
Deforestation:
Transforming programs to eliminate trees

P h i l i p W a d l e r

U n i v e r s i t y of G la sgow*

Intermediate l is ts--and, more generally, intermediate t rees--are both the basis and the bane
of a certain style of programming in lazy functional languages. For example, to compute the sum
of the squares of the numbers from 1 to n, one could write the following program:

sum (map square (upto 1 n)) (1)

A key feature of this style is the use of functions (upto, map, sum) to encapsulate common patterns
of computation ("consider the numbers from 1 to n' , "apply a function to each element", "sum a
collection of elements").

Intermediate lists are the basis of this style---they are the glue that holds the functions together.
In this case, the list [1, 2 n] connects upto to map, and the list [1,4 n ~] connects map to
8Um~

But intermediate lists are also the bane-- they exact a cost at run-time. For each list, time
is required to allocate it, examine it, and deallocate it. Transforming the above to eliminate the
intermediate lists gives

h O l n
w h e r e
h a m s i f m > n

then a
else h (a + square rn) (rn + 1) n

(2)

This program is more efficient because all operations on llst cells have been eliminated.
This paper presents an algorithm that transforms programs to eliminate intermediate l is ts- -

and intermediate trees---called the Deforestation Algorithm. We characterise a form of function
definition, treeless/orm, that uses no intermediate trees. An algorithm is given that can transform
any term composed of functions in treeless form into a function that is itself in treeless form. For
example, sum, map square, and upto all have treeless definitions, and applying the algorithm to
program (1) yields a program equivalent to (2).

The algorithm appears suitable for inclusion in an optimising compiler. Treeless form is easy
to identify syntactically, and the transformation applies to any term (or sub-term) composed of
treeless functions.

Treeless form and the Deforestation Algorithm are presented in three steps. The first step
presents "pure" treeless form in a first-order lazy functional language; in this form, no intermediate

*Th~ work was in part performed at Oxford University, under a research fellowship funded by ICL.

Author's address: Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland

345

values whatsoever are allowed. This is too restrictive for most practical uses, so the second step
extends treeless form by allowing one to use "blazing" (marking of trees according to type) to
indicate where intermediate values may remain. Finally, the third step extends the results to some
higher-order functions, by treating such functions as macros. These "higher-order macros" may
also be of use in other applications.

A prototype of the transformer has been added the LML compiler [Aug87,Joh87] by Kei Davis
[Day87]. The prototype handles blazed treeless form, and demonstrates that the transformer does
work in practice. However, a thorough evaluation of the utility of these ideas must await an
implementation that handles higher-order functions (as macros or otherwise}.

This paper is the outgrowth of previous work on "listlessness"--transformations that eliminate
intermediate lists [Wad84,Wad85]. The new approach includes several improvements. First, the
definition of treeless form is simpler than the definition of listless form. Second, the Deforestation
Algorithm applies to all terms composed solely of treeless functions, whereas the corresponding
algorithm in [Wad85] applies only when a semantic condition, pre-order traversal, can be verified.
Third, the treeless transformer is source-to-source (it converts functional programs into functional
programs), whereas the listless transformer is not (it converts functional programs into imperative
~listless programs"}. However, the class of treeless functions is not the same as the class of listless
functions. In some ways it is more general (it allows functions on trees, such as the flip function
defined later}, but in other ways it is more restricted (it does not apply to terms that traverse
a data structure twice, such as sum xs/length xs}. Whereas listless functions must evaluate in
constant bounded space, treeless functions may use space bounded by the depth of the tree.

The remainder of this paper is organised as follows. Section 1 describes the first-order language.
Section 2 introduces treeless form. Section 3 outlines the Deforestation Algorithm and sketches
a proof of its correctness. Section 4 extends treeIess form to include blazing. Section 5 describes
how to treat some higher-order functions as macros. Section 6 concludes.

