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Abstract

Significance: Analysis of modern large-scale, multi-center or diseased data requires deformable 

registration algorithms that can cope with data of diverse nature.

Objective: We propose a novel deformable registration method, which is based on a cue-aware 

deep regression network, to deal with multiple databases with minimal parameter tuning.

Methods: Our method learns and predicts the deformation field between a reference image and a 

subject image. Specifically, given a set of training images, our method learns the displacement 

vector associated with a pair of reference-subject patches. To achieve this, we first introduce a key-

point truncated-balanced sampling strategy to facilitate accurate learning from the image database 

of limited size. Then, we design a cue-aware deep regression network, where we propose to 

employ the contextual cue, i.e., the scale-adaptive local similarity, to more apparently guide the 

learning process. The deep regression network is aware of the contextual cue for accurate 

prediction of local deformation.

Results and Conclusion: Our experiments show that the proposed method can tackle various 

registration tasks on different databases, giving consistent good performance without the need of 

manual parameter tuning, which could be applicable to various clinical applications.
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I. INTRODUCTION

Image registration is a crucial and fundamental procedure in various medical image analysis 

tasks. The aim of a registration algorithm is to obtain a topology-preserving deformation 

field that warps and matches a subject image to a reference image space. It can establish the 

anatomical correspondences between a pair of images, and thus ensures image data 

comparability to facilitate the subsequent analysis, e.g., group comparison or longitudinal 

studies. Despite the plethora of existing registration methods, image registration is still an 

active area of research, especially in view of the additional challenges posed by large-scale 

data, multi-center data (i.e., the data acquired from different institutions or under different 

imaging protocols), or diseased data with significantly heterogeneous pathology. Modern 

deformable registration methods should be sufficiently versatile to deal with diverse imaging 

data. Accordingly, it requires the algorithm consistently accurate (to different registration 

tasks), robust (with minimal parameter tuning), and also applicable to different databases 

and clinical scenarios.

In this paper, we introduce an approach based on deep regression networks to predict the 

deformation field between a pair of images that may potentially pose various challenges. 

Deep learning techniques, such as convolutional neural network (CNN), have been widely 

applied in medical image analysis [1] due to its strong learning ability, such as disease 

diagnosis [2], image segmentation [3–5], and landmark detection [6]. However, there are a 

number of challenges for deep learning to successfully model the complex mapping of the 

deformable registration task, and accordingly our method has the following characteristics.

First,directly learning the mapping from the image pair to their desired deformation field is 

complex, since the deformation field encodes the local matching association between the 

pair of the reference image and the moving subject image. To simplify the problem, some 

traditional learning-based registration methods [7, 8] establish the mapping between the 

moving subject image and its deformation field by referring to a common reference image. 

However, when the reference is changed, the model has to be retrained from scratch. To 

make the registration algorithms more flexible, currently, some learning-based methods [9, 

10] are not limited to a specific reference, and thus are applicable to an arbitrary pair of 

reference and subject images. Similarly, our method also performs flexible pairwise 

registration, without referring to any specific reference. This is achieved by learning the 

association between any arbitrary pair of 3D local patches and their deformations. We devise 

an approach based on key points to obtain adequate patch samples from a database of 

limited size, to more effectively guide the learning process. Second,the reference and subject 

within an image pair associate with different morphological spaces. This may further 

increase the difficulty during the learning process. While, our method explicitly learns the 

differences of the spaces in which the two images reside. We particularly introduce the 

auxiliary contextual cue, i.e., the local similarity map, to enhance the awareness of the deep 
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network to improve the learning.Third,the deformable image registration is an ill-posed 

problem and the estimated local deformation may have ambiguity if the local patch cannot 

contain sufficient anatomical details. To address this issue, we propose a novel sampling 

strategy to sparsely sample representative patches from the image pair to avoid the 

ambiguity. In general, our proposed patch-wise cue-aware deep regression network is able to 

predict the deformations accurately and robustly for the databases of significantly different 

natures with minimal parameter tuning, which is needed in real clinical scenarios.

A. Related Works

Comprehensive summaries of registration methods can be found in [11–18]. In these papers, 

registration algorithms differ mostly in terms of deformable models, matching criteria, and 

numerical optimization. While learning-based deformable registration methods are more 

popular recently, in which some machine-learning techniques are often incorporated in the 

registration framework. In the following discussion, we categorize existing registration 

methods as 1) conventional methods and 2) learning-based methods.

1) Conventional Registration Methods—Conventional methods regard the 

deformable registration as a high-dimensional optimization problem with a typical cost 

function:

ϕ = min
ϕ

ℳ IR, � Is, ϕ + λℛ ϕ , (1)

where the deformation field ϕ can be obtained by minimizing the dissimilarity ℳ between 

the reference image IR warped subject image � I
s
, ϕ  and the warped subject image IS, with 

regularization ℛ on the deformation field ϕ in order to avoid the unpractical deformations. 

� is the operator that warps the subject image IS using deformation field ϕ.

