
Deforestation: 
Transforming programs to eliminate trees 

P h i l i p  W a d l e r  

U n i v e r s i t y  of  G la sgow*  

Intermediate l is ts--and,  more generally, intermediate t rees--are both the basis and the bane 
of a certain style of programming in lazy functional languages. For example, to compute the sum 
of the squares of the numbers from 1 to n, one could write the following program: 

sum (map square (upto 1 n)) (1) 

A key feature of this style is the use of functions (upto, map, sum) to encapsulate common patterns 
of computation ("consider the numbers from 1 to n' ,  "apply a function to each element", "sum a 
collection of elements"). 

Intermediate lists are the basis of this style---they are the glue that  holds the functions together. 
In this case, the list [1, 2 . . . . .  n] connects upto to map, and the list [1,4 . . . . .  n ~] connects map to 
8Um~ 

But intermediate lists are also the bane-- they exact a cost at run-time. For each list, time 
is required to allocate it, examine it, and deallocate it. Transforming the above to eliminate the 
intermediate lists gives 

h O l n  
w h e r e  
h a m s  i f  m > n  

then a 
else h (a + square rn) (rn + 1) n 

(2) 

This program is more efficient because all operations on llst cells have been eliminated. 
This paper presents an algorithm that  transforms programs to eliminate intermediate l is ts- -  

and intermediate trees---called the Deforestation Algorithm. We characterise a form of function 
definition, treeless/orm, that uses no intermediate trees. An algorithm is given that  can transform 
any term composed of functions in treeless form into a function that  is itself in treeless form. For 
example, sum, map square, and upto all have treeless definitions, and applying the algorithm to 
program (1) yields a program equivalent to (2). 

The algorithm appears suitable for inclusion in an optimising compiler. Treeless form is easy 
to identify syntactically, and the transformation applies to any term (or sub-term) composed of 
treeless functions. 

Treeless form and the Deforestation Algorithm are presented in three steps. The first step 
presents "pure" treeless form in a first-order lazy functional language; in this form, no intermediate 

*Th~ work was in part performed at Oxford University, under a research fellowship funded by ICL. 
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values whatsoever are allowed. This is too restrictive for most practical uses, so the second step 
extends treeless form by allowing one to use "blazing" (marking of trees according to type) to 
indicate where intermediate values may remain. Finally, the third step extends the results to some 
higher-order functions, by treating such functions as macros. These "higher-order macros" may 
also be of use in other applications. 

A prototype of the transformer has been added the LML compiler [Aug87,Joh87] by Kei Davis 
[Day87]. The prototype handles blazed treeless form, and demonstrates that the transformer does 
work in practice. However, a thorough evaluation of the utility of these ideas must await an 
implementation that handles higher-order functions (as macros or otherwise}. 

This paper is the outgrowth of previous work on "listlessness"--transformations that eliminate 
intermediate lists [Wad84,Wad85]. The new approach includes several improvements. First, the 
definition of treeless form is simpler than the definition of listless form. Second, the Deforestation 
Algorithm applies to all terms composed solely of treeless functions, whereas the corresponding 
algorithm in [Wad85] applies only when a semantic condition, pre-order traversal, can be verified. 
Third, the treeless transformer is source-to-source (it converts functional programs into functional 
programs), whereas the listless transformer is not (it converts functional programs into imperative 
~listless programs"}. However, the class of treeless functions is not the same as the class of listless 
functions. In some ways it is more general (it allows functions on trees, such as the flip function 
defined later}, but in other ways it is more restricted (it does not apply to terms that traverse 
a data structure twice, such as sum xs/length xs}. Whereas listless functions must evaluate in 
constant bounded space, treeless functions may use space bounded by the depth of the tree. 

The remainder of this paper is organised as follows. Section 1 describes the first-order language. 
Section 2 introduces treeless form. Section 3 outlines the Deforestation Algorithm and sketches 
a proof of its correctness. Section 4 extends treeIess form to include blazing. Section 5 describes 
how to treat some higher-order functions as macros. Section 6 concludes. 