1 Language

We use a first-order language with the following grammar:

t ::= v variable
I c tl . . . tk constructor application
I / h . . . tk function application
I case to of P l : t l l ' - ' l p , : t n case term

p ::= c vi . . . vk pattern

In an application, h , . . . , tk are called the arguments, and in a case term, to is called the selector,
and Pl : t l , . . . ,Pn : tn are called the branches. Function definitions have the form

/ v ~ . . . v k = t

Example definitions are shown in Figure 1.

The patterns in case terms may not be nested. Methods to transform case terms with nested
patterns to ones without nested patterns are well known [Aug85,Wad87a].

We assume that the language is typed using the Milner polymorphic typing system
[Mi178,DM82,Han87], found in LML and Miranda I [Tur85], among others. Familiarity with this
type system is assumed.

1Miranda is a trademark of Research Software Limited.

346

list a : := Nil I Cons a (list c~)
tree a : := Leaf a I Branch (tree a) (tree a)

append : list a --* list c~ --~ list a
append xs ys = c a s e xs o f

Nil : ys
Cons x xs : Cons x (append xs ys)

flip : tree a --* tree a
f l ip zt = c a s e zt o f

Lea/ z : L e a / z
Branch xt yt : Branch (flip yt) (flip xt)

Figure 1: Example definitions

Each constructor e and function f has a fixed arity k. For example, the constructor Nil has
arity 0, the constructor Cons has arity 2, and the function append has arity 2. Although the
language is first-order, terms and types are wri t ten in the same notat ion as for a higher-order
language, to facilitate the extension in Section 5.

Traditionally, a te rm is said to be linear if no variable appears in it more than once. For
example, (append xs (append ys zs)) is linear, but (append xs xs) is not. We must extend this
definition slightly for linear case terms: no variable may appear in both the selector and a branch,
although a variable may appear in more than one branch. For example, the definition of append
is linear, even though ys appears in each branch.

The intended operational semantics of the language is normal order (leftmost outermost first)
graph reduction. We say one t e rm is more efficient than another if, for every possibIe instantiation
of the free variables, the first requires fewer steps to reduce than the second.

2 Treeless f o r m

Let F be a set of function names. A te rm is treeless with respect to F if it is linear, it only contains
functions in F , and every argument of a function application and every selector of a case te rm is
a variable.

In other words, writ ing tt for treeless terms with respect to F , we have

tt ::~- v
I e t t l . . . ttk

t e a s e tb o f P l : t t l f " " I P~: tt~

where, in addition, tt is linear and each f is in F .
Given a collection of function definitions F , we say that F is treeless if each right-hand side in

F is treeless with respect to F . The definitions of append and f l ip in Figure 1 are both treeless.

347

What is the rationale for this definition? The restriction that every argument of a function or
selector of a case t e rm must be a variable guarantees tha t no intermediate trees are created. It
outlaws terms such as

flip (fip ~)
where (f l ip z t) returns an intermediate tree. On the other hand, constructor applications are not
subject to the same restrictions. This allows terms such as

Branch (f i p y t) (f l ip x t)

where the trees re turned by (f l ip y t) and (f l ip x t) are not intermediate: they are part of the result.
The linearity restriction guarantees that certain program transformations do not introduce

repeated computations. Burstall and Darlington use the te rm u n f o l d i n g to describe the operation
of replacing an instance of a lef~hand side of an equation by the corresponding instance of the
right-hand side [BD77]. Whenever we unfold a definition with a non-linear r ight-hand side, we risk
duplicating a t e rm that is expensive to compute, making the program less efficient. For instance,
a classic example of a non-linear function is s q u a r e x = x x z . If t is some te rm tha t is expensive
to compute, we would prefer our program to contain square t rather than its unfolded equivalent
t × t. On the other hand, if we define s q u a r e z = exp (2 × log x) then s q u a r e is linear, and there

is no harm in unfolding s q u a r e t to get exp (2 × log t) . By insisting that treeless definitions are
linear, we guarantee that we can unfold them without sacrificing efficiency.

Being treeless is a property of a definition, not of the function defined. Figure 2 gives two
definitions of the function f l a t t e n . The definition of f l a t t e n 1 is treeless, while the definition of
f l a t t e n o is not. (Unfortunately, the function to flatten a tree, rather than a list of lists, has no
treeless definition; but see Section 6.)