Aiming to solve the optimization problem in Eq. (1), a large number of registration methods 

have been proposed using various similarity metrics and regularization terms. Widely-used 

similarity metrics include sum-of-squares distance (SSD) [19–21], mean square distance 

(MSD) [22–24], (normalized) cross correlation (CC) [25–29], and (normalized) mutual 

information (MI) [30–33], etc. Regularity of the deformation filed can be achieved by 

Gaussian smoothing [19, 20, 22, 23, 27, 34], minimizing the bending energy, or by utilizing 

a spline-based [24, 28, 35, 36] or diffeomorphic [20, 28, 34, 37] deformable model. Based 

on the matching criterion, the deformable registration can be divided into two categories. (1) 

The volumetric-transformation-based registration [19, 20, 22, 23, 26, 34], in which the voxel 

intensity information in the whole volume is used to guide the registration. (2) The 

landmark-based registration [27, 28, 35, 36, 38, 39], in which the features or attributes are 

used as the morphological signatures of the landmarks to drive the local correspondence 

matching during the registration. Additional properties, such as symmetry [27, 28], can also 

be imposed.

Commonly-used methods include AIR [22], ART [25], ANTS [34], HAMMER [27], 

Demons [19], diffeomorphic Demons [20, 40], SPM [41], RAMMS [36], DROP [42], CC 
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MI SSD-FFD [35], and FNIRT [21], etc. Although comprehensive performance comparisons 

of some of these methods are reported in [43, 44], it is still difficult to assert the best 

algorithms for individual applications, especially when dealing with various databases or 

registration tasks.

For conventional registration methods, most of them require iterative optimization and 

careful parameter tuning, which depends on the nature of the data. The registration 

performance may decline when the reference and subject images have large appearance and 

anatomical variations. Thus, a robust and tuning-free registration method is essential for 

wide utility by non-experts for various clinical studies, which should consistently work well 

for different databases or registration tasks.

2) Learning-Based Registration Methods—For learning-based registration methods, 

different machine learning techniques are often incorporated into the registration framework 

[45, 46]. The complex deformable registration problem is often simplified by leveraging 

prior knowledge or registration parameters that are predicted by learning[7, 8, 47]. The 

mapping between image appearances and the deformation field can be learned by support 

vector regression (SVR) in [7] or sparse representation in [8]. Initial deformation field can 

be predicted rapidly using the learned models and then refined effectively by one of existing 

deformable registration methods. As the refining is much less demanding compared to 

estimation of the whole deformation field directly, the above methods have demonstrated 

improved registration performances especially for the algorithm efficiency. However, the 

learned models are usually associated with a common reference, which need to be retrained 

when the reference space changes. Therefore, the real-world applicability of these methods 

is strongly limited.

Techniques, such as random forest have been successfully applied for infant brain 

registration [48, 49] and multi-modal image registration [50–52]. These are challenging 

tasks due to inconsistency in appearances and differences in structural geometries. Random 

forest is able to predict and compensate for large local deformations, simplifying the 

registration task and improving the registration accuracy. However, the effectiveness of this 

approach highly depends on the hand-engineered features, which is a crucial factor during 

the learning of random forest.

In contrast, deep learning conducts the learning process from the raw image without the 

need of feature engineering. For linear registration, CNN is used to align X-ray images in 

[53] and deep reinforcement learning is applied to align the CT and depth images in [54]. 

For deformable registration, features are learned automatically in an unsupervised manner in 

[55] and then incorporated into feature-based registration. Some works learn the 

transformation parameters in a supervised manner. Specifically, fully convolutional network 

(FCN) has been employed in [9] and [56] to learn the deformation momenta and stationary 

velocity field (SVF), respectively. The displacement vector is predicted by a CNN model in 

[10] and [57] for lung CT and brain MR images, respectively. To align the prostates in MR 

images, the deformation field is estimated by a deep reinforcement learning framework [58]. 

Recently, unsupervised deep learning is also adopted for registration, in which the similarity 
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metrics (e.g., normalized cross-correlation [59, 60]) are directly used to train the deep 

network in backpropagation.

B. Contributions of Our Work

In this work, we learn the mapping between an image pair and their deformation field. The 

displacement vectors will be estimated by the proposed cue-aware deep regression network 

in a patch-wise manner. In the application stage, the final deformation field for the arbitrary 

image pair can be effectively obtained by inputting the reference and subject images to the 

learned model. Our main contributions are summarized as follows.

1) To successfully establish the deep regression model for the highly non-linear 

mapping of deformable registration task, our network enhances generalization 

and robustness by introducing the auxiliary contextual cue, which provides 

robust local similarity information for participating the whole training process. 

This has been effectively incorporated into the whole network by data-driven 

convolution and cross-channel pooling.

2) To mitigate the ambiguous matching, a key-point truncated-balanced sampling 

strategy is proposed to generate a completed and well-functioning training set. It 

can also generate sufficient training patches from a limited image database. 

Under this strategy, the prediction accuracy of the deep regression model has 

been greatly improved.

3) To fully evaluate the proposed method, we perform comprehensive experiments 

on different databases with challenging registration tasks. We demonstrate that, 

the proposed method performs consistently well without parameter tuning even 

on the challenging registration tasks involving databases of diverse natures.

II. METHOD

A. Overview

The mapping from a reference-subject 3D image pair I
R

, I
S

∈ ℜ
3, (affinely registered) to 

their deformation field ϕ can be generally denoted as:

IR, IS

M
ϕ, (2)

Where M is the mapping to be learned by the proposed deep regression network.

