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Abstract: Magnetic resonance imaging (MRI) is commonly employed for the depiction of soft tissues, most notably 
the human brain. Computer-aided image analysis techniques lead to image enhancement and automatic detection of 
anatomical structures. However, the information contained in images does not often offer enough contrast to robustly 
obtain a good detection of all internal brain structures, not least the deep grey matter nuclei. We propose a method that 
incorporates prior anatomical knowledge in the shape of digital atlases that deform to fit the image data to be 
analysed. Our technique is based on a combination of rigid, affine and non-rigid registration, segmentation of key 
anatomical landmarks and propagation of the information of the atlas to detect deep grey matter nuclei. The Montreal 
Neurological Institute (MNI) and Zubal atlases are employed. Results show that detecting important structures such as 
the ventricles and brain outlines greatly improves the results. Our method is fully automatic. 
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1. Introduction  

The advent of medical imaging modalities such as X-
ray, ultrasound, computed tomography (CT) and 
magnetic resonance imaging (MRI) has greatly 
improved the diagnosis of various human diseases. To 
date, the most common procedure to analyse imaging 
data is visual inspection on printed support. In the last 
decade, computer-aided medical image analysis 
techniques have been employed to provide a better 
insight into the acquired image data. [5]. Such 
techniques allow for quantitative, reproducible 
observation of the patient condition. Furthermore, the 
computing power of modern machines can be used to 
combine information from several images of the same 
patient (i.e. image fusion) or add prior information from 
a database of images. 

In this paper, we present a fully automated medical 
image analysis technique aimed at the detection of 

internal brain structures from MRI data. Such 
automated processes allow the study of large image 
databases and provide consistent measurements over the 
data. In our case, we employ a priori anatomical 
knowledge in the form of digital brain atlases. 

Relevant background information about MRI and 
brain anatomy is provided next. Section 2 will describe 
the different components of our image processing 
framework, which detects and delineates internal brain 
structures by identifying analogous structures in digital 
brain atlases. Finally, results and conclusions are given.  
 
1.1 Magnetic Resonance Imaging 
 
MRI has become a leading technique widely used for 
imaging soft human tissue. Its applications are extended 
over all parts of the human body and it represents the 
most common visualisation method of human brain. 
Images are generated by measuring the behaviour of soft 



tissue under a magnetic field. Under such conditions, 
water protons enter a higher energy state when a radio-
frequency pulse is applied and this energy is re-emitted 
when the pulse stops (a property known as resonance) 
[7]. A coil is used to measure this energy, which is 
proportional to the quantity of water protons and local 
biochemical conditions. Thus, different tissues give 
different intensities in the final MR image. From the 
brain MRI perspective, this quality makes possible the 
segmentation of the three main tissue classes within the 
human skull: grey matter (GM), white matter (WM) and 
cerebrospinal fluid (CSF). Their accurate segmentation 
remains a challenging task in the clinical environment.  

The relative contrast between brain tissues is not a 
constant in MR imaging. In most medical imaging 
applications, little can be done about the appearance of 
anatomically distinct areas relative to their 
surroundings. In MRI, the choice of the strength and 
timing of the radio-frequency pulses, known as the MRI 
sequence [12], can be employed to highlight some type 
of tissue or image out another, according to the clinical 
application. However, the presence of artefacts due to 
magnetic field inhomogeneity (bias fields) and 
movement artefacts may hamper the delineation of GM 
versus WM and CSF and make their depiction difficult.  

There is an entire family of MRI sequences that are 
used in common clinical practice. T1-weighted MRI 
offers the highest contrast between the brain soft tissues. 
On the contrary, T2-weighted and Proton Density (PD) 
images exhibit very low contrast between GM and WM, 
but high contrast between CSF and brain parenchyma. 
In other MRI sequences, like the Fluid Attenuated 
Inversion Recovery (FLAIR) sequence, the CSF is 
eliminated from the image in an adapted T1 or T2 
sequence. More about these specific MRI sequences and 
their variations can be found in [2]. Multisequence MRI 
analysis combines the different information provided by 
the employed sequences. Combining such knowledge 
gives substantially more information about brain 
anatomy and possible occurring changes.  

MR images depict a 3D volume where the organ or 
part of the body of interest is embedded. This 
information can be used to build a 3D representation of 
the structure of interest. This applies both to 2D 
sequences, where images are acquired in slices, and to 
recently developed 3D sequences, where the data are 
captured in the 3D Fourier space, rather than each slice 
being captured separately in the 2D Fourier space [2, 
12].  

