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Abstract 

As the market and related industry for wearable electronics dramatically expands, there are continuous and strong 

demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or 

clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body 

causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than 

their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon 

and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanoma-

terials have been also developed to pursue both high performance and multifunctionality. Here, we provide an over-

view of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, 

graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination 

with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an 

introduction of materials strategies, we describe device designs and the roles of individual ones in integrated sys-

tems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also 

presented.
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1 Introduction
In the rapid technology development of low-power sili-

con electronics, light-emitting diodes (LEDs) fabricated 

on unconventionally shaped substrates, high-capacity 

lithium-ion batteries, and various wearable electronic 

devices such as smart glasses, watches, and lenses have 

been unveiled both in academic journals and on the mar-

ket. In spite of their superb performance, wearable form 

factors, and compact sizes, challenges remain mainly 

owing to their large thickness and mechanical rigid-

ity, which result in a mechanical mismatch between the 

device and the skin, and thereby discomfort, a low sig-

nal-to-noise ratio, and measurement errors [1]. In this 

regard, achieving mechanical deformability of the wear-

able electronic/optoelectronic devices while maintaining 

high performances has been a major research goal [2–6].

One promising strategy is to replace the rigid elec-

tronic materials (e.g., silicon wafer) with flexible nano-

materials (e.g., silicon nanomembrane (SiNM) [7–11], 

carbon nanotubes (CNTs) [12–14], graphene (GP) [1, 

15, 16], and organic nanomaterials [17, 18]). �e elec-

tronic properties of the SiNM (down to tens of nanom-

eters) remain the same as the bulk silicon wafer [19], 

but its bendability dramatically increases owing to the 

reduced thickness [5]. SiNM-based devices outperform 

their competitors including low-temperature polycrys-

talline silicon (LTPS) and organic devices by virtue of 

their high electron mobility [20]. However, SiNM based 

device might have issues in the high cost and compli-

cated fabrication processes. Meanwhile, carbon nano-

materials (e.g., CNTs and GP) [21, 22] have been getting 
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attentions as next-generation semiconducting nanomate-

rials. �e mobility of single-walled CNTs (SWNTs) and 

exfoliated GP have been reported up to 100,000 [21] and 

230,000 cm2 V−1 s−1 [22], respectively, which are higher 

than that of single-crystal silicon. �eir ultrathin thick-

ness enables them to be seamlessly integrated in wear-

able devices while achieving the transparency [23–25]. 

�e mass production, device performance, and fabri-

cation processes of these carbon nanomaterials, how-

ever, have many remaining challenges for commercial 

device applications [26]. Organic nanomaterials such 

as organic nanowires/nanofibers also have recently uti-

lized as electric materials for fabricating complementary 

metal–oxide–semiconductor (CMOS) circuits [27] and 

wearable power generators [28, 29]. Intrinsic deform-

ability of organic nanomaterials, solution processability, 

and low cost make them promising for wearable devices 

[27]. However, their low electrical performances should 

be resolved for its widespread applications [17].

Another approach to achieve both high performance 

and multifunctionality is to utilize hybrids of nanoma-

terials [30–36]. Functional hybrid nanomaterials often 

exhibit substantially different physical, mechanical, mag-

netic, chemical, and optical properties compared to their 

individual and/or bulk counterparts [37–40]. By integrat-

ing different functional nanomaterials, the performance 

of wearable devices can be dramatically improved and/or 

diversified [1, 7, 41–46]. For the realization of this goal, 

the type, size, thickness, and concentration of the nano-

materials should be carefully designed [46]. In the follow-

ing, we summarize recently reported wearable sensors/

actuators [7, 13, 47], memories [41, 48], energy storage 

devices [49], and displays [50, 51] that exploit various 

nanomaterials [7, 44, 46, 52, 53] and their hybrids (Fig. 1). 

We also describe the roles of each nanomaterial in spe-

cific devices, improved device functions, their system 

integrations, and provide brief perspectives on future 

research directions.