As shown in Fig. 1, the proposed cue-aware deep regression network is designed in a 3D 

patch-wise manner. The network (encircled by the dashed box in the bottom of Fig. 1) maps 

patch appearance to the corresponding displacement vector of the patch center. The mapping 

is learned using a training set generated by a key-point truncated-balanced sampling 

strategy. The whole learning procedure can be briefly introduced as follows. First, a pair of 

local patches with a common center location is extracted from both the reference IR and 

subject IS images.Then, a scale-adaptive contextual cue, which encodes multi-scale 
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similarity information, is generated via the context-driven network (part A) by performing 

data-driven convolution and cross-channel pooling (poolingC). Next, the contextual cue, in 

addition to the patches, is fed into the deep regression network (Part B) for cue-aware local 

match learning. The deep regression network outputs the displacement vector associated 

with the patch center. Finally, in the application stage, the learned deep network is used to 

predict the displacement vectors at locations that sufficiently cover the whole brain. The 

final deformation field is obtained via spline interpolation.

B. Generating Training Data

Our deep network learns the deformation associated with 3D patch pairs. Each training 

sample consists of a patch pair p
R

u , p
S

u  (with patch size: 31×31×31) extracted from the 

reference image IR and the subject image IS , and the corresponding displacement vector 

d u = dx, dy, dz
u
 defined in the reference space. Here, u indicates the location of the center.

Usually, random or uniform samplings are often employed to generate the training set. Fig. 2 

illustrates the problems that can result from random or uniform sampling for the registration 

task. The first problem is ambiguous matching. Fig. 2(a) shows the situation where two 

patches with highly similar appearances have significantly different forward and backward 

deformation fields (DFs), if we swap the reference and the subject. Fig. 2(b) shows two 

similar pairs of patches that cannot provide sufficient information to differentiate DFs 

associated with different references. The second problem is imbalanced deformation 

distribution. As shown in Fig. 2, the deformation distribution is significantly imbalance with 

over 80% of displacement samples below 1mm. Conventional sampling method focus only 

on the image space and ignores the distribution in the deformation space. As a remedy, we 

propose a key-point truncated-balanced (KP-TB) sampling strategy to generate informative 

and representative training sets, in which the sampling regards to not only the image space, 

but also the displacement space.

1) KP-TB Sampling Strategy—In the image space, we utilize the key-point sampling 

to obtain informative patches to mitigate ambiguous matching. Obviously, brain regions with 

strong edges or large curvatures (e.g., ventricular boundaries, roots of sulci, crowns of gyri, 

and etc.) contain more anatomical details that can contribute to accurate matching. To extract 

informative patches, we generate the normalized gradient map G(u) via Canny edge detector 

using a smoothed version of image IR

G u =
Σi ∇i u

∇i u
2

, i = x, y, z, u ∈ IR, (3)
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where ∇
i

u  is the gradient calculated for direction i in a 3D image space .

2

 is the L-2 

norm used to normalize the gradients to [−1,1]. Sampling is performed based on the 

normalized gradient map, putting higher probability for voxels with larger gradient 

magnitudes.

For the displacement space, we introduce truncated-balanced sampling to obtain a training 

set that captures the major distribution of the displacement magnitudes. By incorporating the 

gradient information G(u) the sampling probability is defined as:

P u = exp
−ω

d u
2

. G u

, (4)

Where d u
2
 is the displacement magnitude and w is a parameter used to control the 

sampling probability and the sample number. G u  is the absolute value of G(u) Apparently, 

an informative voxel at u (i.e., higher G u )) with larger displacement magnitude ( d u
2
) is 

more likely to be sampled. Additionally, a truncation threshold σ is applied on the 

displacement magnitudes to set all d u
2
 to 0 when d u

2
> σ:

du

2

=
du

2
, du

2
≤ σ

0, du
2

> σ
. (5)

The truncation threshold σ is applied with two reasons: (1) extremely large displacements 

are rare in real-world image registration problem; (2) learning a very large displacement is 

inefficient and requires very large input patch. Thus, we employ the truncated operation to 

saturate all displacements over σ, in order to guarantee the precision and generalization 

during the model learning. Additionally, all the displacement values are normalized to [−1,1] 

by dividing the truncated value with σ to adjust the subsequent network learning.

Using KP-TB sampling, most samples are located at the informative regions throughout the 

whole brain, as shown in Fig. 3. Here we use σ =7mm in this paper, such that sufficient 

samples can be acquired while their distribution regarding the displacement magnitudes is 

balanced. This can well guarantee the precision and generalization during the model 

learning. Note that, in the application stage, the prediction of displacement will not be 

limited by. We can perform the learned model repeatedly, so that the predicted displacement 

can be accumulated to compose to the final accurate deformation field, with more details 

described in Sec II.D.
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C. Cue-aware Deep Regression Network

To learn the complex appearance-to-deformation mapping, we propose to use auxiliary 

contextual cue to facilitate robust local match learning. The proposed cue-aware deep 

regression network, shown in Fig. 1, includes two main components: 1) Part A: context-

driven network, and 2) Part B: deep regression network.

1) Part A: Context-Driven Network—The context-driven network is designed to 

provide the axillary contextual cue that relates two images. This cue encodes the scale-

adaptive local similarity map that conveys the local correspondences from the center 

location in the reference to all locations in the subject patch. It can thus assist the whole 

network to keep aware of the local matching. The context-driven network is realized by two 

operations: 1) Data-driven convolution, which provides multi-scale similarity feature maps, 

and 2) PoolingC, which fuses multi-scale similarity maps via cross-channel pooling.