 
1.2 Deep Grey Matter Nuclei 
 
The neurones that build up the human brain are 
composed of a cellular body and an axon. The latter 
projects its dendritic connections to other neurones in 
remote cerebral regions. In essence, grey matter 
corresponds to the cellular bodies, whereas the axons 
constitute the white matter. Cerebral grey matter is 
mainly concentrated in the outer surface of the brain 
(cortex), but several internal GM structures exist, as 

seen in Figures 1 and 2. These are known as deep grey 
matter nuclei and they play a central role in the 
intellectual capabilities of the human brain. 
Additionally, deep brain grey matter nuclei are relevant 
to a set of clinical conditions, such as Parkinson’s and 
Creutzfeldt-Jakob diseases. However, their detection in 
MRI data sets remains a challenging task, due to their 
small size, partial volume effects [6], anatomical 
variability, lack of white matter-grey matter contrast in 
some sequences and movement artefacts. A 
methodology for the robust detection of deep brain grey 
matter nuclei in multi-sequence MRI is presented in this 
paper. 

 

 
Figure 1.  Deep grey matter internal nuclei as seen in a 
normal T1 weighted axial MR image with good contrast 

between WM, GM and CSF . The arrows point towards some 
of these nuclei, namely the caudate nuclei, the thalami and the 

putamen. 
 

 
 

Figure 2.  An annotated map of deep grey matter internal 
nuclei reproduced from the Talairach and Tournoux atlas 
[13]: the caudate nuclei (CN), putamen (Pu) and thalami 

(Th).  
 

2. Method 

2.1 Spatial Normalisation 

The large variability inherent to human anatomy and 
the differences in patient positioning across scans leads 
us to consider spatial normalisation as an approach to 
put patient images in a standard reference frame. This 
will allow to localise the areas of interest with the help 
of an atlas of the brain. Furthermore, it will make 
automatic inter-patient comparisons possible. 



The identification of brain structures in volumetric 
images can be automated thanks to the use of digital 
atlases. These are images that have been segmented and 
thus contain information about the position and shape of 
each structure. Such atlases can be binary (1 for the 
location of a structure and 0 for “outside”) or 
probabilistic, in which case the values correspond to the 
probability of a voxel containing the structure of 
interest. In order to locate such structures in a given 
patient image, the atlas image is deformed to match the 
shape of the patient brain. This process is known as 
registration. Depending on the type of geometric 
deformation allowed, registration can be rigid, affine, 
parametric (e.g. spline) or free-form (a deformation field 
specifying the displacement applied to each point). 

Registration to a digital atlas has become a common 
technique with the introduction of popular statistical 
algorithms for image processing, such as Statistical 
Parametric Mapping (SPM) [1] or Expectation 
Maximization Segmentation (EMS) [14]. A well-known 
probabilistic atlas in the scientific community is the 
MNI Atlas from the Montreal Neurological Institute at 
McGill University [4]. It was built using over 300 MRI 
scans of healthy individuals to compute an average 
brain MR image, the MNI template, which is now the 
standard template of SPM and the International 
Consortium for Brain Mapping [9]. The averaging is 
performed for the entire brain, but also on isolated GM, 
WM and CSF, providing a tool for statistical 
segmentation. For these reasons, we chose the MNI 
template as the basis for image alignment in our 
approach. Figure 3 shows the MNI template. 

 

  
 

Figure 3.  The MNI template. On the left, the probabilistic 
MNI atlas of the brain; on the right, the corresponding GM 

atlas. Please note the arrangement of MR images in 
radiological convention with an axial, a sagittal and a 

coronal view. This convention is reflected in figures 
throughout the paper. 

 
We propose the following registration scheme. T1 

images have often the highest resolution, hence we 
register them to the MNI template first using an affine 
transformation. The registration algorithm, previously 
developed in our group, is described in [11]. It uses a 
block matching strategy in a two-step iterative method. 
The standard assumption behind the algorithm is that 
there is a global intensity relationship between the 

template image and the one being registered to it. The 
method proposes several types of correlation measures: 
linear, functional or statistical. Maximising one of 
these, the correlation coefficient in our case, the 
transformation between the two images is computed 
block by block and a displacement field is thus 
generated. A parametric transformation, either affine or 
rigid, is then estimated from this deformation field. To 
further improve robustness, this procedure is repeated at 
multiple scales. More details can be found in [10].  

 

 
 

  
 

Figure 4.  An example of spatial normalisation. The image on 
top is the subject's T1 before registration; the image on 

bottom left shows the subject's T1 after spatial normalisation 
and  the MNI template is presented on the bottom right image. 