1 Language 

We use a first-order language with the following grammar: 

t ::= v variable 
I c tl . . .  tk constructor application 
I / h . . .  tk function application 
I case to of P l : t l l ' - ' l p , : t n  case term 

p ::= c vi . . .  vk pattern 

In an application, h , . . . ,  tk are called the arguments, and in a case term, to is called the selector, 
and Pl : t l , . . .  ,Pn : tn are called the branches. Function definitions have the form 

/ v ~ . . . v k  = t 

Example definitions are shown in Figure 1. 

The patterns in case terms may not be nested. Methods to transform case terms with nested 
patterns to ones without nested patterns are well known [Aug85,Wad87a]. 

We assume that the language is typed using the Milner polymorphic typing system 
[Mi178,DM82,Han87], found in LML and Miranda I [Tur85], among others. Familiarity with this 
type system is assumed. 

1Miranda is a trademark of Research Software Limited. 
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list a : := Nil I Cons a (list c~) 
tree a : := Leaf a I Branch (tree a) (tree a) 

append : list a --* list c~ --~ list a 
append xs ys = c a s e  xs o f  

Nil : ys 
Cons x xs : Cons x (append xs ys) 

flip : tree a --* tree a 
f l ip zt = c a s e  zt o f  

Lea/ z : L e a / z  
Branch xt yt : Branch (flip yt) (flip xt) 

Figure 1: Example definitions 

Each constructor  e and function f has a fixed arity k. For example, the constructor  Nil has 
arity 0, the constructor  Cons has arity 2, and the function append has arity 2. Although the 
language is first-order, terms and types are wri t ten in the  same notat ion as for a higher-order 
language, to facilitate the extension in Section 5. 

Traditionally, a te rm is said to be linear if no variable appears in it more than once. For 
example, (append xs (append ys zs)) is linear, but  (append xs xs) is not. We must extend this 
definition slightly for linear case terms: no variable may appear in both  the selector and a branch, 
although a variable may appear  in more than one branch. For example,  the definition of append 
is linear, even though ys appears in each branch. 

The intended operational  semantics of the language is normal order (leftmost outermost  first) 
graph reduction. We say one t e rm is more efficient than  another  if, for every possibIe instantiation 
of the free variables, the first requires fewer steps to reduce than the second. 

2 Treeless  f o r m  

Let F be a set of function names. A te rm is treeless with respect to F if it is linear, it only contains 
functions in F ,  and every argument  of a function application and every selector of a case te rm is 
a variable. 

In other  words, writ ing tt  for treeless terms with respect to F ,  we have 

tt ::~- v 
I e t t l  . . .  ttk 

t e a s e  tb o f  P l :  t t l  f " "  I P~: tt~ 

where, in addition, tt is linear and each f is in F .  
Given a collection of function definitions F ,  we say that  F is treeless if each right-hand side in 

F is treeless with respect to F .  The  definitions of append and f l ip in Figure 1 are both  treeless. 
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What  is the rationale for this definition? The restriction that  every argument of a function or 
selector of a case t e rm must  be a variable guarantees tha t  no intermediate trees are created. It  
outlaws terms such as 

flip (fip ~ ) 
where ( f l ip  z t )  returns an intermediate tree. On the other hand, constructor  applications are not 
subject to the same restrictions. This allows terms such as 

Branch ( f i p  y t )  ( f l ip  x t )  

where the trees re turned by ( f l ip  y t )  and ( f l ip  x t )  are not intermediate:  they are part  of the result. 
The linearity restriction guarantees that  certain program transformations do not introduce 

repeated computations.  Burstall  and Darlington use the te rm u n f o l d i n g  to describe the operation 
of replacing an instance of a lef~hand side of an equation by the corresponding instance of the 
right-hand side [BD77]. Whenever  we unfold a definition with a non-linear r ight-hand side, we risk 
duplicating a t e rm that  is expensive to compute,  making the program less efficient. For instance, 
a classic example of a non-linear function is s q u a r e  x = x x z .  If t is some te rm tha t  is expensive 
to compute,  we would prefer our program to contain square  t rather than its unfolded equivalent 
t × t. On the other  hand, if we define s q u a r e  z = exp  (2 × log x)  then s q u a r e  is linear, and there 

is no harm in unfolding s q u a r e  t to get exp  (2 × log t ) .  By insisting that  treeless definitions are 
linear, we guarantee that  we can unfold them without  sacrificing efficiency. 

