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Abstract�This paper considers the problem of modeling and ex�
tracting arbitrary deformable contours from noisy images� We pro�
pose a global contour model based on a stable and regenerative
shape matrix� which is invariant and unique under rigid motions�
Combined with Markov random �eld to model local deformations�
this yields prior distribution that exerts in�uence over a global
model while allowing for deformations� We then cast the prob�
lem of extraction into posterior estimation and show its equivalence
to energy minimization of a generalized active contour model� We
discuss pertinent issues in shape training� energy minimization� line
search strategies� minimax regularization and initialization by gen�
eralized Hough transform� Finally� we present experimental results
and compare its performance to rigid template matching�

Keywords� deformable model� rigid template� snake� active con�
tour� boundary extraction�

I Introduction

Without a contour model� contour extraction from noisy image
is an ill�posed problem ���� Therefore� it is crucial for an extrac�
tion method to allow the incorporation of global contour models
in its formulation� For generality� the model should be capable of
representing any arbitrary shape�

A well known example is the generalized Hough transform �	�
which combines modeling and extraction for rigid contours� Be�
cause GHT works by accumulating large number of votes� it is rel�
atively insensitive to small vote �uctuation caused by noise and
occlusion� In fact� if the superimposed noise is Gaussian and white�
then GHT is simply an e
cient implementation of matched tem�
plate� which is optimum in terms of detection error�

Figure �� Handwritten characters with deformations�

Rigid templates� however� cannot account for deformationswhich
frequently arise from diversity and irregularity of shape� See Fig�
ure � for examples� Since the degree of deformation is unknown in
advance� a rigid template chosen a priori cannot produce satisfac�
tory results for all cases� In fact� we will show that its performance
degrades with deformation�

Deformable templates� in contrast� employ weak models which
deform in conformation to salient image features� Examples include
the active contour model �snake� which uses smoothness constraints
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to restrict its solutions to controlled continuity splines ��� parame�
terized templates for facial feature extraction ���� elliptic Fourier de�
composition for objects with shape irregularities ���� implicit poly�
nomials for curve and surface modeling ���� movable control points
for hand�printed character recognition ���� and a
ne�invariant con�
tour tracking ����

With the exception of ���� these methods typically consider only
global ��� �� �� or local �� �� deformations� While global templates
involve large structural interactions and contain less parameters to
be optimized� these global parameters cannot exercise local con�
trol along the contour and their physical meaning are sometimes
obscure� In contrast� local models such as snakes contain more
parameters and exert local control� but they are ill�suited for incor�
poration of global contour model�

This paper considers the problem of modeling and extracting
arbitrary deformable contours from noisy images� Our method is
general and capable of representing any arbitrary shape� accounts
for global changes due to rigid motions� and retains ability for local
control� The contour model is based on a stable and regenerative
shape matrix which is invariant and unique under rigid motions�
Combined with the local characteristics of the Markov random �eld
to model local deformations� this yields prior distribution that ex�
erts in�uence over a global model while allowing for deformations�

Our approach di�ers from ��� which achieves a
ne invariance by
creating a subspace containing all allowable transformations of a
memorized template� Besides possessing the added advantage of
being unique� a
ne invariance of shape matrix is implicit� Fur�
thermore� our approach utilizes the Markov random �eld for local
deformations� thus providing a more realistic and e�ective model
for highly variable but locally predictable objects�

Under the Bayesian framework� the problem of extracting con�
tours with unknown deformation from noisy images turns into max�
imum a posteriori estimation� This is equivalent to minimizing the
energy of a generalized active contour model �g�snake�� We dis�
cuss pertinent issues in shape training� minimax regularization and
initialization by generalized Hough transform� and present some
experimental results�

II Modeling Deformable Contours

We de�ne a contour as the vector containing an ordered set of
points� V � �v��v�� � � � �vn�� Each vi is de�ned on the �nite grid�
v � IE � f�x� y� � x� y � �� 	� � � � �Mg� thus V � IEn�

Denote U � IEn where each ui � vi � g represents the displace�
ment from an arbitrary reference point g� Each ui can be expressed
as a linear combination of two linearly independent vectors� For
modeling of highly variable but locally predictable contours� the
two neighboring points are suitable as its basis�

ui � �iui� � �iui� ���

where the basis indices are given by�

i� �

�
i� �� i � �
� i � �

i� �

�
i� �� i � n
n � 	� i � n
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We say that U is nontrivial if jxi�yi� � xi�yi� j � � for � �
i � n� An example of a trivial contour is a straight line� More
generally� the nontrivial condition ensures that ui� and ui� are
linearly independent for all i�

Collecting and rearranging similar equations for all i� we obtain
the shape equation

AU
T � � ��

where A is an n � n shape matrix that contains the necessary in�
formation to describe a shape�

A �

�
�������

� ��� ��� � � � � �
��� � ��� � � � � �
� ��� � ��� � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � ��n�� � ��n��
� � � � � ��n ��n �

�
�������

A is regenerative� the complete chain U can be generated from
A by appropriate inversion if any two points on U are given� This
is possible because rank�A� � n � 	� and so an �n � 	� � �n �
	� invertible submatrix exists within A� On the other hand� if a
nontrivial U is given� the shape coe
cients can be computed to
generate A�

Furthermore� A is stable for nontrivial contours because �� �
and U are related by linear equations� Hence small changes in the
contour imply small perturbations of the shape matrix and vice
versa� Stability is extremely crucial when A must be estimated
from sample contours which may be locally deformed�

To adequately represent objects with shape irregularities� one
must account for both global and local deformations� which are
discussed next�

A Global Deformations

Global deformations correspond to e�ects of rigid motion such as
scaling� rotation� stretching and dilation� as shown in Figure 	�a��
These operations can be represented by a
ne transformations on
V� The following theorem states that A is invariant and unique
under such transformations�

Theorem � Two nontrivial contours satisfy the same shape equa�

tion if and only if they are related by a linear transformation�

Proof Let T denote a 	 � 	 transformation matrix� First� note
that if A �UT � � and U � T �U� then AUT � A �UTTT � ��

To prove necessity� recall that rank�A� � n � 	� Equivalently�
the dimension of the null space of A is 	� Write �UT � ��x� �y�� where
�x� �y are nx� vectors� Because �U is nontrivial� �x and �y are linearly
independent and thus span the null space of A�

Now� since AUT � A�x� y� � �� both x and y are also in the null
space of A� Hence they can be expressed as a linear combination
of �x and �y� i�e���

x

y

	
�

�
t���x� t���y
t���x� t���y

	
� U � T �U ���

Finally� note that contour displacement� g � �g � d� has no e�ect
on the shape equation� This completes the proof�

�

The invariance property implies that the shape coe
cients of a
contour are una�ected by a
ne transformations� while the unique�
ness property makes recognition possible� For example� rectangles
and parallograms have the sameAp� and so are circles and ellipsoids
with Ae� However� Ap �� Ae� i�e�� they are unique� because fam�
ilies of parallograms and ellipsoids cannot be related by an a
ne
transformation�


a� global 
b� local

Figure �� Examples of global and local deformations� �a�
Global deformations described by rotation� stretching and di�
lation of the 	rst contour
 �b� local deformations of succes�
sively higher degree�

B Local Deformations

Suppose we are interested in a family of contours U � � � IEn

which are similar but exhibit small shape irregularities� as shown
in Figure 	�b�� To represent these random �uctuations in small
localities� we de�ne an internal energy which is induced by the
shape matrix A�

Eint�U� �
�AUT �TR���AUT �

l�U�
���

where l�U� � �
n

Pn

i��
kui�� � uik

� is a normalizing constant� and
R � diagf��� � �

�
� � � � � � �

�
ng contains the deformation variances ��i

that allows assignment of location dependent weightings on defor�
mations�

Now� we may assign probabilities to U as follows �

p�U� �
�

Z
exp��Eint�U�� ���

where Z �
P

U��
exp��Eint�U�� is a normalizing constant� A

probability measure of the form in ��� is called a Gibbs measure ����
By equivalence� it also de�nes a Markov random �eld� i�e��

p�uiju��u�� � � � �un� � p�uijui� �ui� � ���

where the conditional probability of ui given the entire chain U is
completely speci�ed by the conditional probability of ui given its
two basis points�

The following theorem on Eint implies that p�U� is scale and
rotation invariant�

Theorem � The internal energy of a contour is scale and rotation

invariant�

Proof Let

T�z� �

�
z �
� z

	
and T��� �

�
cos��� sin���

� sin��� cos���

	