2  Review
2.1  Wearable sensors/actuators

Wearable sensors/actuators have recently attracted con-

siderable interest because of their mobile healthcare [54] 

and virtual reality applications [55]. Sensors/actuators 

worn on the body, in particular, have drawn attention for 

the continuous and accurate monitoring of physiologi-

cal (e.g., motion [1, 47] and temperature [56, 57]) and 

electrophysiological (e.g., electrocardiograms [58, 59] 

and electromyograms [60, 61]) signals and appropriate 

instant feedback on them [1], which are important for 

point-of-care medical diagnostics and therapy. �is sec-

tion describes representative wearable sensors/actuators 

based on functional nanomaterials and their application 

examples in healthcare and human–machine interfaces.

2.1.1  SiNM-based sensors

Deformability, which is one of the key characteristics of 

wearable electronics, can be achieved by making inor-

ganic materials (i.e., silicon) as thin as possible, down 

to the nanometer scale (i.e., nanomembrane) [5]. SiNM 

can be fabricated through several processes. One easy 

fabrication method is to remove the buried oxide of a 

silicon-on-insulator (SOI) wafer and pick the top part 

up or to etch the bottom silicon of the SOI wafer and use 

the remaining top part [7]. �e obtained SiNM can be 

located in the desired position of the designed layout by 

using previously reported transfer printing techniques. 

SiNM maintains the high carrier mobility [20] and intrin-

sic piezoresistivity [7] of the bulk monocrystalline sili-

con, while having a high flexibility, which enables diverse 

wearable electronics applications.

For instance, multiplexing through SiNM transistors 

integrated into the flexible high-density electrode array 

achieves the real-time analysis of electrophysiologi-

cal signals over a large area of the brain [10] and heart 

[62] surface. SiNM strain gauges integrated onto poly-

meric substrates are applied as wearable motion sen-

sors thanks to their high piezoresistive sensitivity [7, 8]. 

Figure  2a shows images of a SiNM strain gauge array 

integrated with a finger tube that conforms to the thumb. 

�e bending motion of the thumb applies a tensile stress 

to the SiNM strain gauges, and their resistance increases 

accordingly without any hysteresis (Fig. 2b). Multiplexing 

by SiNM p–i–n junction diodes is also advantageous for 

constructing a wearable high-spatial-resolution tempera-

ture sensor array. Figure 2c depicts an 8 × 8 p–i–n junc-

tion diode array located on a heated Cu element (left) and 

its measured temperature distribution (right). �e recti-

fying characteristics of silicon diodes enable each cell to 

be individually addressable with the minimum number of 

wires and crosstalk, achieving a high spatial resolution. 

�e ultrathin dimensions of the sensor array facilitate not 

only conformal contacts with the target surface but also a 

fast response time by virtue of its extremely low thermal 

mass.

By combining the SiNM strain gauge, pressure sensor, 

and temperature sensor array in a single platform, a skin-

like device conformally mounted onto a prosthetic arm is 

demonstrated. �e SiNM strain gauge array monitors the 

change in the strain distribution according to the clench-

ing motion of the prosthetic hand (Fig. 2d). Similarly, the 

SiNM pressure sensor measures the applied pressure 

when typing with a keyboard (Fig. 2e, top) and grasping a 

baseball (Fig. 2e, bottom). �e SiNM temperature sensor 
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mounted on the prosthetic skin distinguishes different 

surface temperatures (Fig. 2f ). Although these SiNM sen-

sors exhibit a high potential for various wearable sensing 

applications, there are cost issues to be addressed for the 

development of commercial products.

2.1.2  CNT-based wearable sensors

�e macroscopic form of CNTs in most devices is either 

their aligned arrays or random networks. Hata et al. [12] 

developed a synthesis method for ultra-long vertically 

aligned CNTs using the water-assisted chemical vapor 

deposition (CVD) process. �e vertically aligned CNTs 

could be selectively grown on a patterned catalyst layer 

and transferred onto a stretchable substrate for device 

applications such as a strain sensor (Fig.  3a) [13]. In 

this strain measurement, the CNT film deforms as the 

substrate is stretched and its resistance increases. �is 

relative change in the resistance according to the applied 

strain can be used for human-motion detection. When 

the sensor is attached to a human knee, the change in the 

resistance exhibits variations corresponding to the wear-

er’s motion (Fig. 3b). Although vertical CNTs are densely 

aligned similar to a forest and therefore have a dark color, 

randomly oriented CNT networks are relatively trans-

parent, particularly at reduced CNT concentrations [14]. 