Being treeless is a property of a definition, not of the function defined. Figure 2 gives two 
definitions of the function f l a t t e n .  The definition of f l a t t e n  1 is treeless, while the definition of 
f l a t t e n  o is not. (Unfortunately,  the function to flatten a tree, rather than a list of lists, has no 
treeless definition; but  see Section 6.) 

We can now present our main result. 

D e f o r e s t a t i o n  T h e o r e m .  Every linear term, containing only occurrences of func- 
tions with treeless definitions, can be effectively transformed to an equivalent treeless 

f l a t t e n  o : l is t  ( l i s t  a )  --* l i s t  a 
f l a t t e n  o xss = ease  xss  of  

N i l  : N i l  

C o n s  xs  x s s  : a p p e n d  z s  ( f l a t t e n  o x s s )  

f l a t t e n  a : l i s t  ( l i s t  a )  --* l i s t  a 

f l a t t e n  1 x s s  = ease  xss  of  
N i l  : N i l  

C o n s  xs  z s s  : f l a t t e n ]  xs  x s s  

f l a t t e n ~  : l i s t  a ~ l i s t  ( l i s t  a)  --* l i s t  a 
f l a t t e n ~  xs  z s s  = case  z s  of  

N i l  : f l a t t e n  1 z s s  

C o n s  z x s  : C o n s  z ( f l a t t e n ~  z s  x s s )  

Figure 2: A non-treeless and a treeless definition of f l a t t e n  
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term, without loss of efficiency. 

We will name the algorithm that carries out the effective transformation the Deforestation Algo- 
rithm. Although the statement above only guarantees no loss of efficiency, there will in fact be a 
gain whenever the original term contains an intermediate tree. 

For example, both append (append xs ys) zs and flip (flip zt) satisfy the hypothesis of the 
theorem. Applying the Deforestation Algorithm transforms these functions as shown in Figure 3. 
The transformation of append (append xs ys) zs is particularly noteworthy, since this term takes 
time 2m + n to compute, whereas the transformed version takes time m + n to compute (where 
m is the length of xs and n is the length of ys). The transformation of this term introduces 
two new (treeless) definitions, ho and hi; observe that hi is equivalent to append. Incidentally, 
append xs (append ys zs) is transformed into exactly the same term, modulo renaming; so, as a 
by-product, the Deforestation Algorithm provides a proof that append is associative. 

The characterisation of treeless definitions and the hypothesis of the Deforestation Theorem 
are both purely syntactic, so it is easy for the user to determine when deforestation applies. The 
user need not be familiar with the details of the Deforestation Algorithm itself. 

append (append zs ys) zs 

transforms to 

ho xs ys zs 
where  
ho xs ys zs 

hl ys zs 

= case xs of 
Nil : hi ys zs 
Cons • zs  : Cons  z (h~ xs ~s zs) 

= case ys of 
Nil : zs 
Cons y ys : Cons y (hl ys zs) 

~ip (~ip zt) 

transforms to 

hozt  
where  
h0zt = case zt of 

Leaf z : Leaf z 
Bra,~ch ~t yt  : B r a . ~  (ho ~t) (h~ ~t) 

Figure 3: Results of applying the Deforestation Algorithm 
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3 T h e  D e f o r e s t a t i o n  A l g o r i t h m  

The heart of the Deforestation Algorithm is the seven rules shown in Figure 4. We write T i t  I to 
denote the result of converting term t to treeless form. We must have that  

t = T N  

That is, t and TIt]l should compute the same value. 

Simple examination shows that  the rules cover all possible terms: of the four kinds of term 
(variable, constructor application, function application, case term) three are covered directly, and 
for case terms, all four possibilities for the selector are considered. 