Data-driven Convolution.: Given a patch pair P
R

u
c

, P
S

u
c

 centered at uc , as shown in 

Fig. 4, the conventional similarity feature map is computed as:

HS ui =
Σ kR uc . kS uc

kR uc . kS uc

, ui ϵ pS uc , (6)

where Hs(ui) is the similarity corresponding to location ui in the subject patch ps, and i is the 

location index. KR(uc) is a sub-region extracted from the reference patch centered at uc, and 

Ks(ui) is an identical-size sub-region from the subject patch centered at u
i
. ⋅  denotes the 

L2-norm of the values in the sub-region. In this way, Hs(ui) represents the normalized cross-

correlation and Hs is the local similarity map for each patch pair. Specifically, we implement 

this step as an additional data-driven convolutional layer. In this layer, the kernels are 

derived from the reference patch and varied according to the samples. It is thus different 

from the traditional convolutional layer in CNN where the kernels determine their 

parameters automatically during the training. As shown in Fig. 4, the output of this operation 

can be regarded as an external feature map with explicit contextual information of local 

correspondence, which guides the subsequent local match learning.

Ideally, a contextual cue should have high responses for corresponding anatomical regions 

and vice-versa. Fig. 4 shows that the similarity map is sensitive to the kernel size. For 

example, a small kernel size results in a more distinctive similarity map, whereas a larger 

kernel size reduces distinctiveness but is conducive to robust matching. For both 

distinctiveness and robustness, we compute multiple similarity maps with multi-scale 

kernels as shown in Fig. 4.

PoolingC (cross-channel pooling).: It is necessary to wisely integrate the multi-scale 

similarity feature maps by getting rid of the redundancy from the multiple similarity maps. 

To tackle this issue, we introduce the poolingC procedure to fuse the similarity feature maps 

by performing pooling across channels, as illustrated in Fig. 5. PoolingC collapses the 

channels of the similarity map but retain the map size. This is different from the 
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conventional pooling in CNN, which reduces the size of the feature maps and retain the 

channel number.

The most commonly used pooling is by computing the maximum (Max) or mean (Mean). 

However, neither of them is appropriate for fusing the multi-scale similarity feature maps. 

Fig. 5 shows the poolingC results of the multi-scale similarity maps in Fig. 4. Mean poolingC 

is a trade-off between distinctiveness and robustness, whereas the result of max poolingC is 

worse than any single similarity feature map. In this way, we introduce minimum (Min) 

operator to better preserve both distinctiveness and robustness. As shown in Fig. 5, the 

fusion result by min poolingC is scale-adaptive: we can always obtain an effective fusion 

map, regardless of the scales used.

As a summary, the context-driven network can be regarded as a preparation step to provide 

an informative guidance, which is served as the auxiliary contextual cue, to effectively 

facilitate local match learning for our registration task. The data-driven convolution provides 

an effective way to associate the two input patches. In this specific convolution layer, the 

similarity feature maps are generated from the multi-scale kernels. The subsequent poolingC 

layer fuses the multi-scale similarity feature maps, which gets rid of the redundancy within 

multiple feature maps yet retains their distinctiveness. By using this informative contextual 

cue, the awareness of local match learning can be more effectively steered in the subsequent 

network in Part B: Deep Regression Network.

2) Part B: Deep Regression Network—The deep regression network is designed to 

predict the displacement vectors d u  from the patch pair P
R

u , P
S

u  and the guidance of 

the contextual cue. The detailed architecture of the network, shown in Fig. 6, consists of 

several convolutional layers, one pooling layer, and several fully connected layers. 

Specifically, each convolution layer is followed by ReLU activation to enhance the 

nonlinearity and modeling capability. The kernel number is doubled every two convolutional 

layers, starting from 64 to 512 with a fixed kernel size 3 × 3 × 3 One Max pooling layer is 

performed to train the network efficiently. The subsequent fully connected layers include 3 

layers with ReLU activations. The final fully connected layer uses TanH activation since the 

normalized displacement vectors are zero-centered. The loss function is the Euclidian 

distance. No padding operation is performed.

In order to demonstrate whether the contextual cue, i.e., the scale-adaptive similarity map, 

plays a positive role to enhance the awareness of the local match learning, we show the loss 

changing for training and validation in Fig. 7. The input patch pairs alone, without the 

contextual cue, are insufficient to train the deep network as shown in Fig. 7(a). While, the 

loss decreases consistently when including the contextual cues in Fig. 7(b) and (c). 

Particularly, we adopt the proposed scale-adaptive cue in Fig. 7(c), while in Fig. 7(b) we use 

the multi-scale contextual cue without poolingC. According to more consistent and faster 

loss decrease achieved in Fig. 7(c), we conclude that the auxiliary contextual cue can truly 

enhance the awareness of the local match leaning, and the network in Part A contributes to 

Part B
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D. The Application Stage

In the application stage, the trained model, which is obtained via the proposed cue-aware 

deep regression network, can be applied directly to predict the deformation field for an 

unseen image pair, as summarized below.