We can now present our main result.

D e f o r e s t a t i o n T h e o r e m . Every linear term, containing only occurrences of func-
tions with treeless definitions, can be effectively transformed to an equivalent treeless

f l a t t e n o : l is t (l i s t a) --* l i s t a
f l a t t e n o xss = ease xss of

N i l : N i l

C o n s xs x s s : a p p e n d z s (f l a t t e n o x s s)

f l a t t e n a : l i s t (l i s t a) --* l i s t a

f l a t t e n 1 x s s = ease xss of
N i l : N i l

C o n s xs z s s : f l a t t e n] xs x s s

f l a t t e n ~ : l i s t a ~ l i s t (l i s t a) --* l i s t a
f l a t t e n ~ xs z s s = case z s of

N i l : f l a t t e n 1 z s s

C o n s z x s : C o n s z (f l a t t e n ~ z s x s s)

Figure 2: A non-treeless and a treeless definition of f l a t t e n

348

term, without loss of efficiency.

We will name the algorithm that carries out the effective transformation the Deforestation Algo-
rithm. Although the statement above only guarantees no loss of efficiency, there will in fact be a
gain whenever the original term contains an intermediate tree.

For example, both append (append xs ys) zs and flip (flip zt) satisfy the hypothesis of the
theorem. Applying the Deforestation Algorithm transforms these functions as shown in Figure 3.
The transformation of append (append xs ys) zs is particularly noteworthy, since this term takes
time 2m + n to compute, whereas the transformed version takes time m + n to compute (where
m is the length of xs and n is the length of ys). The transformation of this term introduces
two new (treeless) definitions, ho and hi; observe that hi is equivalent to append. Incidentally,
append xs (append ys zs) is transformed into exactly the same term, modulo renaming; so, as a
by-product, the Deforestation Algorithm provides a proof that append is associative.

The characterisation of treeless definitions and the hypothesis of the Deforestation Theorem
are both purely syntactic, so it is easy for the user to determine when deforestation applies. The
user need not be familiar with the details of the Deforestation Algorithm itself.

append (append zs ys) zs

transforms to

ho xs ys zs
where
ho xs ys zs

hl ys zs

= case xs of
Nil : hi ys zs
Cons • zs : Cons z (h~ xs ~s zs)

= case ys of
Nil : zs
Cons y ys : Cons y (hl ys zs)

~ip (~ip zt)

transforms to

hozt
where
h0zt = case zt of

Leaf z : Leaf z
Bra,~ch ~t yt : B r a . ~ (ho ~t) (h~ ~t)

Figure 3: Results of applying the Deforestation Algorithm

349

3 T h e D e f o r e s t a t i o n A l g o r i t h m

The heart of the Deforestation Algorithm is the seven rules shown in Figure 4. We write T i t I to
denote the result of converting term t to treeless form. We must have that

t = T N

That is, t and TIt]l should compute the same value.

Simple examination shows that the rules cover all possible terms: of the four kinds of term
(variable, constructor application, function application, case term) three are covered directly, and
for case terms, all four possibilities for the selector are considered.

It is clear that each of the rules preserves equivalence. In rules (1), (2), and (4), the basic form
already matches treeless form, and the components are converted recursively, tn rules (3) and (6),
a function application is unfolded, yielding an equivalent term that is converted recursively. For
rules (5) and (7), the case term is simplified, and the result is converted recursively. (Rule (7) is
valid only if no variable in P l , - - - , Pm occurs free in any of t~, t~. It is always possible to rename
the bound variables so that this condition applies.)