It is clear that  each of the rules preserves equivalence. In rules (1), (2), and (4), the basic form 
already matches treeless form, and the components are converted recursively, tn rules (3) and (6), 
a function application is unfolded, yielding an equivalent term that is converted recursively. For 
rules (5) and (7), the case term is simplified, and the result is converted recursively. (Rule (7) is 
valid only if no variable in P l , - - - ,  Pm occurs free in any of t~, . . . .  t~. It is always possible to rename 
the bound variables so that  this condition applies.) 

There is one problem: the algorithm as given does not terminate! An example of applying rules 

(1) 

(2) 

(3) 

T~v] = v 

T I e  t, . . .  tk] = c (Tit1~) . . .  (Tits])  

T •  tl . . .  tk] = T I t [ t l / v l , . . . , t k / v k ] ]  
where f is defined by f vl . . .  vk = t 

(4) T[case  v o f  p l : t [ I . . . I p ~ : t ~ l  

= case  v o f  p~: T I t l ] l . . .  I P ' :  TitS] 

(5) T[case  c h  . . .  tk 

(6) T[case  f tl . . .  t~ 

o f  p ~ : t ~ l - - - I p ~ : t ~ n l  
T[t~ltll vl . . . .  , t~lv~]] 
where p~ = c vl . . .  vk 

(7) T[case  (case 

o f  p~: t[ I " "  I Pt, : t',l 
TIcase  t [ t l / ~ , . . . , t k / v k ]  of  p~: t l [ - . ,  j pf,: tt, l 
where f is defined by f vl . . .  vk = t 

to o f  p l : h t " ' l p m : t , J  of  p ~ : t I I . . . l p ' , : t ' ~ l  
= TIcase  to of  

Pl : (case tl o f  pl i ~: t I I - . - Ip . :e)  

p,~ : (case t,. of P l : t l l ' " f P ; : t ' ) l  

Figure 4: Transformation rules for the Deforestation Algorithm 



350 

(1-7) is shown in Figure 5. This shows transformation of the term 

flip (flip ~) 

After the steps shown, we finally reach the form 

case zt of 
Leaf z : Leaf z (*) 
Branch xt yt : Branch ( TIfli  p (flip xt)D ( Tif l i  p (flip yt)]) 

This contains two instances of the original expression, and so the same rules may be applied again 
without end. 

The key trick to avoid this infinite regress is to introduce appropriate new function definitions. 
For the example above, we introduce a function h0 that satisfies the equation 

he zt = T[flip (flip zt)l 

Now when the expansion of T~flip (flip zt)] reaches the form (*) above, we can recognise that the 
two occurrences of T~.. "1 match the right-hand side of this equation, and replace them by the 
corresponding left-hand side, giving 

hozt = case zt of 
Leaf z : Leaf z 
Branch xt yt : Branch (ho xt) (ho yt) 

This completes our task; we have translated the term flip (flip zt) to the equivalent treeless term 
ho zt, where ho has the treeless definition we have just derived. 

When should we introduce new definitions? The answer is that every term of the form T~...I 
encountered in the course of applying rules (1-7) is a potential right-hand side for a new definition. 
We keep a list of all such terms. Whenever we encounter a term for a second time, we create the 
appropriate function definition and replace each instance of the term by a corresponding call of 
the function. It is sufficient if the new term is a renaming of a previous term. For example, in 
the transformation above, (flip (flip xt)) was a renaming of (flip (flip zt)), and was replaced by 
the corresponding call (h0 xt). We insist that the new term is a renaming, rather than a more 
general instance, of the previous term; this guarantees that the resulting function call has the form 
(f vl . . .  vk), and hence is a treeless term. 

It is a simple inductive proof to show that if the computation of T~t~ terminates then we get a 
term in treeless form, and that this term will itself be equivalent to t. Below we sketch a proof that 
whenever t satisfies the hypothesis of the Deforestation Theorem, then there is a bound on the 
size of the terms of the form T~.. "1 encountered while applying rules (1-7). Since the terms are 
bounded in size, and there are only a finite number of constructor and function symbols involved, 
then there are only a finite number of different terms (modulo renaming). Thus, eventually a 
renaming of a previous term must be encountered, and the algorithm is guaranteed to terminate. 