The first step involves patch extraction from the image pair. It is based on the KP sampling 

(i.e., Eq. (3)) without TB in the reference image space. Adequate patch samples will be 

obtained to well cover the whole brain volume, and the patch size is exactly same with the 

training patch size (31 × 31 × 31).

The second step involves displacement prediction for each patch sample, using the trained 

cue-aware deep regression network to 1) generate the scale-adaptive contextual cue by the 

context-driven network, and then 2) estimate the displacement by deep regression network. 

Since the output of the network is within [−1,1], the real displacement magnitude is 

recovered by multiplication of the output with defined in Eq. (5).

The third step involves generation of the dense deformation field. Based on the 

displacement predictions for the adequate samples, the final deformation field can be 

obtained by block-wise thin-plate spline (TPS) interpolation. Details for the interpolation 

can be found in our early work [38].

Since we truncate the displacement magnitude during the training stage (as described in Sec 

II.B and (Eq. 5)), the largest prediction of the displacement magnitude is 7mm (as shown in 

Fig. 3). Then, we can repeat the above three steps, and the final deformation field can be 

generated by sequentially composing the estimated deformation fields at individual 

iterations. The model is iteratively applied until the incremental deformation is trivial, and 

the registration result converges. It is worth noting that, under this strategy, although the 

input patch size (i.e., 31 × 31 × 31 receptive field of the network during training, we can still 

accurately predict large deformations.

III. EXPERIMENTS

Three different databases, i.e., LONI LPBA40, IXI and ADNI, are used to evaluate the 

deformable registration performance, which cover both the young and old adult brain MR 

images. All the images are preprocessed using a standard pipeline, including skull stripping 

and resampling. The cerebellum and brain stem are also removed. After preprocessing, all 

data are with the same image size 220 220 220 and resolution 1mm 1mm 1mm. Detailed 

data description is provided in Table I. If not mentioned otherwise, all the image pairs used 

to perform the deformable registration have already been affine registered by FLIRT [61]. 

The gray matter (GM) and white matter (WM) tissue maps of both LONI and ADNI datasets 

are generated by two steps: 1) using FAST segmentation in FSL [62] to obtain a rough tissue 

segmentation map and then 2) performing manual correction to make them as accurate as 

possible.

Among the numerous registration methods, we select two state-of-the-art registration 

methods for comparison: 1) Demons, which is a well-known and widely-used deformable 
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registration method. Here, we use two versions of Demons: SSD-Demons [20] and LCC-

Demons [40]. These two versions use the sum of square distance (SSD) and the local 

correlation coefficients (LCC) as the similarity metric, respectively. As SSD-Demons is 

more efficient while LCC-Demons is more accurate and robust when registering images with 

large appearance intensity variations, we employ SSD-Demons for registering images within 

one database and LCC-Demons for registering images across different databases. 2) 

Symmetric Normalization (SyN) [34], which has shown outstanding performance as 

demonstrated in [43, 44]. Dice similarity coefficients (DSC) and averaged surface distance 

(ASD) are used as two primary metrics to evaluate the registration performance.

Training Image Pair Generation.

We randomly select 25 images from the LONI database to prepare the training data for the 

proposed cue-aware deep regression network. Among these 25 images, 40 image pairs are 

drawn randomly in the training stage. For each image pair, we generate the ground-truth 

deformation field in three steps. Step 1: We perform deformable registration on intensity 

images by SyN under the recommended parameter setting. Step 2: Then, for each image 

pair, we check the registration result and tune the parameters individually in order to obtain 

better registration quality. Here, better registration means more favorable result in visual 

inspection and quantitative DSC evaluation at the same time. Step 3: Finally, we apply 

Demons to align the boundaries of the manually-edited tissue segmentation maps for more 

accurate deformable registration. In this way, the final deformation field is generated. Note 

that, the manually-edited tissue segmentation maps are only used to prepare the training 

data.

In order to fully evaluate the performance of the proposed registration method, we carry out 

the experiments in three parts to gradually increase the difficulties of the registration tasks 

by performing the deformable registration (1) on the same database as both training and 

testing within LONI (Section III.A), (2) on two different databases (by training on LONI 

while testing on IXI; Section III.B), and (3) across different databases (the two images 

within the reference-subject image pair are drawn from ADNI and LONI, respectively; 

Section III.C). Note that, when we use LONI data in the testing stage, we exclude the 25 

training images and consider the remaining 15 images only. For the proposed method, 6% of 

the whole brain volume (taking no account of the background voxels) are sampled as the key 

points to drive the image registration in the application stage.

A. Experiments on LONI Database—We first perform the registration experiments on 

the LONI database by using the remaining 15 images for testing. By drawing a pair of 

images from 15 images, we perform registration 210 times in total for each method. In this 

experiment, we iterate the trained model twice, as the incremental deformations become 

negligible since the third iteration. The averaged results are reported as follows. Fig. 8 has 

shown the DSC value per ROI after registration by SSD-Demons, SyN and the proposed 

method. For the 54 ROIs, the proposed method has shown improved DSC values on 35 

ROIs, and among them 23 ROIs are improved with statistical significance compared with the 

two state-of-the-art methods.
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Fig. 9 has shown the comparison results of the three methods based on the tissue 

segmentation maps. From these results, we can observe that, in most cases, the proposed 

method achieves the overall best performance in terms of both DSC and ASD. Although for 

GM, SyN has higher accuracy, the difference is not significant. Therefore, the proposed 

method can at least achieve the comparable registration performance compared with the 

state-of-the-art methods. It is worth noting that, the proposed method only samples 6% of 

the whole brain image voxels to obtain the reported performance without parameter tuning. 