Figure 3c shows a schematic of a transparent patch-type 

strain sensor using random-network CNTs integrated 

with a conducting polymer. By virtue of its optical trans-

parency (62  %), it was inconspicuously patched onto a 

human face and successfully distinguished facial motions 

(Fig. 3d–f).

CNTs are also excellent nanoscale filler materials 

owing to their small size with good dispersion and excep-

tional electrical and physical properties [63, 64]. In this 
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regard, electrically conductive rubber (ECR), which is 

a composite of CNTs and elastomeric polymers, is pre-

pared and used for a wearable mechanical sensor [47]. To 

enhance the sensitivity, nanopores and micropores are 

introduced into the ECR, thereby increasing its piezore-

sistivity and maximizing the locally induced strain when 

deformed [47]. Figure 3g shows a representative method 

for introducing pores with a uniform size and distribu-

tion in the ECR. �e key idea of this method is to use a 

reverse micelle solution (RMS) comprising an emulsifier, 

deionized (DI) water, and an organic solvent. In accord-

ance with careful sequential heat treatments, the migra-

tion and merging of the reverse micelles and subsequent 

pore generations occur (Fig.  3h). A larger porosity and 

lower elastic modulus are achieved if a larger amount 

of solvent is included in the RMS, thereby resulting in a 

higher pressure sensitivity (Fig. 3i). An ECR-based strain 

gauge fabricated on a medical bandage by using ink-jet 

printing forms a conformal contact with the human wrist 

and successfully monitors wrist motions. Although sen-

sors based on CNT networks/composites are relatively 

cheap, especially those that are solution-processed, and 

mechanically compatible when worn on the human body, 

several issues such as a slow response time, a large area 

uniformity, and the hysteresis and drift of signals still 

need to be solved.

2.1.3  Wearable sensors/actuators based on nanomaterial 

hybrids

In several cases, electronic materials having a relatively 

poor performance are incorporated owing to the lim-

ited processing temperature and chemical/mechanical 
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resistance of plastic substrates [65]. Appropriately cho-

sen functional nanomaterials compensate for these limi-

tations and improve the device performance [46, 66]. 

Figure 4a shows a transparent piezoelectric motion sen-

sor and electrotactile stimulator (inset) conformally lami-

nated onto the human skin. �e piezoelectric motion 

sensor consists of GP layers as the transparent electrodes, 

polylactic acid (PLA) as the piezoelectric material, and 

SWNTs as the piezoelectric performance enhancer 

(Fig. 4b, left). Moreover, the electrotactile stimulator uti-

lizes doped GP layers as transparent electrodes and silver 

nanowires (AgNWs) as a conductivity enhancer (Fig. 4b, 

right). �e strain-induced charge separation in PLA is 

the main mechanism for piezoelectric energy generation. 

�e local increase in the modulus by the CNTs increases 

the locally induced strain inside PLA under deformation, 

which maximizes charge generation (Fig.  4c). Figure  4d 

shows the conductivity enhancement by AgNWs sand-

wiched between GP layers. �e enhanced conductivity of 

the GP/AgNWs/GP hybrid contributes to effective elec-

trotactile stimulation (Fig. 4e).

Figure  4f shows an illustration and optical image 

(inset) of a semitransparent piezoelectric strain sensor 

and resistive temperature sensor for measuring wrist 

motions and body-temperature changes for wheelchair 

control and hypothermia diagnosis, respectively. The 
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strain sensor consists of a ZnO nanomembrane as the 

piezoelectric material and SWNT networks as the per-

formance enhancer (Fig.  4g). The temperature sensor 

consists of silver nanoparticles (AgNPs) embedded in 

the ZnO:Al (AZO) nanomembrane for improving its 

sensitivity (Fig.  4h). For the strain sensor, co-depos-

ited Cr and SWNTs layers improve the crystallinity 

of ZnO and passivate intrinsic defects, respectively 

(Fig.  4i). These modifications dramatically amplify 

the piezoelectric voltage output of the intrinsic ZnO 

nanomembrane (Fig.  4j). For the temperature sensor, 

EC – EF (EC, minimum energy of the conduction band; 