�



represents scale change and rotation respectively� Now

u
T
T
T �z�T�z�u � z�uTu ���

u
T
T
T ���T���u � u

T
u ���

Applying ��� and ��� to numerator and denominator of Eint yields
the appropriate results� This completes the proof�

�

In summary� we have combined a stable� invariant and unique
contour model with the local characteristic of Markov random �eld
to yield prior distributions for any arbitrary contour� We proceed
next to present an image model which allows us to cast contour
extraction from noisy images into posterior estimation�

III Contour Extraction

A Rigid Template

We de�ne image as the vector function F � IE� ID� Depending
on the data type� either ID � IR �intensity image or edge magnitude�
or ID � IR� �	 � � intensity gradient vector��

A template of a contour is the image F � BU�g �

BU�g�r� �

nX
i��

hi	�r� ui � g� ����

where r � �x� y� � IE� 	 is the delta function� hi � ID and jhij � ��
In other words� a template BU�g�r� is a special image with values
equal to hi if r � ui � g but zero otherwise� For ID � IR�� hi can
be adaptively determined by rotating the tangent direction of the
contour by ��o� i�e�� let ti represents the tangent vector at ui�

ti �
ui � ui��

kui � ui��k
�

ui�� � ui
kui�� � uik

����

then hi is a unit vector which is normal to ti�
A noisy image F � f containing a contour can be modeled as

follows�
f�r�jU�g � BU�g�r� � 
�r� ��	�

where 
�r� � N��� ���I� is Gaussian� I � � if ID � IR� otherwise
I is a 	 � 	 identity matrix� Consequently� p�f jU�g� is Gaussian
distributed and can be simpli�ed to yield�

p�f jU�g� �
�

C
exp

�
�fT f � n� 	

Pn

i��
hTi f�ui � g�

	���



���

where C � �	�����
M����

The displacement of a rigid contour can be estimated from the
noisy image using the principle of maximum likelihood�

�g � argmax
g

nX
i��

h
T
i f�ui � g� ����

In other words� the estimated reference point is the location that
best correlates with the image� This forms the basis of matched
template operation�

In the same token� contours that may be deterministically de�
formed have the following ML estimates�

f�g� �Tg � argmax
g

max
T

nX
i��

h
T
i f�Tui � g� ����

where the estimated contour �U � �TU� The correlation can be e
�
ciently implemented using generalized Hough transforms �	�� Note

that the computation cost required in ���� depends greatly on the
range and resolution of T� For example� if one expects the con�
tours to be scaled and rotated� then the range of T should span
the two operations� In many instances the range can be restricted
through learning or prior knowledge� Otherwise T will cover all the
transformations� thus increasing the cost of searching�

B Deformable Template

We assert that any rigid template �U will perform poorly if the
contours are deformable�

Assertion � The expected correlation of a matched template de�

creases with deformation�

Proof Let E�	 	 	� denotes mathematical expectation� Observe that

E�BT
�U�gf � � E�E�BT

�U�gf jU�g��

� E�BT
�U�gBU�g �

� E�

nX
i��

nX
j��

	��ui � uj��

For �i su
ciently small� p��ui � uj� 
 � if i �� j� Thus

E�BT
�U�gf � 
 E�

nX
i��

	��ui � ui�� � p� �U�

Now� since Eint� �U� � �� from ���� we have

p� �U� � ��Z �
X
U��

exp�Eint�U��

which decreases if �i increases� This completes the proof�
�

The problem at hand is equivalent to extracting a contour with
unknown deformation from a noisy image� Using Bayesian frame�
work� this turns into maximum a posteriori �MAP� estimation� The
estimates Umap and gmap are given by�

fUmap�gmapg � argmax
U�g

p�U�gjf�

� argmax
U�g

p�U�p�f jU�g� ����

noting that p�U� g� � p�U�� While this prior distribution creates
a bias to a global model� it is revised into posterior distribution
after observing the image� In the next section� we will show how
one may formulate and solve these estimation problems using the
generalized active contour models�

IV Generalized Active Contour Models

A Formulation

Denote the constituent internal and external energy as follows�

Eint�ui� �
kui � �iui� � �iui�k

�

l�U�
����

Eext�ui�g� � � � hTi f�ui � g� ����

�



We will substitute these equations for p�U� in ��� and p�f jU�g�
in ���� Solving for MAP estimation and ignoring constants� we
have

fUmap�gmapg � arg min
U�g

nX
i��

�
Eint�ui�

��i
�
Eext�ui�g�

���




� arg min
U�g

nX
i��

n
i

� � i
Eint�ui� � Eext�ui�g�

o

where

i �
���

��� � ��i
� ��� �� ����

are the local regularization parameters which control the amount of
local template deformation�

The formulation in ���� is analogous to the active contour models
�snakes� ��� However� the original Eint only constrains the solution
to the class of controlled continuity splines� Our formulation gener�
alizes Eint� allowing for incorporation of prior models to create bias
towards a particular type of contour� We call the resulting model
generalized active contour models� or g�snakes�

From ����� the task of �nding Umap and gmap turns into an
energy minimization problem� which is discussed next�

B Minimization Algorithm

While Eint�U� is a convex function� Eext�U� is typically non�
convex as it is derived from intensity or gradient of noisy images�
Consequently� unless the initial �U is placed very close to the global
minimum� a gradient�based �� or point�wise ��	� algorithm will per�
form poorly as many local minimum are present� Therefore an
exhaustive search algorithm should be used�

Suppose that for each point �ui� we perform exhaustive search in
its neighborhood of size m� The computation complexity is O�mn�
which is prohibitively high for most applications� Fortunately� we
can exploit the local characteristics of the Markov random �eld to
yield an algorithm with complexity O�nm���

The basic idea is to decompose the minimization process into n
independent stages� where each stage considers only  neighboring
points� This idea is �rst proposed in ���� under the framework
of dynamic programming� We generalized the idea to include any
distribution with local characteristics and present the algorithm in
the appendix�

C Basic and Strati�ed Line Search

In order for the minimization algorithm to converge to the global
minima� the search regions must be su
ciently large to include at
least part of the solution� In some cases this renders the algorithm
infeasible as the complexity O�nm�� increases rather rapidly with
m�

We present here search strategies which encompass large search
regions without drastically increasing m� The basic idea is to con�
centrate the initial search in regions that will more likely yield the
solution U�� instead of spreading them out evenly�

Refer to Figure � In the initial stages� we desire to rapidly
in�ate or de�ate parts of U to locate the neighborhoods of the
global minima� The objective can be achieved by searching in the
normal directions of ui� Note that this di�ers from ��� that we do
not introduce additional in�ation or de�ation force� di�erent parts
of U can be in�ated or de�ated simultaneously�

The basic line search restricts its search in region � � �ni���i

where �i contains all the points on the normal vector hi�

�i �
n
ui � �ui � khi�k � ����� � � � ��

m� �

	

o
�	��

Figure �� Regions of interest in line search� The gray blob is
the image data� the white square is the initial contour� and
the � normal vectors are the initial search directions�

assuming that m is odd without loss of generality�
The strati�ed line search extends this idea to encompass even

larger search regions by breaking �i into disjoint segments of length
l� �i � �m�l

j���ij where

�ij �
n
ui � �ui � �lj � k�hi�k � ����� � � � ��

l � �

	

o
�	��

assuming that l is odd� The energies of each segment are then
approximated as follows�

�Eint��ij� � Eint��ui � ljhi� �		�

�Eext��ij� � min
u��ij

Eext�u�g� �	�

In other words� the internal energy of a segment is that of its cen�
ter point� while its external energy is the minimum among its mem�
bers� Assuming similar computation cost for internal and external
energies� this yields drastically reduced complexity of O�nm��l���

The strati�ed line search is typically performed in the initial
stages of minimization to quickly locate regions which contain the
global minima� This can then be followed by basic line search and
completed by searching in  �  regions�

D Regularization

The regularization parameters i in ���� are derived from the
variances �� and �i� In some applications these parameters may be
learned from training samples� In cases where learning is impossible
or unreliable� the minimax principle ���� can be used�

The local minimax criterion ���� determines the optimal regular�
ization by minimizing the worst case energy� We subject �� and �i
to the constraint