This can well demonstrate that, the trained cue-aware deep regression network is accurate 

and the proposed deformable registration method is well applicable.

B. Experiments on IXI Database—To evaluate the robustness and the transferring 

capacity of the trained model, we directly use the learned model to perform the registration 

on the IXI database. For the total 30 images, we equally split into two groups that are served 

as the reference image group and the subject image group, respectively. In this section, we 

perform registration 225 times in total for each method by drawing the reference and subject 

from the two groups. Among 83 ROIs defined in IXI, 70 stable ROIs are used here to 

evaluate the registration performance. There are 13 ROIs excluded, since those ROIs are too 

tiny for reliable performance evaluation. In this experiment, since the new incremental 

deformations are almost zero in the third iteration, we also iterate the trained model two 

times.

The DSC values are provided in Fig. 10 for the comparison of SSD-Demons, SyN and the 

proposed method. From Fig. 10, we can observe that, for the 70 ROIs, the proposed method 

works better than both SSD-Demons and SyN in 50 ROIs. Among them, the performance of 

28 ROIs are statistically significantly improved, as marked by the symbols “+” and “*” in 

Fig. 10. This result suggests three merits of our method. 1) The superior robustness of the 

proposed method. The generalization of the learned model has been well demonstrated in 

this experiment since we successfully apply the model on a different database and achieve 

promising registration performance. 2) The high accuracy of the proposed method. The 

performance is at least comparable with the state-of-the-art registration methods, while for 

most ROIs the proposed method has shown even better performance. 3) The good 

applicability of the proposed method. We do not need to manually tune the parameters; 

instead, we can just directly apply the model to the registration task to obtain the reported 

results, which is flexible in clinical application.

C. Experiments on ADNI Database—In this section, in order to further increase the 

challenge of the registration task, we perform the registration across two different databases, 

i.e., LONI and ADNI. As we know, LONI data are the brain images scanned from young 

adults, while ADNI data are from the old adults containing Alzheimer’s disease subjects. In 

this case, the reference-subject image pair may have very large appearance and anatomical 

variation, as shown in the first and last columns in Fig. 16. For the LONI data (excluding the 

training images), we randomly select 4 images to serve as the reference image. All 50 

images in ADNI are registered to the 4 references. So, we totally perform 200 times 

registration for each method. In this section, we first evaluate each contribution of this paper, 

and then compare with the state-of-the-art methods.
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Although we saturate the displacement magnitude for feasible training, we can still estimate 

the large deformations by applying the trained model iteratively in the application stage. The 

displacement magnitude can thus be iteratively and accurately accumulated to the actual 

large deformation. As shown in Fig. 11, the registration performance has improved 

significantly after applying the model for the second iteration. The performance reaches 

convergence after the third iteration, as the incremental deformations are mostly vanished.

1) Evaluation for the Contribution of the Auxiliary Contextual Cue: We evaluate the 

contribution of the auxiliary contextual cue, i.e., the local similarity map, when constructing 

the registration network. As shown in Fig. 12, without using the contextual cue, the 

registration performance drops in average along with the increased standard deviation. By 

using the multi-scale contextual cue, the registration performance is improved. The best 

performance is achieved using our proposed scale-adaptive contextual cue generated by 

poolingC. The results can well demonstrate that, the contextual cue can enhance the 

awareness of the network for the complex registration task. Moreover, the scale-adaptive cue 

generated by poolingC can help suppress the redundant information compared to the case of 

directly using multi-scale similarity maps directly, thus further improving the registration 

performance. The results above are also consistent with the loss curves shown in Fig. 7.

2) Evaluation for the Contribution of the Sampling Strategy: Fig. 13 compares the 

deformation fields using the two models trained under the proposed KP-TB sampling and 

the KP-based random sampling strategies, respectively. Specifically, in the KP-based 

random sampling, we acquire patch samples from edges yet disable balanced sampling. The 

application stage is the same for these two models. As we can observe in the figure, without 

using the proposed balanced sampling strategy, the deformation field is underestimated. That 

is, the KP-TB sampling strategy is effective to enhance the accuracy and the generalization 

capability of the registration network, since the trained model is adaptive to large 

displacement magnitudes.

To evaluate the influence of the sampling strategy in the application stage, we here compare 

the random sampling (Random) with the proposed KP sampling (Proposed) using the same 

trained model, as the results shown in Fig. 14, the key points sampling is more effective than 

the random sampling. Since the key points are often located at anatomical rich region like 

strong edges or corners, thus can generate more distinctive similarity map and can also 

largely mitigate the ambiguous matching. Moreover, the key points also propagate the 

accurate displacement estimation to the neighboring smooth region during interpolation, 

which can eventually contribute to the accurate deformation field.

3) Comparison with the State-of-the-art Methods: In this section, we use LCC-Demons 

as the comparison method since it is accurate and robust when registering the images with 

large appearance intensity variance. Since we only have WM and GM tissue segmentation 

maps, we evaluate the performances on the two tissue maps and report the results in Fig. 15. 