EF, Fermi energy level) is proportional to the con-

centration of AgNPs inside the ZnO nanomembrane 

(Fig.  4k). The high concentration of AgNPs increases 

the carrier density and therefore improves the sensitiv-

ity of the temperature sensor (Fig. 4l). A more in-depth 

study of functional hybrid nanomaterials would pro-

vide new opportunities for high-performance wearable 

devices.
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2.2  Wearable memories

Data recorded by wearable sensors should be either 

transferred or stored for the analysis. Usually, the data are 

stored in memory devices and retrieved when needed. In 

this section, two types of ultrathin deformable nonvola-

tile memory devices—charge-trap floating-gate mem-

ory (CTFM) [48] and resistive random access memory 

(RRAM) [41]—are described.

2.2.1  Deformable charge-trap �oating-gate memory

Since the concept of memory devices using floating gates 

was first proposed [67], field-effect transistor (FET)-

based CTFM has established itself as a dominant data 

storage device owing to its small area and compatibility 

with the CMOS process [68, 69]. For the realization of 

deformable CTFMs as next-generation devices, the rigid 

active materials are replaced with deformable ones such 

as organic materials [70, 71], SWNTs [48], 2D nanomem-

branes [72], and even inorganic SiNMs [73]. Figure 5a and 

b show the device structure of an SWNT-based CTFM 

and its laminated form on the human skin, respectively. 

�e Au nanomembrane as a floating gate maximizes the 

charge capturing functionality (Fig. 5c). Soft active layers 

of SWNT networks are located at the neutral mechanical 

plane and allow stable operation under deformation.

�e floating gate of a continuous metal film has a criti-

cal limitation for the retention time [74]. Instead, metal 

nanoparticles (NPs) are a promising candidate as the 

floating gate to realize a fast program/erase speed and 

long retention time [74]. Figure 5e shows an optical image 

of a fabricated flexible CTFM using poly(4-vinylphenol) 

(PVP), pentacene, and gold nanoparticles (AuNPs) as the 

dielectric, semiconductor, and charge-trap layer, respec-

tively. AuNPs are electrostatically adsorbed onto the PVP 

blocking oxide, thereby forming a monolayer of AuNPs 

(Fig.  5f ). A large on/off window (>10  V) is obtained 

owing to the high density of AuNPs (Fig.  5g). Repeti-

tive bending up to 1000 cycles with a bending radius of 

20 mm does not diminish the performance of the CTFM.

2.2.2  Nanoparticle-embedded wearable RRAM

RRAM is another promising candidate for future non-

volatile memory devices [75–77]. By integrating RRAM 

with wearable sensors, a low power consumption and 

mechanical deformability are important for long-term 

use in mobile environments [41]. Figure 5i shows wear-

able RRAM consisting of AuNP charge-trap layers 

that reduce its operation current. Serpentine intercon-

nections make the wearable RRAM stretchable up to 

25  % strain (Fig.  5j–l). AuNPs embedded between TiO2 

nanomembranes by Langmuir–Blodgett assembly form a 

uniform layer over a large area (Fig.  5m–o). �e opera-

tion current of the wearable RRAM with one AuNP layer 

is decreased by one order of magnitude compared to that 

without AuNPs (Fig. 5p). �ree layers of AuNPs exhibit a 

larger current decrease (by almost a factor of three).

2.3  Wearable displays

To construct user-interactive wearable electronic sys-

tems, deformable displays that visualize measured or 

stored data are indispensable for users. Recently, several 

breakthroughs in deformable LED technologies, includ-

ing deformable inorganic/organic LEDs [51, 78–81], 

polymer LEDs [82–84], and quantum-dot LEDs (QLEDs) 

[85–87], have been reported.