 
Next, rigid intra-patient registration of all sequences 

is performed using the same algorithm as above. T2, 
FLAIR, diffusion-weighted, diffusion tensor or other 
sequence images can be registered to the T1 image. 
Since this registration is performed on images of the 
same patient acquired during the same scanning session, 
rigid registration suffices. By combining these rigid 
transformations with the affine transformation matching 
T1 and MNI template, we can find correspondences 
between the atlas and the other sequence images. This is 
illustrated in Figure 5. The final image resolution is that 
of the MNI atlas: 91×109×91 voxels. Figure 4 shows an 
example of spatial normalisation. With all images 
registered to the atlas, intra- and inter-patient analysis 
becomes simple and statistical algorithms can be 
applied. 

 



 
 

Figure 4.  Diagram of the spatial normalisation algorithm. 
Intra-patient images are rigidly registered on the 

corresponding T1. The T1-weighted image is affinely 
registered to the atlas template. The resulting transformation 

is used to align all other MR images to the atlas. 

2.2 A Priori Anatomical Knowledge  

To be able to segment GM and WM in MRI sequences, 
a good contrast between these types of tissue in T1-
weighted images is desired. Figure 5 shows a typical T1 
with high contrast between brain soft tissues and a 
common T1 image from our database. Under the given 
circumstances, the segmentation of GM cannot be done 
directly from the patient images. The MNI atlas can 
provide a probabilistic segmentation of GM, but this is 
not precise enough for our application. We use instead a 
segmented anatomical atlas of the brain, the Zubal 
Phantom [15], which is introduced next. 
 

  
 

Figure 5.  A typical T1-weighted MR image with good 
contrast between brain GM, WM and CSF (left) versus a T1 
image where GM and WM cannot be reliably distinguished 

from each other. 
 

The Zubal atlas offers a precisely labelled 
segmentation of brain structures from the T1-weighted 
MR image of one single subject. Our interest focuses on 
the internal nuclei, which are segmented in the 
phantom. First, the atlas must be aligned to our set of 
images, which have been previously registered to the 
MNI atlas. Thus, we register the Zubal Phantom to the 
MNI template, again using our block matching 
algorithm [11], to estimate an affine transformation. 
However, in order to preserve the correct values of the 
segmentation labels posterior to the application of the 
transformation, nearest-neighbour interpolation is 
performed, as opposed to the case of patient image 
registration, which employed spline interpolation. 

Figure 6 shows the results of registering the Zubal 
Phantom to the MNI reference without disrupting the 
Zubal labels. 

 

 
 

  
 

Figure 6.  The registration of Zubal Phantom onto the MNI 
template. On the top row, the original Zubal Phantom is 
shown; on the bottom- left, we have the registered Zubal 

Phantom on the MNI template, which is shown in the bottom- 
right image. 

2.3 Refined Segmentation 

Once the Zubal Phantom is registered to the working 
framework, we can easily depict the brain structures that 
are of interest, namely the deep GM internal nuclei. For 
the examples in this paper, we will focus on the basal 
ganglia. Hence, we create a mask with the thalamus, 
putamen and head of the caudate - which will be 
referred as internal nuclei for the rest of this paper - 
from the Zubal Phantom registered on MNI (Figure 7). 
We aim to use this mask for the segmentation of 
internal nuclei in patient images. Although the affine 
registration gives correct correspondences in a general 
brain registration framework, the anatomical variability 
between patients makes the correspondence between the 
Zubal internal nuclei mask and the corresponding 
internal nuclei in each patient erroneous. A refinement 
of the registration in the deep GM between the Zubal 
internal nuclei mask and the patient internal nuclei 
seems necessary to allow us to use the a priori 
anatomical information resulting from the segmentation 
of the Zubal Phantom.  

The segmentation of internal nuclei in patient 
images is not an obvious task; this is why we exploit the 
Zubal Phantom. Nevertheless, there are other important 



anatomical landmarks in the brain that are easier to 
identify. We concentrate on the segmentation of 
ventricles and cortex external boundary. Ventricles will 
give a good approximation of the deformation field 
around the internal nuclei, whereas the cortex boundary 
will impose the global spatial correspondence and 
stabilise the deformation field inside the brain. Figure 7 
illustrates the segmentation of ventricles, brain contour 
and internal nuclei from the registered Zubal Phantom. 

 

 
Figure 7.  The segmentation of the Zubal Phantom. From 

left to right: column 1, the Zubal Phantom registered on MNI; 
column 2, the ventricles segmented from the Zubal Phantom; 

column 3, the cortex outer boundary is added to the 
ventricles; column 4, the internal nuclei segmented from the 
Zubal Phantom. The top row shows the axial view, while on 

bottom we present the coronal view. 
 