To further illustrate the effectiveness of the proposed method, we also provide visual 

inspection in Fig. 16.
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From Fig. 15, we can observe that, by directly applying the trained registration model in this 

challenging task, the proposed method achieves the best performance in terms of both DSC 

and ASD values. This suggests that the proposed method can consistently work well for this 

challenging registration task. Without any parameter tuning, the proposed method 

significantly outperforms the two state-of-the-art registration methods by directly applying 

the trained model to the registration task.

We further provide visual comparison results in both cross-sectional and 3D rendering view, 

in order to show the detailed differences among these three methods in Fig. 16 From the 

cross-sectional views in the top two rows, it is obvious that the ventricle regions are more 

accurately registered to the reference images by adopting the proposed method, as indicated 

by the red arrows in the figure. Furthermore, more impressive improvements can be obtained 

on brain cortical regions in the 3D rendering results. For example, in the third row, after 

registration by the proposed method, the structure of the post central gyrus and the pathway 

of the central sulcus are more similar to the corresponding reference cortical regions. In the 

fourth row, the improvements on the lateral fissure (located between the frontal lobe and 

temporal lobe) are also visibly clear by the proposed method, compared with both LCC-

Demons and SyN.

From these results, we can draw the following conclusions. (1) The key-points sampling 

strategy plays a positive role in better registration of the brain cortical region. Based on our 

proposed strategy, the key points are more likely to be located at the roots of the sulcus, the 

crowns of gyrus, or the strong boundaries. These locations are reliable and important to steer 

the accurate deformable registration, since they are always of great anatomical significance. 

(2) The proposed method is accurate and robust even dealing with the challenging 

registration task in this section, which suggests good generalizability of the trained model 

based on the proposed cue-aware deep regression network. (3) The proposed method is 

flexible for clinical application, since it can be consistently performed well for various 

registration tasks without parameter tuning and setting.

IV. DISCUSSION AND CONCLUSION

We first discuss the runtime of our method. Our algorithm is implemented on an Nvidia 

Titian XP GPU for both the training and the application stages. In the training stage, usually 

6~8 epochs are needed for convergence, as shown by the loss curve in Fig. 7 (c). We stop the 

training process when the validation loss cannot decrease. Thus, the training often takes 

24~36 hours in total. In the application stage, we divide the entire image into 8 non-

overlapping blocks. The displacements of the key points are predicted simultaneously for all 

blocks. Next, we use block-wise TPS (also 8 blocks but with overlap) to interpolate the 

deformation field for the whole image. Therefore, registering a pair of images often takes 

5~6 minutes by iterating the trained model for two times (and 7~8 minutes for three times) 

in the application stage. In our future work, we will try to train an interpolation model based 

on fully convolutional neural network (FCN), which may further speed up the runtime of our 

registration algorithm.
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The auxiliary contextual cue, i.e., the local similarity map, has played an important role to 

establish an accurate and robust registration model by deep learning. Basically, the local 

similarity map is a kind of intrinsic hint for conducting the local matching in deformable 

registration. We calculate this local similarity map through the proposed data-driven 

convolution and PoolingC operation. In the data-driven convolution, for each patch pair, the 

kernel (i.e., the small region as shown in Fig. 4) is extracted from the patch sample with 

different scales. Obviously, the appearance of the kernel varies based on the patch samples. 

Thus, it is difficult to directly learn the features based on the common kernels as in the 

conventional convolution operation in CNN. Moreover, this local similarity map can 

improve the robustness and generalization of the network, which can better fulfill the data 

diversity. As the images may have inconsistent appearance across different databases, the 

local similarity map can provide a robust guidance to make the network to be well aware of 

the local matching during the training of the deformable registration network.

The KP-TB sampling strategy is also another important strategy in this paper. First, the key-

points (KP) sampling has been proposed for addressing the ambiguous matching problem, 

which has been illustrated in Section II.B and Fig. 2. Note that, the smooth region without 

sufficient anatomical details cannot accurately establish the local matching, especially for 

the patch-wise training manner. While the key points sampling strategy used in both training 

and testing stages can guarantee that all sampled patches have sufficient anatomical details, 

which can provide more accurate local matching results. Second, the truncated-balanced 

(TB) sampling has been proposed and only applied in the training stage. This is because, the 

displacement distribution is quite unbalanced for the real deformation field, as shown in Fig. 

2. The TB sampling can make the network adaptive to different displacement magnitudes, 

which can improve the network accuracy during training, and eventually predict accurate 

displacement vector in the testing stage.

The ground-truth deformations used to train the registration model have been carefully 

prepared based on existing registration algorithms, and also with the help of accurate tissue 

segmentation. Here, we discuss the registration performance with regard to the quality of the 

training data. Specifically, we have randomly selected 10 pairs of images (the image pairs 

used in Section III.C) that are not included in our previous training. Then, for each pair, we 

process it through the three steps that we used to generate the training data, which have been 

illustrated in Section III. Then, these registration results are compared with the results 

obtained by our proposed method. The DSCs after performing three respective steps are 

reported in the Table II, in addition to the results using our proposed method to directly 

register the image pairs. From the results we can observe that, the performance of our 

method is restricted by the upper bound in preparing the training data. However, Step 3 

actually considers manual tissue segmentation, while our method outperforms Step 2 where 

only the intensity image is available. That is, our method performs better than the 

conventional registration method (even after manual yet tedious parameter tuning) in the 

application stage where only intensity information can be used for guiding the registration.