Figure  6a–c show an image of a deformable actively 

multiplexed organic LED array, the device structure, and 

the bending capability, respectively. However, organic 

light-emitting materials have a low stability in air and a 

low photostability, and thus they need thick encapsula-

tion under ambient conditions. Quantum dots, on the 

other hand, have favorable properties such as a good 

stability in air, good photostability, printability on vari-

ous substrates, and a high brightness at low operating 

voltages, which are important key factors for deform-

able/wearable displays [88, 89]. Figure 6d and e show the 

structure of recently reported wearable QLED devices 

[44]. �anks to ultrathin active and encapsulation lay-

ers, the total thickness of the device is ~ 2.6 μm, enabling 

conformal contact with the wearer’s skin. �e wearable 

QLED is turned on at a low voltage (2  V; Fig.  6j) and 

endures 20  % stretching up to 1000 cycles without any 

degradation in its brightness (Fig. 6g). �e use of biocom-

patible quantum dots and the replacement of the rigid 

transparent electrodes with soft ones further improve the 

practical applications of wearable QLEDs.

2.4  Wearable energy devices

Energy storage devices and power generators that supply 

power to wearable electronics need flexibility and bio-

compatibility. An all-solid-state supercapacitor (SC) [45, 

49, 90, 91] is a suitable energy storage device with regard 

to this point. Moreover, SCs have a high power density, 

a fast charging/discharging speed, and cycle durability 

[92]. In case of the wearable power generators, flexible 

and soft fiber-based materials are suitable owing to the 

requirement of high deformability [28]. In this section, 

carbon-nanomaterial-based flexible SCs and organic 

nanofiber-based power generators are reviewed.

2.4.1  CNT-based wearable energy devices

�e excellent electrochemical properties, electrical con-

ductivity, large surface area, and mechanical softness of 

CNTs make them apt for the electrodes and current col-

lectors of wearable SCs [93]. Cui et al. dipped fabric into 

a CNT-dispersed ink to coat the fabric fibers with CNT 
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random networks (Fig.  7a, b) [49]. �ese engineered 

fabric electrodes assembled with a fabric separator in 

between form the SC (Fig. 7c). �e large surface area of 

CNTs enables further decoration with other nanomateri-

als (e.g., pseudocapacitive metal oxide NPs such as MnO2 

and RuO2) [94, 95]. �e surface of the CNT fabric is elec-

troplated with MnO2 NPs (Fig. 7d, e), which increases the 

specific capacitance.

Instead of coating fabrics, carbon fibers are used to 

make a woven fabric, which can be applied to flexible 

textile electrodes [45]. To maximize the surface area, ver-

tically-aligned CNTs are additionally synthesized on the 

carbon fabric. Electroplating vertical CNTs with RuO2 

NPs further increases the capacitance (Fig.  7f ), and an 

all-solid-state wearable SC is fabricated by sandwiching a 

poly(vinyl alcohol) (PVA)-H3PO4 gel electrolyte between 

two modified carbon fabric electrodes (Fig.  7g). �e 

resulting SC exhibits high performance up to 135-degree 

bending and 4000 charge–discharge cycles (Fig. 7h–j).

2.4.2  GP-based wearable energy devices

Multiple chemically converted GP sheets are beneficial 

for fast ion transport [15]. GP flakes and/or reduced 

GP oxides are densely packed by capillary pressure 

Fig. 5 Nanomaterials embedded wearable memory devices. a Schematic of CTFM. b Photograph of the CTFM array conformally attached to 

human skin. c C–V hysteresis curves of a CNT-based memory capacitor with (red) and without (blue) an Au thin-film floating gate. d Transfer curves 

of stretched (0–20 %) CTFM for the program and erase modes. (a–d Reproduced with permission from Ref. [48], © 2015, American Chemical 

Society). e Photograph of a flexible organic memory device with an AuNP floating gate. f SEM image of AuNPs attached to the blocking oxide. g 

Transfer curves of the flexible organic memory device for the initial, programmed, and erased states. h Threshold voltage of the flexible organic 

memory device for the programmed and erased states according to the number of bending cycles. (e–h Reproduced with permission from Ref. 