To obtain similar images of segmented brain margin 

and ventricles for each patient, we employ 
morphological opening on patient T2 images. The 
strong contrast that CSF has against the brain in T2-
weighted images allows us to segment the ventricles, 
while the cortex boundary can be extracted from either 
T1 or T2 sequences. We prefer using the T1 sequence, 
since the T2 image we employ lacks some top and 
bottom slices. The ventricles being located in the middle 
of the brain, it is correct to extract them from T2 
images, but the cortex would be incomplete.  

We are now in the possession of two binary maps of 
ventricles and brain boundaries for each patient: one 
from the Zubal Phantom and the other from the patient. 
Non-rigid (free-form) registration is used to align the 
two images, employing the algorithm developed in our 
group and described in [3]. This registration method 
minimises an energy function, which uses measures of 
intensity similarity, smoothing, noise parameters and 
correspondence between points. Figure 8 shows typical 
results and Figure 9 shows the 3D deformation fields 
related to the registration in Figure 8. The outer margin 
of the cortex ensures that the deformation fields are 
spatially sound and do not pull the internal nuclei over 
their location. 

 

 
 

Figure 8.  Registration of the Zubal ventricles and cortex 
outer boundary on a patient. The patient's ventricles are 
larger next to the small ventricles in the Zubal Phantom, 

where the subject is young. The algorithm gives robust results, 
as seen above. From left to right: column 1, the T2-weighted 

image of the patient; column 2, the ventricles and brain 
margin of the patient (ventricles segmented from T2 and 

cortex from T1); column3, the ventricles and brain boundary 
of Zubal Phantom; column 4, the ventricles and cortex 

boundary of the Zubal Phantom registered on the patient. 
 

 
 

Figure 9.  Deformation fields of the non-rigid registration 
between the Zubal Phantom ventricles and those of a patient 
with very large ventricles. On the left is the x field, the y field 

is in the middle column and the z field on the right. 
 
Having the deformation fields computed, we apply 

them to the mask of internal nuclei of the Zubal 
Phantom, deforming the mask according to the position 
and size of the ventricles in the patient image. A 
diagram of the algorithm is shown in Figure 10. The 
deformed mask is used to segment the internal nuclei of 
the patient, namely the putamen, head of the caudate 
and thalamus. 

 

 
 

Figure 10.  Diagram of the refined registration of internal 
nuclei. 



3. Results 

Our technique is fully automatic. A validation study was 
carried out on multisequence MR images. Qualitative 
visual inspection of the results by several radiological 
experts confirmed the accurate delineation of  the 
internal nuclei in all images in our database. We 
performed a full clinical study aiming to detect and 
quantify Creutzfeldt-Jakob intensity distributions in 
multisequence MRI of the brain [8]. 

Figure 11 shows an example of registration of 
internal nuclei in 3D and the internal nuclei 
segmentation results in a T1-weighted MR image of a 
patient. In Figure 12 we segment the internal nuclei in a 
patient T2-weighted image. The segmentation can be 
accurately performed in any MR sequence of  the 
patient, given that multisequence images have been 
previously registered to the MNI atlas. 

In this paper, we focused on the segmentation of the 
basal ganglia to present our algorithm for the 
segmentation of deep grey matter nuclei. An identical 
approach can be used for other inner brain structures to 
accurately segment them in patient images. Each nuclei 
class has an associated label in the Zubal Phantom, 
which facilitates their identification. In Figure 13 we 
illustrate the segmentation of individual types of nuclei, 
here caudate nuclei, thalami and putamen, using our 
approach. 
 

 
 

Figure 11.  An example of internal nuclei registration and 
their segmentation in a T1-weighted patient image. On the 

left, we have the T1 image of the patient; in the middle 
column, we show the segmentation of internal nuclei 

according to the binary map before non-rigid deformation 
with the head of the caudate superposed on the ventricle; on 

the right, we segment the internal nuclei after non-rigid 
deformation, showing an accurate segmentation. 

 

 
 

Figure 12.  An example of internal nuclei segmentation in a 
T2-weighted image of the patient. On the left, we have the T2 

image of the patient; in the middle column, we show the 
segmentation of internal nuclei before non-rigid deformation; 

on the right, we segment correctly the internal nuclei after 
non-rigid deformation. 

 

 
 

Figure 13.  Binary maps of deep grey nuclei. From left to 
right: the caudate nuclei, the putamen and the thalami. From 

top to bottom: axial and coronal views. These individual 
masks can be used for the accurate segmentation of each type 

of nuclei. 
 

4. Conclusion 

A robust automatic technique for the identification of 
deep brain internal nuclei was presented. The use of key 
anatomical landmarks such as the ventricles and the 
outline of the brain imposes anatomical constraints in 
the deformation fields found by the non-rigid 
registration algorithm, which otherwise would fail to 
converge to the correct segmentation. 
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