As mentioned previously, linearity guarantees that unfolding (rules (3) and (6)) never introduces 
a repeated computation. It is easy to verify that the other rules also do not duplicate computations, 
and hence the derived treeless term is at least as efficient as the original term. 

It remains to show that if t contains only occurrences of treeless functions, then there is a 
bound on the size of the terms encountered by the Deforestation Algorithm. Define the nesting of 
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TIflip (flip ~)~ 

T~case (flip zt) of 
Leaf z : Leaf z 
Branch xt yt : Branch (flip yt) (flip z't)l 

(by (3)) 

TIcase (case zt of 
Leaf z' : Leaf z' 
Branch xt' yt' : Branch (flip yt') (flip zt ')) of 

L e a / z  : Leaf z 
Branch xt yt : Branch (flip yt) (flip xt)l  

(by (6)) 

T~case zt o f  
Leaf z 

Branch x t y t  : 

(case Leaf z of  
Leaf z' : Leaf z t 
Branch xt' yt' : Branch (flip yt') (flip xt') ) 

(case Branch (flip yt) (flip xt) of 
Leaf z ~ : L e a / z '  
Branch xt' yt' : Branch (flip yt*) (flip xtt))] 

(by (7)) 

case zt o f  
Leaf z 

Branch x t y t  : 

TI(case Leaf z of 
Leaf z ~ : Leaf z I 
Branch xt' yt' : Branch (flip yt') (flip xt')) 1 

TI(case Branch (flip Ut) (flip 6)  of 
Leaf z' : Leaf z' 
Branch ~' ut' : Branch (flip ~') (flip ~'))1 

(by (4)) 

case zt of  
Leaf z 
Branch xt yt 

: T [Lea f  z~ 
: T[Braneh (flip (flip xt)) (flip (flip yt))] 

(by (5), (5)) 

case zt o f  
Leaf z 
Branch xt yt 

: L e a f z  
: Branch (T[f l ip (flip xt)]) (T I f l i  p (flip yt)]) 

(by (2), (1), (2)) 

Figure 5: Deforestation of flip (flip zt) 
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a term t, written N I t l ,  as follows: 

NH 
N[e t, ... t~ 
N [ f  tx . . .  tk] 
N[ease to of Pl : tl [ - . .  I Pn : t,] 

= 0 
= max(N~tl]  . . . .  ,Nitk]) 
= 1 +  m a x ( N ~ h l , . . . , N i t k ] )  
= m a z ( N ~ t o ] , N i t i ] , . . . , N I t k ] )  

It is easy to verify that the nesting of a treeless term is at most 1, and that unfolding a treeless 
definition never increases the nesting of a term. So the nesting of any term encountered by the 
Deforestation Algorithm is bounded by the nesting of the initial term; call this N. Further, let M 
be the maximum of the size of the initial term and the size of any right-hand side of a function 
definition referred to (directly or indirectly) from the initial term. Then the size of any term 
encountered by the Deforestation Algorithm can be shown to be bounded by M N .  This guarantees 
that the Deforestation Algorithm terminates whenever the hypothesis of the Deforestation Theorem 
is satisfied, and so completes the proof of the theorem. 

Even if the given term does not satisfy the hypothesis of the Deforestation Theorem, the 
algorithm may still terminate, and when it does it will return an equivalent treeless term. For 
example, applying the algorithm to the non-treeless definition of f latten o in Figure 2 yields (a 
renaming of) the treeless definition of f lat ten 1. 

4 B l a z e d  t r e e l e s s  f o r m  

The definition of treeless form given in the previous section, which we will henceforth call pure 
treeless form, is quite restrictive. Consider the definition 

upto : int --, int --* list int 
u p t o m n  = ease ( m > n )  of 

True : Nil 
False : Cons m (upto (rn + l)  n) 

For example, upto 1 4 returns [1,2,3,4]. Here we write tl + t2 as an abbreviation for (+) tl t2, 
where (+) is considered a function name; and similarly for other infix operators. 