There is one problem: the algorithm as given does not terminate! An example of applying rules

(1)

(2)

(3)

T~v] = v

T I e t, . . . tk] = c (Tit1~) . . . (Tits])

T • tl . . . tk] = T I t [t l / v l , . . . , t k / v k]]
where f is defined by f vl . . . vk = t

(4) T[case v o f p l : t [I . . . I p ~ : t ~ l

= case v o f p~: T I t l] l . . . I P ' : TitS]

(5) T[case c h . . . tk

(6) T[case f tl . . . t~

o f p ~ : t ~ l - - - I p ~ : t ~ n l
T[t~ltll vl , t~lv~]]
where p~ = c vl . . . vk

(7) T[case (case

o f p~: t[I " " I Pt, : t',l
TIcase t [t l / ~ , . . . , t k / v k] of p~: t l [- . , j pf,: tt, l
where f is defined by f vl . . . vk = t

to o f p l : h t " ' l p m : t , J of p ~ : t I I . . . l p ' , : t ' ~ l
= TIcase to of

Pl : (case tl o f pl i ~: t I I - . - Ip . :e)

p,~ : (case t,. of P l : t l l ' " f P ; : t ') l

Figure 4: Transformation rules for the Deforestation Algorithm

350

(1-7) is shown in Figure 5. This shows transformation of the term

flip (flip ~)

After the steps shown, we finally reach the form

case zt of
Leaf z : Leaf z (*)
Branch xt yt : Branch (TIfli p (flip xt)D (Tif l i p (flip yt)])

This contains two instances of the original expression, and so the same rules may be applied again
without end.

The key trick to avoid this infinite regress is to introduce appropriate new function definitions.
For the example above, we introduce a function h0 that satisfies the equation

he zt = T[flip (flip zt)l

Now when the expansion of T~flip (flip zt)] reaches the form (*) above, we can recognise that the
two occurrences of T~.. "1 match the right-hand side of this equation, and replace them by the
corresponding left-hand side, giving

hozt = case zt of
Leaf z : Leaf z
Branch xt yt : Branch (ho xt) (ho yt)

This completes our task; we have translated the term flip (flip zt) to the equivalent treeless term
ho zt, where ho has the treeless definition we have just derived.

When should we introduce new definitions? The answer is that every term of the form T~...I
encountered in the course of applying rules (1-7) is a potential right-hand side for a new definition.
We keep a list of all such terms. Whenever we encounter a term for a second time, we create the
appropriate function definition and replace each instance of the term by a corresponding call of
the function. It is sufficient if the new term is a renaming of a previous term. For example, in
the transformation above, (flip (flip xt)) was a renaming of (flip (flip zt)), and was replaced by
the corresponding call (h0 xt). We insist that the new term is a renaming, rather than a more
general instance, of the previous term; this guarantees that the resulting function call has the form
(f vl . . . vk), and hence is a treeless term.

It is a simple inductive proof to show that if the computation of T~t~ terminates then we get a
term in treeless form, and that this term will itself be equivalent to t. Below we sketch a proof that
whenever t satisfies the hypothesis of the Deforestation Theorem, then there is a bound on the
size of the terms of the form T~.. "1 encountered while applying rules (1-7). Since the terms are
bounded in size, and there are only a finite number of constructor and function symbols involved,
then there are only a finite number of different terms (modulo renaming). Thus, eventually a
renaming of a previous term must be encountered, and the algorithm is guaranteed to terminate.

As mentioned previously, linearity guarantees that unfolding (rules (3) and (6)) never introduces
a repeated computation. It is easy to verify that the other rules also do not duplicate computations,
and hence the derived treeless term is at least as efficient as the original term.

It remains to show that if t contains only occurrences of treeless functions, then there is a
bound on the size of the terms encountered by the Deforestation Algorithm. Define the nesting of

351

TIflip (flip ~)~

T~case (flip zt) of
Leaf z : Leaf z
Branch xt yt : Branch (flip yt) (flip z't)l

(by (3))

TIcase (case zt of
Leaf z' : Leaf z'
Branch xt' yt' : Branch (flip yt') (flip zt ')) of

L e a / z : Leaf z
Branch xt yt : Branch (flip yt) (flip xt)l

(by (6))

T~case zt o f
Leaf z

Branch x t y t :

(case Leaf z of
Leaf z' : Leaf z t
Branch xt' yt' : Branch (flip yt') (flip xt'))

(case Branch (flip yt) (flip xt) of
Leaf z ~ : L e a / z '
Branch xt' yt' : Branch (flip yt*) (flip xtt))]