�

��i
�

�

���
� � �	��

and seek a solution for

fUlmc�glmcg � arg min
U�g

nX
i��

max
��� ��

�

i

�
Eint�ui�

��i
�
Eext�ui�g�

���




� arg min
U�g

nX
i��

max fEint�ui�� Eext�ui�g�g �	��

The local minimax criterion is pareto optimum� i�e�� there does
not exist another solution U� that will simultaneously lower both
the internal and external energy� Moreover� the strategy solves the
problem without requiring prior knowledge or explicit computation





of the regularization parameters� and thus can be easily incorpo�
rated into the proposed minimization algorithm�

In the absence of reliable prior information� this criterion mini�
mizes the penalty of erroneous regularization selection� Extensive
experimentation has veri�ed that it yields robust performance in
various applications �see ������

E Initialization

The objective of initialization is to place the g�snake in the prox�
imity of the minima in ���� or �	�� so as to facilitate speedy con�
vergence in minimization� In other words� we want to pick ini�
tial f �U� �gg that will� on average� converge to Umap or Ulmc more
rapidly then all other choices�

Such criterion is di
cult to specify in precise mathematical
terms� However� we can make a reasonable assumption that a g�
snake of lower energy is located closer to the minima compared to
one of higher energy� Then the objective becomes that of �nding a
initial contour that will� on average� begin with lower energy than
all other choices� Let

e�U��� �

nX
i��

i
�� i

Eint�ui� �Eext�ui� �	��

represents the total energy� We assert that

Assertion � A contour �U that satis�es Eint� �U� � � will� on av�

erage� begin with the lowest total energy� Moreover� this contour

can be initialized through generalized Hough transform�

Proof Since Eint� �U� � � and Eint�U�  �� it immediately follows
that E�Eint� �U�� � E�Eint�U��� Also�

E�Eext�U�� � ��E�BT
U�gf �

� �� p�U�

� ��
�

Z
exp��Eint�U��

Eint� �U� � � implies that p� �U�  p�U� and hence E�Eext� �U�� �
E�Eext�U��� Combining the results for internal and external energy�
we conclude that

E�e� �U���� � E�e�U����

In other words� �U has the lowest total energy on average� One
should therefore initialize the g�snake using a reference contour �U
generated from tbe shape matrix� i�e�� one can initialize the g�snake
using generalized Hough transform�

�

The next section demonstrates by experiments how one may es�
timate the shape matrix from training samples� and subsequently
apply the trained g�snakes in various applications� We also compare
the matching performance of g�snakes and rigid templates�

V Applications and Experiments

A Training

Figure � shows the sequence of steps taken to train the shape
matrix for key localization� In these examples the 	 � � intensity
gradient vectors are computed by �tting planes in 	 � 	 windows
using the method of least squares�


a� 
b� 
c� 
d�

Figure � G�snake training� �a� Selected feature points


�b��c��d� �Uj used to generate �Aj for j � �� � and �� These
�Aj are averaged for �A estimation�

Figure ��a� shows the feature points that form the chain U� The
set generally include locations of high curvature which can be se�
lected either manually or automatically through dominant point
detection ����� An initial estimate of the shape matrix are com�
puted from U� Using this shape matrix and minimax regulariza�
tion� the total energy of the g�snake is minimized to yield �U� as in
Figure ��b�� The shape matrix is then updated to �A��

We repeat the procedure for many key samples to obtain �A��
�A�� � � �� �Am� Using the principle of maximum likelihood� the esti�
mated shape matrix is given as follows�

�A �
�

m

mX
j��

�Aj �	��

Similar method is employed to estimate the two reference points
used to generate �U from �A�

We may also estimate the local regularization parameters i by
learning the deformation and noise variance from the training sam�
ples� As insu
cient training samples are available for this experi�
ment� minimax regularization is used�

B Initialization and Extraction

We use the generalized Hough transform to initialize the g�
snakes� considering only rotation for T in equation ����� From
the initialized contours� we minimize the energy on the g�snake and
show the results in Figure �� Beginning from the top left corner�
each example shows the original image� edge magnitude map� �nal
and initial boundaries in the clockwise order�

As evidenced in the edge maps� these scenes contain considerable
clutter and occlusion� As a consequence� traditional methods based
on edge linking are likely to produce poor results� It can be seen
that the generalized Hough transform successfully approximate the
locations of the keys� but cannot produce precise boundaries� The
g�snakes re�ned these initial contours to yield accurate reproduction
of the boundaries�

C A�ne Invariant Contour Model

Figure � shows the invariance of contour model to a
ne trans�
formations� Similar training steps are used to estimate the shape
matrix for rectangles� The results show that generalized Hough
transform successfully estimated the necessary displacement� scale

�




a� 
b�

Figure �� Extraction of keys from noisy� occluded and cluttered images� In clockwise direction� each example shows original
image� edge magnitude� 	nal and initial boundary�

change� rotation and dilation to yield good initialization� see Fig�
ure ��a�� �b� and �c� �top row�� The g�snake accounts for local de�
formation to produce contours that match the underlying images�
see Figure ��a�� �b� and �c� �bottom��

D Comparison to Snake

Figuer ��d� shows the results of applying the snake of ��� As its
internal energy restricts the solution to controlled continuity spline�
the initialized state is a circle� Failing to utilize the appropriate
contour model �i�e�� rectangle�� it yields suboptimal solution with
smoothed corners� The g�snake� in contrast� utilize the contour
model to yield good solution�

E Handwritten Characters

Figure � shows applications of g�snake in extracting the skele�
ton of handwritten characters� using intensity image as the data
type� After undergoing necessary deformations� the g�snake pro�
duces skeletons that represent the underlying characters�

We performed the simulation on a SUN�IPX workstation� using
��� �� images and �� snake points� Combined with strati�ed line
search with m � �� and l � � the energy minimization algorithm
consumed ��� seconds on average� On the other hand� the gen�
eralize Hough transform required ��� second on average when only
� quantized states of rotation were considered� While the aver�
age time consumed by the generalized Hough transform increased
drastically to 	��� seconds with 	� quantized states of rigid trans�
formations �include scale change� rotation and stretching�� averaged
run time of energy minimization remained stable� Similarly� time
required by the generalized Hough transform also depended greatly
on image size� but run time of energy minimization depended only
on n� the number of snake points� and m� the search region size�

The simulation demonstrates the fact that regardless of the range
of a
ne transformations and image size� g�snake is capable to re�
�ne the initial guess in a constant amount of time� Consequently�


a� initial 
b� �nal

Figure �� Extraction of handwritten characters�

�




a� 
b� 
c� 
d�

Figure �� �a��b��c�� Invariance of contour model to a�ne transformations� The g�snakes re	ned the initial guess to account
for local deformations� �d� Results of applying original snake� Failing to incorporate the appropriate contour model �i�e��
rectangle�� it yields suboptimal solution�

g�snake is particularly e�ective and powerful in applications such
as handwritten character extraction� As an alternative� the range
of transformations can be signi�cantly reduced by normalization�
resulting in rapid and reliable initialization�

F Severe Clutter and Deformation

Figure � shows an example of the e�ect of severe cluttering and
deformations on g�snakes� Under such conditions� it has been shown
���� ��� that the generalized Hough transform has high probability
of generating false peaks� especially when one considers all possible
transformations� This results in a poorly initialized g�snake which
also yields poor �nal results�

For successful extraction in these scenes� one should either re�
move the clutters through pre�processing or restrict the range of
allowable transformations� Otherwise� alternative strategies for ini�
tialization must be employed�

G Matching Performance

This section compares the matching performance of g�snake to
rigid template under the e�ect of deformation and image noise�
Matching performance is de�ned as the degree of correlation be�
tween a template and an image�

c�U� �
�

n

nX
i��

h
T
i f�ui � g� �	��

c�U� takes value between � for no correlation and � for perfect cor�
relation� Using rigid template �generalized Hough transform� and
g�snake with minimax regularization� we obtain the respective av�
erage correlation E�c�U�� and plot the results against deformation�

The experiment uses synthesized images containing deformed
rectangles as shown in Figure ��a�� We deform the boundary on
each of the � sides independently using a randomly generated cosine

Figure �� E�ects of severe clutter and deformation� Poor ini�
tialization yields poor solution�

�



function� Let b�s� represents an undeformed boundary indexed by
s � ��� ��� The deformed boundary d�s� is given by�

d�s� � b�s� � � cos��s� �� �	��

where � � N��� ���� is a normally distributed boundary deforma�
tion process and � is a random phase shift uniformly distributed
in ��� 	��� Large values of �� induce large values of deformation
variance �i� although the exact relationship cannot be determined�
A plot of E�c�U�� versus �� will therefore illustrate the e�ect of
deformation on matching performance�

The intensity images are generated by setting the pixel value to �
if it is enclosed by the boundaries� and � otherwise� Image noise is
then introduced using zero�mean Gaussian white noise of variance
�n�

Figure ��a� to �d� show the plots of E�c�U�� versus deformation
with �n � ��� and ��� These experiments con�rm that match�
ing performance of rigid template degrades with deformation� In
contrast� the g�snake adapts well with deformation to yield high
degree of correlation� Furthermore� by comparing the two plots� we
observe that g�snake exhibits higher robustness to image noise�

VI Conclusions

We considered the problems of modeling and extracting arbitrary
deformable contours from noisy images� Based on a regenerative

shape matrix� our model encompasses both global and local defor�
mations� In addition� it is stable� invariant and unique� Combined
with the Markov random �eld to model local deformations� this
yields invariant a priori distribution that exert in�uence over an
arbitrary global model while allowing for deformation�

Using the Bayesian framework� the problem of extracting an ob�
ject with unknown deformation from noisy images turns into MAP
estimation� We showed that MAP estimation is equivalent to en�
ergy minimization in g�snake� Unlike snake� g�snake is capable of
representing any arbitrary shape� We exploited the minimax princi�
ple to adaptively determine the optimal regularization when train�
ing samples are unavailable or unreliable� Furthermore� we may re�
liably and e
ciently initialize the g�snakes using generalized Hough
transform�

Finally� we demonstrated with experiments how one may apply
the proposed g�snake in various applications� Quantitative mea�
sures obtained from the experiments con�rm that g�snakes yield
superior matching performance compared to rigid templates�
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Appendix� Minimization Algorithm

To accomplish our goal� we de�ne a state variable ei� where

ei�ui� �ui�ui� � �
Eint�uijui� �ui� �

��i
�
Eext�ui�g�

���
���

and let U� be the solution to

U
� � arg min

U

nX
i��

ei�ui� �ui�ui� � ���

We begin by computing S��u��u��� where

S��u��u�� � min
u�

fe��u��u��u�� � e��u��u��u��g �	�

�
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c� �n  ����

Figure �� �a� Synthetic images used to compare matching performance� Deformation variance �� increases from top to bottom
while image noise variance �n increases from left to right� �b��c� Plots of average correlation E�c�U�� versus �� with �n � ���
and ����

For the next stage� we use S� and e� to obtain

S��u��u	� � min
u�

fS��u��u�� � e��u��u��u	�g

� min
u��u�

�X
i��

ei�ui� �ui�ui� � ��

Proceeding in the like fashion� we obtain the partial solutions Si
for i �  through i � n �  by successively using ei�� and Si���

Si�ui���ui��� � min
ui

fSi���ui�ui��� � ei���ui�ui���ui���g ���

We then complete the computation in stage n� 	 to obtain

Sn���un���un� � min
un��

Sn���un���un��� � en���un���un���un� �

en�un���un�un��� ���

Now� we can verify that

min
un�� �un

Sn���un���un� � min
U

nX
i��

ei�ui� �ui�ui� � ���

Consequently� we can use backward substitution to yield U��
Beginning from i � n� � and i � n� we have

fu�n���u
�

ng � arg min
un�� �un

Sn���un���un� ���

We continue to backward substitute for i � n� 	 through i � �
to obtain

u
�

i � arg min
ui

Si���ui�u
�

i��� ���

Note from ��� that we only require m� operations to compute
Si� This yields an algorithm that performs exhaustive search in
the m�neighborhood with complexity O�nm��� We can generalize
this idea to include any distribution with local characteristics� if
the distribution can be decomposed into n�stages� each involving
p neighboring points� then we can derive similar algorithm with
complexity O�nmp��

To obtain Umap� we iteratively apply the algorithm to yield

U�
��U

�
�� � � �� where each U�

j is the solution to ��� by searching

in the neighborhood of U�

j��� The algorithm terminates when the

energy cannot be further reduced� i�e�� U�

j � U�

j��� As the energy

decreases monotonically� the algorithm is guaranteed to converge

to a strong local minimum�
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