This definition is not in pure treeless form: first, because it contains a selector (m > n) and a 
function argument (m + 1) that are not variables; and, second, because it is not linear (m appears 
once in the selector and twice in the second branch). But in all cases, the offending intermediate 
"tree" is really an integer. 

To accommodate definitions such as upto, we will divide all terms into two kinds, marked with 
either a $ or a @. In forestry~ blazing is the operation of marking a tree by making a cut in its 
bark, so we will call the mark @ or ~ the blazing of the term. The idea is that deforestation should 
eliminate ("fell") all intermediate terms ("trees") blazed @, but that intermediate terms blazed @ 
may remain. Blazing will be assigned solely on the basis of type, and all terms of the same type 
must be blazed the same way. In the following, we will blaze all terms of type (list a) or (tree a) 
with $ ,  and all terms of type int or bool with @. If t stands for ma arbitrary term, we will write 
t $ to indicate that t is of a type blazed @, and t e to indicate that t is of a type blazed @. 

In the definition of pure treeless form, the places where intermediate values can appear (function 
arguments and case selectors) are restricted to be variables, and terms are required to be linear. 
For blazed treeless form,  the places where intermediate values can appear are restricted either to 
be variables or to be blazed 8,  and terms are required to be linear only in variables blazed @. 
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F: 
This yields the following new grarr-ffriar for treeless terms with respect to a set of function names 

tt ::---- I)V 

1 (e t t ,  . . .  tt~)~ 
1 ( f  UVl . . .  VVk) s 

t (case , ,0  of  Pl: t t l  I"" I P.:  t t . )~ 

Ut,' : :=  U 

I ( c a s e  VVo o f  P t :  UUI [ ' ' "  [ P r , :  UOn) G 

where in addition t t  and vv  axe linear in variables blazed ~,  and each f is in F. Note that t t e  is 

equivalent to vv e ,  and vv  ~ is equivalent to v ¢. As before, a collection of definitions F is treeless if 
each right-hand side in F is treeless with respect to F. The definition of upto  and all the definitions 
in Figure 6 are treeless. 

The Deforestation Theorem carries over virtually unchanged: 

B lazed  D e f o r e s t a t i o n  T h e o r e m .  Every term linear in variables blazed @, con- 

s u m  : l is t  in t  ~ in t  

s u m  xs  = s u m '  0 xz  

s u m  t 

8 U ~  I a ~ 

squares  

squares  z s  = 

s u m t r  

s u m t r  x t  

square t r  

square t r  x t  = 

in t  --* l is t  in t  --+ in t  

c a s e  xs of  
Ni l  : a 

Cons z zs : sum' (a + x) zs 

l is t  in t  ~ list in t  

ease  xs  of  
Ni t  : N i l  

C o n s  x zs  : Cons  (square  x)  ( squares  xs)  

tree in t  --~ in t  

c a s e  xt of  

L ea f  x : x 

B r a n c h  xt  yt  : s u m t r  xt  + s u m t r  yt 

tree in t  --~ tree in t  

c a s e  xt of  

Lea f  x 

B r a n c h  x t  y t  : 
Lea f  (square  x)  

Branch (squaretr ~t) (squaretr ~t) 

Figure 6: More example definitions 
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taining only occurrences of functions with blazed treeless definitions, can be effectively 
transformed to an equivalent blazed treeless term, without loss of efficiency. 

Two examples of applying the Blazed Deforestation Algorithm are shown in Figure 7. 

To accommodate blazing, the Deforestation Algorithm is extended as follows. If during the 
course of transformation a sub-term arises that is blazed @, this sub-term may be extracted and 
transformed independently. It is convenient to introduce the notation let v e = to e in tl to 
represent the result of such an extraction. We wilt only introduce let  terms through extraction, so 
the bound variable will always be blazed ~9. 