(by (7))

case zt o f
Leaf z

Branch x t y t :

TI(case Leaf z of
Leaf z ~ : Leaf z I
Branch xt' yt' : Branch (flip yt') (flip xt')) 1

TI(case Branch (flip Ut) (flip 6) of
Leaf z' : Leaf z'
Branch ~' ut' : Branch (flip ~') (flip ~'))1

(by (4))

case zt of
Leaf z
Branch xt yt

: T [Lea f z~
: T[Braneh (flip (flip xt)) (flip (flip yt))]

(by (5), (5))

case zt o f
Leaf z
Branch xt yt

: L e a f z
: Branch (T[f l ip (flip xt)]) (T I f l i p (flip yt)])

(by (2), (1), (2))

Figure 5: Deforestation of flip (flip zt)

352

a term t, written N I t l , as follows:

NH
N[e t, ... t~
N [f tx . . . tk]
N[ease to of Pl : tl [- . . I Pn : t,]

= 0
= max(N~tl] ,Nitk])
= 1 + m a x (N ~ h l , . . . , N i t k])
= m a z (N ~ t o] , N i t i] , . . . , N I t k])

It is easy to verify that the nesting of a treeless term is at most 1, and that unfolding a treeless
definition never increases the nesting of a term. So the nesting of any term encountered by the
Deforestation Algorithm is bounded by the nesting of the initial term; call this N. Further, let M
be the maximum of the size of the initial term and the size of any right-hand side of a function
definition referred to (directly or indirectly) from the initial term. Then the size of any term
encountered by the Deforestation Algorithm can be shown to be bounded by M N . This guarantees
that the Deforestation Algorithm terminates whenever the hypothesis of the Deforestation Theorem
is satisfied, and so completes the proof of the theorem.

Even if the given term does not satisfy the hypothesis of the Deforestation Theorem, the
algorithm may still terminate, and when it does it will return an equivalent treeless term. For
example, applying the algorithm to the non-treeless definition of f latten o in Figure 2 yields (a
renaming of) the treeless definition of f lat ten 1.

4 B l a z e d t r e e l e s s f o r m

The definition of treeless form given in the previous section, which we will henceforth call pure
treeless form, is quite restrictive. Consider the definition

upto : int --, int --* list int
u p t o m n = ease (m > n) of

True : Nil
False : Cons m (upto (rn + l) n)

For example, upto 1 4 returns [1,2,3,4]. Here we write tl + t2 as an abbreviation for (+) tl t2,
where (+) is considered a function name; and similarly for other infix operators.

This definition is not in pure treeless form: first, because it contains a selector (m > n) and a
function argument (m + 1) that are not variables; and, second, because it is not linear (m appears
once in the selector and twice in the second branch). But in all cases, the offending intermediate
"tree" is really an integer.

To accommodate definitions such as upto, we will divide all terms into two kinds, marked with
either a $ or a @. In forestry~ blazing is the operation of marking a tree by making a cut in its
bark, so we will call the mark @ or ~ the blazing of the term. The idea is that deforestation should
eliminate ("fell") all intermediate terms ("trees") blazed @, but that intermediate terms blazed @
may remain. Blazing will be assigned solely on the basis of type, and all terms of the same type
must be blazed the same way. In the following, we will blaze all terms of type (list a) or (tree a)
with $, and all terms of type int or bool with @. If t stands for ma arbitrary term, we will write
t $ to indicate that t is of a type blazed @, and t e to indicate that t is of a type blazed @.

In the definition of pure treeless form, the places where intermediate values can appear (function
arguments and case selectors) are restricted to be variables, and terms are required to be linear.
For blazed treeless form, the places where intermediate values can appear are restricted either to
be variables or to be blazed 8, and terms are required to be linear only in variables blazed @.