In this paper, we have proposed a novel deformable registration method of using the deep 

neural network to directly learn the mapping from an image pair to the corresponding 

deformation field. This highly non-linear and complex mapping was modeled by the novel 
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cue-aware deep regression network, in which we adopted contextual cue to better guide the 

learning process. Due to ambiguous matching and unbalanced deformation distribution, a 

key-point truncated-balanced sampling strategy was developed to generate an informative 

and well-distributed training set to facilitate learning. Experiments on variable databases and 

registration tasks have shown improved accuracy and robustness, which could be applicable 

to various clinical applications in the future.
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Fig. 1. 
Method overview: Cue-aware deep regression network for deformable image registration. 

The input is a pair of images and the output is the deformation field. For simplicity, 

examples are shown in 2D; but the actual implementation is carried out in 3D.
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Fig. 2. 
Demonstration of matching ambiguity and imbalanced deformation distribution. (a) Patch 

pair is similar in appearance but with different forward and backward deformation fields 

(DF) if swapping the order of reference and subject. (b) Patch pairs are similar in appearance 

but associated with very different DFs.
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Fig. 3. 
Illustration of KP-TB sampling and the typically sampled locations.
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Fig. 4. 
Similarity maps of the two patches given by data-driven convolution using multi-scale 

kernels. The solid and dashed circles represent correct and incorrect guidances, respectively. 

r denotes the radius of the convolutional kernels. “*” is the data-driven convolution. A 

higher similarity value indicates greater correspondence with the center location.
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Fig. 5. 
Illustration of cross-channel pooling (PoolingC): Nonlinear fusion of multiple similarity 

feature maps by getting rid of redundant information. (a) and (b) are the poolingC results of 

the 4-scale similarity feature maps in Fig. 4.
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Fig. 6. 
The architecture of deep regression network.
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Fig. 7. 
Comparison of loss curves in three training scenarios: (a) without using contextual cue 

(Without Cue), (b) using the multi-scale contextual cue without poolingC (Multi-scale 
Cue), and (c) using the proposed scale-adaptive contextual cue generated by poolingC 

(Scale-adaptive Cue).
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Fig. 8. 
Comparison of the registration results by SSD-Demons, SyN and the proposed method, 

respectively. The results are evaluated in term of DSC across the 54 ROIs in LONI LPBA40 

database. “+” indicates that the proposed method outperforms the two state-of-the-art 

methods and “*” means statistically significant improvement (p<0.05 for paired t-test).
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Fig. 9. 
DSC and ASD (mm) evaluated on the WM and GM tissue maps after performing the 

deformable registration by SSD-Demons, SyN and the Proposed method, respectively.
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Fig. 10. 
Comparison of the registration results by SSD-Demons, SyN and the proposed method, 

repectively. The results are evaluated in term of DSC (%) across the 70 ROIs in IXI 

database. “+” indicates that the proposed method outperforms the two state-of-the art 

methods and “*” means statistically significant improvement (p<0.05 for paired t-test).
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Fig. 11. 
The registration performance (in DSC) by iterating the trained model for different times.
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Fig. 12. 
Mean DSC value with standard deviation evaluated on the WM and GM tissue maps, after 

performing the deformable registration by using the models trained without the contextual 

cue (Without Cue), with multi-scale contextual cue (Multi-Scale Cue), and using the 

proposed scale-adaptive contextual cue (Scale-adaptive Cue).
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Fig. 13. 
Visual comparison of registration results using the proposed cue-aware deep network under 

different sampling strategies in the training stage: the KP-based random sampling and the 

proposed KP-TB sampling.
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Fig.14. 
Mean DSC value with standard deviation evaluated on the WM and GM tissue maps after 

performing the deformable registration using the same trained model, while with different 

sampling strategies in the application stage: random sampling (Random) and the proposed 

key-points sampling (Proposed).
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Fig.15. 
DSC and ASD (mm) evaluated on the WM and GM tissue maps after performing the 

deformable registration by LCC-Demons, SyN and the Proposed method, respectively.
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Fig. 16. 
Qualitative comparison of results by LCC-Demons, SyN and the proposed method 

(Proposed) in both cross-sectional view (the top two rows) and 3D rendering view (the 

bottom two rows).

Cao et al. Page 35

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cao et al. Page 36

TABLE I

DETAILED INFORMATION FOR THE THREE DATABASES: LONI LPBA40, IXI AND ADNI

Data Image
#

Train
#

Test
#

ROI
Labels

Tissue
Maps

Size &
Resolution

LONI 40 25 15 54 GM, WM 220×220×220

IXI 30 0 30 83 0

ADNI 50 0 50 0 GM, WM 1×1×1mm3
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TABLE. II

THE REGISTRATION RESULTS AFTER PERFORMING THE PROPOSED METHOD (PROPOSED) 

AND AFTER EACH STEP USED TO GENERATE THE TRAINING DATA

DSC (%)

GM WM Overall

Aft. Step 1 69.36±5.39 78.16±6.16 73.76±5.11

Aft. Step 2 69.88±5.21 79.23±5.11 74.56±4.92

Aft. Step 3 71.02±5.07 80.54±4.52 75.78±4.30

Proposed 70.49±4.93 80.02 4.46 75.26±4.37
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