For example, applying extraction to the term 

yields the term 

sum' O (squares (upto 1 n)) 

let  no = 0 in  
let ul = 1 in 

sum'no (squares (upto ul n)) 

Later in the same transformation, applying extraction to the term 

sum' (no + square ~) (squ~res (upto (ul + 1) n)) 

sum (squares (upto I .)) 

transforms to 

h 0 O l n  
where  
ho no ul n case ( u o > n )  of 

True : a 

False : ho (no + square Ul) (u 1 -~- 1) n 

sumtr  (squaretr ~ )  

transforms to 

hoz t  
where  
h0zt = case ~ of 

Leaf x : square z 
Branch xt yt : ho z t  + ho yt 

Figure 7: Results of applying the Blazed Deforestation Algorithm 
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yields the term 
le t  u~ = u0 ÷ square x in  

le t  u a = u l + l  in  
~ '  ~: (sq~res  (~pto u~ ~)) 

The inner term here is a renaming of the inner term of the previous expression, and will cause the 
appropriate new function to be defined: 

ho uo u, n = T~surn' Uo (squares (upto ,.tl n))] 

Calls to h0 will now replace the inner terms above. 
Extract ion forces all arguments  of a function blazed @ to be variables. This is why it is not 

necessary for terms to be linear in variables blazed e :  since unfolding only replaces such variables 
by other variables, no duplication of a terra that  is expensive to compute can occur. 

We must  also add to the definition of T[t~ in Figure 4 the four additional rules in Figure 8. 
Rules (8) and (9) supersede rules (3) and (6), respectively, in the case where the result and all 
arguments of a function are blazed @. In this case it is not  necessary to unfold the application: 
it can be simply left in place unchanged. In particular,  rules (8) and (9) cover all applications of 
primitive functions, such as to > tl or to -t- tl, which cannot  be unfolded anyway. Rules (10) and 
(11) manage occurrences of le t .  (Rule (11) is only valid if v does not  occur in any of p~ , . . . ,  p t  
It  is always possible to rename the bound  variables so that  this condit ion applies.) 

After the t ransformation is complete, all terms of the form 

le t  v e = tteo in  t t l  

may be removed as follows. If v occurs at most once in t t l ,  the term may be replaced by t t l [ t to /v] .  
If v occurs more than  once, we may introduce a new function h defined by h v = t t l ,  and the term 
may be replaced by h tto. Since tto is blazed @, this application is a treeless term. (Alternatively, 
we can simply add le t  terms to the language, and just  extend the definition of treeless term to 
include terms in the above form.) 

It  is a straightforward extension of the previous results to show that  the modified Deforestation 
Algorithm satisfies the requirements of the Blazed Deforestation Theorem. 

(8) TI( f t~ . . .  t~) el  
= (! ( T I t ~ )  . . .  (TI t f l ) )  o 

(9) TIcase  ( / t ~  . . .  t2)e  o f  
= case  (f (TirOl) 

p~: ti I"" I p~: t'l 
. . .  (TIt~l ) )  ° o f  p~: TItJl ] . . .  f p'~: T i t ,  1 

(10) T i l e r  r e =  to ° in  tl] 
= le t  r e =  T~toe~ in  T~tl~ 

(11) T~case ( let  v e = to e i n  t,) o f  p~: t~ I " "  t P~: t~] 
= le t  v e =  Tltoe~ in  r ~ c a s e  tl o f  p ~ : t ~ t . . . I p ~ : t ~ l  

Figure 8: Addit ional  rules for the Blazed Deforestation Algori thm 
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5 H i g h e r - o r d e r  m a c r o s  

From the user's point of view, one of the most attractive features of programming in a functional 
style is the use of higher-order functions. However, for the implementor of a program transforma- 
tion system, such as the Deforestation Algorithm, first-order languages may be easier to cope with. 
This section shows how much (but not all) of the expressiveness of higher-order functions can be 
achieved in a first-order language, by treating higher-order functions as macros. The same idea 
may be useful for a variety of applications where it is easier to deal with a first-order language, 
but the power of a higher-order language is desirable. 