353

F:
This yields the following new grarr-ffriar for treeless terms with respect to a set of function names

tt ::---- I)V

1 (e t t , . . . tt~)~
1 (f UVl . . . VVk) s

t (case , ,0 of Pl: t t l I"" I P.: t t .)~

Ut,' : := U

I (c a s e VVo o f P t : UUI [' ' " [P r , : UOn) G

where in addition t t and vv axe linear in variables blazed ~, and each f is in F. Note that t t e is

equivalent to vv e , and vv ~ is equivalent to v ¢. As before, a collection of definitions F is treeless if
each right-hand side in F is treeless with respect to F. The definition of upto and all the definitions
in Figure 6 are treeless.

The Deforestation Theorem carries over virtually unchanged:

B lazed D e f o r e s t a t i o n T h e o r e m . Every term linear in variables blazed @, con-

s u m : l is t in t ~ in t

s u m xs = s u m ' 0 xz

s u m t

8 U ~ I a ~

squares

squares z s =

s u m t r

s u m t r x t

square t r

square t r x t =

in t --* l is t in t --+ in t

c a s e xs of
Ni l : a

Cons z zs : sum' (a + x) zs

l is t in t ~ list in t

ease xs of
Ni t : N i l

C o n s x zs : Cons (square x) (squares xs)

tree in t --~ in t

c a s e xt of

L ea f x : x

B r a n c h xt yt : s u m t r xt + s u m t r yt

tree in t --~ tree in t

c a s e xt of

Lea f x

B r a n c h x t y t :
Lea f (square x)

Branch (squaretr ~t) (squaretr ~t)

Figure 6: More example definitions

354

taining only occurrences of functions with blazed treeless definitions, can be effectively
transformed to an equivalent blazed treeless term, without loss of efficiency.

Two examples of applying the Blazed Deforestation Algorithm are shown in Figure 7.

To accommodate blazing, the Deforestation Algorithm is extended as follows. If during the
course of transformation a sub-term arises that is blazed @, this sub-term may be extracted and
transformed independently. It is convenient to introduce the notation let v e = to e in tl to
represent the result of such an extraction. We wilt only introduce let terms through extraction, so
the bound variable will always be blazed ~9.

For example, applying extraction to the term

yields the term

sum' O (squares (upto 1 n))

let no = 0 in
let ul = 1 in

sum'no (squares (upto ul n))

Later in the same transformation, applying extraction to the term

sum' (no + square ~) (squ~res (upto (ul + 1) n))

sum (squares (upto I .))

transforms to

h 0 O l n
where
ho no ul n case (u o > n) of

True : a

False : ho (no + square Ul) (u 1 -~- 1) n

sumtr (squaretr ~)

transforms to

hoz t
where
h0zt = case ~ of

Leaf x : square z
Branch xt yt : ho z t + ho yt

Figure 7: Results of applying the Blazed Deforestation Algorithm

355

yields the term
le t u~ = u0 ÷ square x in

le t u a = u l + l in
~ ' ~: (sq~res (~pto u~ ~))

The inner term here is a renaming of the inner term of the previous expression, and will cause the
appropriate new function to be defined:

ho uo u, n = T~surn' Uo (squares (upto ,.tl n))]

Calls to h0 will now replace the inner terms above.
Extract ion forces all arguments of a function blazed @ to be variables. This is why it is not

necessary for terms to be linear in variables blazed e : since unfolding only replaces such variables
by other variables, no duplication of a terra that is expensive to compute can occur.

We must also add to the definition of T[t~ in Figure 4 the four additional rules in Figure 8.
Rules (8) and (9) supersede rules (3) and (6), respectively, in the case where the result and all
arguments of a function are blazed @. In this case it is not necessary to unfold the application:
it can be simply left in place unchanged. In particular, rules (8) and (9) cover all applications of
primitive functions, such as to > tl or to -t- tl, which cannot be unfolded anyway. Rules (10) and
(11) manage occurrences of le t . (Rule (11) is only valid if v does not occur in any of p~ , . . . , p t
It is always possible to rename the bound variables so that this condit ion applies.)