[71], © 2010, American Chemical Society). i Photograph showing wearable RRAM attached to a medical bandage. j Optical images of wearable 

RRAM in the initial (top) and stretched (bottom) states. k Finite-element-analysis results showing the strain distribution of stretched (25 %) wearable 

RRAM. l I–V characteristic curves of wearable RRAM for different stretched states. m Schematic structural view of three layers of AuNPs assembled 

on a TiO2 nanomembrane, n TEM image showing three layers of AuNPs embedded between TiO2 nanomembranes. o Energy-dispersive X-ray 

spectroscopy results showing the quantitative material composition scanned along the red arrow in Fig. 5n. p I–V characteristic curves showing the 

bipolar switching of wearable RRAM for different trap materials. (i–p Reproduced with permission from Ref. [41], © 2014, Nature Publishing Group)



Page 9 of 13Kim et al. Nano Convergence  (2016) 3:4 

to fabricate flexible carbon electrodes (Fig.  7k). The 

packing density (ρ) of the GP sheets can be controlled 

by changing the ratio of the volatile and nonvolatile 

liquids in the gel (Fig.  7l, m). Figure  7n and o show 

the specific capacitance and volumetric capacitance, 

respectively, of SCs using stacked GP electrodes for 

different values of ρ. The specific capacitance slightly 

decreases as ρ increases, whereas the volumetric 

capacitance is nearly proportional to ρ. Although 

most SCs made of activated carbon exhibit a volu-

metric energy density of 5–8  Wh/L, SCs made of the 

GP assembly exhibit a volumetric energy density of 

60 Wh/L, which is similar to that of lead-acid batteries 

(50–90 Wh/L).

2.4.3  Organic nano�ber-based wearable power generators

To harvest electrical energy from body movements, 

piezoelectric nanogenerators (PENGs) and triboelec-

tric nanogenerators (TENGs) have been used [28, 96]. 

Organic nanofibers such as polyvinylidene fluoride 

(PVDF) formed by using electrospinning processes 

have shown superb deformability as well as high pie-

zoresistivity, facilitating its use in wearable applica-

tions [18, 28]. Piezoelectric power generation using a 

single PVDF nanofiber [97], aligned multiple PVDF 

nanofibers [98, 99], and randomly distributed nanofiber 

networks [100] have been demonstrated. Parallel and 

series connection of PVDF nanofibers increase the gen-

erated voltage and current [98]. However, relatively low 

output power of PENGs has limited the application for 

wearable devices with high power consumption [28]. 

In contrast, TENGs have shown much higher output 

power than PENGs [28]. Electrospun PVDF nanofibers 

are also suitable for fabrication of the TENG because 

of their strong electronegativity and high porous mor-

phology offering large contact area to increase the out-

put power [28, 101]. �e PVDF nanofiber-based TENG 

has been recently demonstrated as wearable forms 

[28]. Seamless integration of the organic nanofiber-

based wearable power generators with energy storage 

devices and control circuits is another important future 

research topic.

Fig. 6 Deformable displays. a Photograph of a fabricated flexible OLED display containing 16 × 16 pixels. b Optical image of one pixel of the flex-

ible OLED (left) and an enlarged view of the multiplexing CNT FET (right). c, Full-color flexible OLED display in which all pixels are turned on (left) and 

its bent form (right). (a–c Reproduced with permission from Ref. [50], © 2013, Nature Publishing Group). d Schematic exploded view showing the 

device structure of a wearable QLED and an SEM image showing the cross section of the display. e TEM image of the active layer indicated by the 

red box in the inset of d. f J–V–L characteristic curves of the wearable QLED. g Stable brightness of the wearable QLED during repetitive stretching 

cycles. Insets show the initial and stretched states of the wearable QLED. (d–g Reproduced with permission from Ref. [44], © 2015, Nature Publish-

ing Group)
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3  Conclusions
�e mechanical, electrical, and optical properties of 

bulk materials change as their size is reduced and/

or nanoscale structure engineering is introduced. By 

using the unique properties of such nanomaterials or 

their hybrids, many breakthroughs in wearable devices 

have been accomplished. In this paper, we reviewed the 

current status of wearable devices including sensors/

actuators, memory devices, displays, and energy stor-

age devices. We particularly focused on the use of func-

tional nanomaterials to enhancing the deformability and 

performance of these devices. Continuous research and 

development of new nanomaterials/hybrids and their 

integration into variety of electronic/optoelectronic 

devices would provide new opportunities for next-gen-

eration wearable electronics.
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