (Morris et al., 2012; Ren et al., 2015).

5. Conclusions

In conclusion, deforestation decreased the bacterial community spatial turnover rate, 

indicating biotic homogenization. We identified distinct topological features of networks 

in soils of primary and secondary forests. The microbial network was larger and more 

complex in the soils of primary as compared to secondary forests, indicating greater 

potential for microbial interactions and niche-sharing. Taxonomic groups in secondary 

forests tended to be modular, and species were more closely connected than those 

in primary forestnetworks. Keystone species shifted to 

predominantly Proteobacteria after deforestation. Soil pH and SOM availability were the 

most important factors for the observed microbial β diversity and networks interactions. 

Taken together, these findings provide a better understanding of the relationship 

between soil bacterial diversity and forest ecosystems, as well as a framework for 

predicting continental-scale microbial responses to anthropogenic activities. Future 

studies are necessary to investigate the influence of deforestation on temporal 

dynamics of bacterial communities and their networks across large scales. Additionally, 

studies of the long-term influence of the loss of diversity after deforestation on forest 

ecosystem function are required.
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