After the t ransformation is complete, all terms of the form

le t v e = tteo in t t l

may be removed as follows. If v occurs at most once in t t l , the term may be replaced by t t l [t to /v] .
If v occurs more than once, we may introduce a new function h defined by h v = t t l , and the term
may be replaced by h tto. Since tto is blazed @, this application is a treeless term. (Alternatively,
we can simply add le t terms to the language, and just extend the definition of treeless term to
include terms in the above form.)

It is a straightforward extension of the previous results to show that the modified Deforestation
Algorithm satisfies the requirements of the Blazed Deforestation Theorem.

(8) TI(f t~ . . . t~) el
= (! (T I t ~) . . . (TI t f l)) o

(9) TIcase (/ t ~ . . . t2)e o f
= case (f (TirOl)

p~: ti I"" I p~: t'l
. . . (TIt~l)) ° o f p~: TItJl] . . . f p'~: T i t , 1

(10) T i l e r r e = to ° in tl]
= le t r e = T~toe~ in T~tl~

(11) T~case (let v e = to e i n t,) o f p~: t~ I " " t P~: t~]
= le t v e = Tltoe~ in r ~ c a s e tl o f p ~ : t ~ t . . . I p ~ : t ~ l

Figure 8: Addit ional rules for the Blazed Deforestation Algori thm

356

5 H i g h e r - o r d e r m a c r o s

From the user's point of view, one of the most attractive features of programming in a functional
style is the use of higher-order functions. However, for the implementor of a program transforma-
tion system, such as the Deforestation Algorithm, first-order languages may be easier to cope with.
This section shows how much (but not all) of the expressiveness of higher-order functions can be
achieved in a first-order language, by treating higher-order functions as macros. The same idea
may be useful for a variety of applications where it is easier to deal with a first-order language,
but the power of a higher-order language is desirable.

The first step is to add where terms to the language. These have the form

t where d r ; . . . ; d,

where t is a term and d l , . . . ,dn are function definitions. This can be translated back into
our equation language in a straightforward manner, by use of a technique called lambda lifting
[Joh87,Pey87]. In particular, if d l , . . . , dn contain no free variables then the term above is just
equivalent to t, where the definitions d l , . . . , dn are added to the top-level list of definitions, with
systematic renaming of functions (according to the scope of the where clause) to avoid any name
conflicts.

The second step is to add higher-order macro definitions. These have the form

/ , . , ~ . . . v k --" t

That is, they are like ordinary definitions, but we write ~ instead of =. The term t may now
contain variables in place of function names, and applications are no longer restricted by arity.
The same Milner polymorphic type system is used. The formal parameters v l , . . . , v~ may now
have a ground type, like int or (list a), or a function type, llke (int --~ int), or even a higher-order
type, llke ((int --~ int) --~ int). The only restriction is that higher-order macros cannot be reeursive.

The lack of recursion, combined with the Milner type discipline, guarantees that all higher-order
definitions can be expanded out at compile-time, with no risk of a non-terminating expansion. But
at first the lack of recursion may seem overly restrictive. Doesn't it rule out our favourite higher-
order functions, such as map and fold? As it turns out, it doesn't: we get the recursion back by
using the where facility defined above. Definitions of map and fold are given in Figure 9; recursion
is limited to the first-order functions g and h.

Given the definitions in Figure 9 we can write terms such as

sum (map square (upto 1 n))
map sum (map (map square) xss)

(map square o map cube) xs
map (square e cube) xs

Each of these expands out to a first-order program, which can then be transformed using the
Deforestation Algorithm of the preceding sections.

The mechanism defined here covers many, but not all, uses of higher-order functions. For
instance, using this mechanism it is not possible to define or manipulate a list of functions, as one
could in a true higher-order language.

Higher-order macros provide one way to extend the Deforestation Algorithm from a first-order
language, and they may be valuable for other applications as well. However, their worth is not yet
proven. An alternative would be to formulate a version of the Deforestation Theorem that applies
to higher-order functions directly, without the need to treat them as macros.