The first step is to add where  terms to the language. These have the form 

t where  d r ; . . . ;  d, 

where t is a term and d l , . . .  ,dn are function definitions. This can be translated back into 
our equation language in a straightforward manner, by use of a technique called lambda lifting 
[Joh87,Pey87]. In particular, if d l , . . . , dn  contain no free variables then the term above is just 
equivalent to t, where the definitions d l , . . . ,  dn are added to the top-level list of definitions, with 
systematic renaming of functions (according to the scope of the where  clause) to avoid any name 
conflicts. 

The second step is to add higher-order macro definitions. These have the form 

/ , . , ~ . . . v k  --" t 

That is, they are like ordinary definitions, but we write ~ instead of =. The term t may now 
contain variables in place of function names, and applications are no longer restricted by arity. 
The same Milner polymorphic type system is used. The formal parameters v l , . . . ,  v~ may now 
have a ground type, like int or (list a),  or a function type, llke (int --~ int), or even a higher-order 
type, llke ( ( int --~ int ) --~ int ). The only restriction is that higher-order macros cannot be reeursive. 

The lack of recursion, combined with the Milner type discipline, guarantees that all higher-order 
definitions can be expanded out at compile-time, with no risk of a non-terminating expansion. But 
at first the lack of recursion may seem overly restrictive. Doesn't it rule out our favourite higher- 
order functions, such as map and fold? As it turns out, it doesn't: we get the recursion back by 
using the where  facility defined above. Definitions of map and fold are given in Figure 9; recursion 
is limited to the first-order functions g and h. 

Given the definitions in Figure 9 we can write terms such as 

sum (map square (upto 1 n)) 
map sum (map (map square) xss) 

(map square o map cube) xs 
map (square e cube) xs 

Each of these expands out to a first-order program, which can then be transformed using the 
Deforestation Algorithm of the preceding sections. 

The mechanism defined here covers many, but not all, uses of higher-order functions. For 
instance, using this mechanism it is not possible to define or manipulate a list of functions, as one 
could in a true higher-order language. 

Higher-order macros provide one way to extend the Deforestation Algorithm from a first-order 
language, and they may be valuable for other applications as well. However, their worth is not yet 
proven. An alternative would be to formulate a version of the Deforestation Theorem that applies 
to higher-order functions directly, without the need to treat them as macros. 
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m a p  

m a p  f x s  

( a  ~ ~)  -+ list  a ~ l ist  

g x s  

where  
g xs = case xs  of 

Ni l  

C o n s  x x s  : 

Ni l  

Cons (I ~) (g ~) 

fo ld  

/o ld  / a zs  ~- 

( a  -~  ~ -~  a)  - *  ct -~  l ist  t3 -~  ct 

h a x s  

where  
h a z s  = case xs  of 

Ni l  : a 

Cons  x x~ : h ( f  a x) xs  

s u m  : l is t  i n t  --* i n t  

sum ~ /old (+) o 

( l o g ) ~  -~ / ( g ~ )  

Figure 9: Example higher-order definitions 

6 C o n c l u s i o n  

An oft-repeated justification for the study of functional programming is that functional programs 
are eminently suited for program transformation. And indeed, program transformation is a star 
member of the repertoire for writers of functional compilers. For example, many key steps in the 
LML compiler involve transformation techniques [Aug87,Joh87]. Deforestation appears to be an 
attractive candidate for the next application of program transformation to compiler technology. 

An important feature of the Deforestation Algorithm is that it is centred on an easily recognised 
class of definitions, treeless form. This eases the task of the compiler writer. Perhaps even more 
importantly, it eases the task of the compiler user, because it is easy to characterise what sort of 
expressions will be optimised and what sort of optimisations will be performed. 

Further work is desirable in two directions. 
First, treeless form may be generatised. One possible generallsation rests on the observation 

that some function arguments, such as the second argument to a p p e n d ,  appear directly in the 
function result. These arguments might be treated in the same way as arguments to constructors 
in the definition of treeless form. It was previously noted that the function to flatten a tree has no 
treeless definition; with this generalisation, it would. Related ideas are discussed in [Wad87b]. 

Second, further practical experience should be acquired, in order to assess better the utility of 
the ideas presented here. 
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