357

m a p

m a p f x s

(a ~ ~) -+ list a ~ l ist

g x s

where
g xs = case xs of

Ni l

C o n s x x s :

Ni l

Cons (I ~) (g ~)

fo ld

/o ld / a zs ~-

(a -~ ~ -~ a) - * ct -~ l ist t3 -~ ct

h a x s

where
h a z s = case xs of

Ni l : a

Cons x x~ : h (f a x) xs

s u m : l is t i n t --* i n t

sum ~ /old (+) o

(l o g) ~ -~ / (g ~)

Figure 9: Example higher-order definitions

6 C o n c l u s i o n

An oft-repeated justification for the study of functional programming is that functional programs
are eminently suited for program transformation. And indeed, program transformation is a star
member of the repertoire for writers of functional compilers. For example, many key steps in the
LML compiler involve transformation techniques [Aug87,Joh87]. Deforestation appears to be an
attractive candidate for the next application of program transformation to compiler technology.

An important feature of the Deforestation Algorithm is that it is centred on an easily recognised
class of definitions, treeless form. This eases the task of the compiler writer. Perhaps even more
importantly, it eases the task of the compiler user, because it is easy to characterise what sort of
expressions will be optimised and what sort of optimisations will be performed.

Further work is desirable in two directions.
First, treeless form may be generatised. One possible generallsation rests on the observation

that some function arguments, such as the second argument to a p p e n d , appear directly in the
function result. These arguments might be treated in the same way as arguments to constructors
in the definition of treeless form. It was previously noted that the function to flatten a tree has no
treeless definition; with this generalisation, it would. Related ideas are discussed in [Wad87b].

Second, further practical experience should be acquired, in order to assess better the utility of
the ideas presented here.

Acknowledgemen t s . I am grateful to Kei Davis for acting as a sounding board and undertaking
to implement some of the ideas reported here, and to Cordelia Hall and Catherine Lyons for their
comments on this paper.

358

comments on this paper.

R e f e r e n c e s

[Aug85]

[Aug87]

[B977]

[Dav87}

[DM821

poh87j

[Han87]

[Mi178]

[Pey87]

[~r851

[Wad84]

[Wad85]

[Wad87a]

IWadSTb]

L. Augustsson, Compiling pattern matching. In Proceedings of the Conference on Func-
tional Programming Languages and Computer Architecture, Nancy, France, September
1985. LNCS 201, Springer-Verlag, 1985.

L. Augustsson, Compiling lazy functional languages, Part II. Ph.D. dissertation, De-
partment of Computer Science, Chalmers Tekniska H6gskola, GSteborg, Sweden, 1987.

R. M. Burstall and J. Darlington, A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44-67, January 1977.

M. K. Davis, Deforestation: Transformation of functional programs to eliminate in-
termediate trees. M.Sc. dissertation, Programming Research Group, Oxford University,
September 1987.

L. Damas and R. Milner, Principal type schemes for functional programs. In Proceedings
of the ACM Symposium on Principles of Programming Languages, January 1982.

T. Johnsson, Compiling lazy functional languages. Ph.D. dissertation, Department of
Computer Science, Chalmers Tekniska HSgskola, GSteborg, Sweden, 1987.

P. Hancock, Polymorphic type-checking. In [Pey87].

R. Milner, A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348-375, 1978.

S. L. Peyton Jones, The Implementation of Functional Programming Languages, Prentice
Hall, 1987.

D. A. Turner, Miranda: A non-strict functional language with polymorphic types. In
Proceedings of the Conference on Functional Programming Languages and Computer
Architecture, Nancy, France, September 1985. LNCS 201, Springer-Verlag, 1985.

P. L. Wadler, Listlessness is better than laziness: Lazy evaluation and garbage collec-
tion at compile-time. In Proceedings of the ACM Symposium on Lisp and Functional
Programming, Austin, Texas, August 1984.

P. L. Wadler, Listlessness is better than laziness II: Composing listless functions. In
Proceedings of the Workshop on Programs as Data Objects, Copenhagen, October 1985.
LNCS 217, Springer-Verlag, 1985.

P. L. Wadler, Efficient compilation of pattern-matching. In [Pey87].

P. L. Wadler, The concatenate vanishes. Note distributed to FP electronic mailing list,
December 1987.

