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Abstract. In this paper we present a novel deformable registration algo-
rithm for diffusion tensor (DT) MR images that enables explicit analytic
optimization of tensor reorientation. The optimization seeks a piecewise
affine transformation that divides the image domain into uniform re-
gions and transforms each of them affinely. The objective function cap-
tures both the image similarity and the smoothness of the transformation
across region boundaries. The image similarity enables explicit orienta-
tion optimization by incorporating tensor reorientation, which is neces-
sary for warping DT images. The objective function is formulated in a
way that allows explicit implementation of analytic derivatives to drive
fast and accurate optimization using the conjugate gradient method. The
optimal transformation is hierarchically refined in a subdivision frame-
work. A comparison with affine registration for inter-subject normal-
ization of 8 subjects shows that our algorithm improves the alignment
of manually segmented white matter structures (corpus callosum and
cortio-spinal tracts).

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI)[1] is a water diffusion
imaging technique that has been used to provide unique insight into the white
matter (WM) organization in human brains [2, 3]. Diffusion describes the ran-
dom movement of molecules. The rate of diffusion at a point, as a function of
spatial direction, is refered to as a diffusion profile. This function can be sam-
pled by acquiring a series of MR images sensitized to diffusion in a set of selected
directions. In DT-MRI, diffusion profiles are assumed to be Gaussian and are
defined by 2nd-order symmetric tensors. A DT image is produced by fitting this
model to sampled diffusion profiles in each voxel of the MR series. The way in
which DT describes local water diffusion can be best understood through its
eigenvectors and eigenvalues. The eigenvectors of a DT coincide with the three
principal directions of diffusion while the corresponding eigenvalues measure the
rates of diffusion in those directions. In fibrous tissue, such as WM, although wa-
ter is free to diffuse along the axis of the axon fiber bundles, diffusion is hindered
in perpendicular directions by myelin that bound the axons. Consequently, the
principal eigenvectors of the DTs measured in these regions tend to be parallel
to the axis of the axon bundles. Compared to conventional MR images, this
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unique ability of DT images to reveal the orientation of axon bundles makes the
modality an ideal choice for understanding and analyzing WM structures.

The ability to detect WM differences between pairs and groups of subjects
is essential in studying the pathology of various neurological disorders that are
associated with WM abnormalities and may prove useful in early detection. To
enable such group comparison analysis using DT images, a registration method
is required [4, 5]. Compared to registering scalar images, the registration of DT
images is particularly challenging not only due to the multi-dimensionality of
the data, but also because one must ensure that the DT orientations remain
consistent with the anatomy after image transformations [6]. Current DT reg-
istration techniques either circumvent tensor reorientation by registering scalar
images derived from DT images, thus discarding the orientation component of
the data, or perform tensor reorientation iteratively rather than analytically,
thus precluding direct applications of gradient methods (see [7] for a survey).

In this paper we describe a novel algorithm for deformable registration of
DT images that incorporates explicit optimization of tensor reorientation in an
analytic manner. The optimization seeks a piecewise affine transformation that
divides the image domain into uniform regions, each of which is transformed
affinely. The objective function optimizes both the image similarity and the
smoothness of the transformation across contiguous regions. The piecewise na-
ture of the candidate transformations allows us to express the image similarity
as the sum of the region similarities. Individual region similarity is computed
using our previously published affine registration algorithm [8] which incorpo-
rates tensor reorientation in its objective function analytically, allowing explicit
orientation optimization. The smoothness criterion imposed on the transforma-
tion is adapted from classic optical flow estimation [9], and it takes an analytic
form as well. The resulting algorithm is based on analytic derivatives and uses
the conjugate gradient method for optimization. By applying our algorithm to
inter-subject registration, we demonstrate the algorithm is computationally ef-
ficient and improves the quality of image alignment.

In section 2, we will first briefly review the properties of DT images and the
affine registration algorithm, then present our new piecewise affine formulation,
and finally discuss the details of registration evaluation. The results of applying
our algorithm to eight different subjects and their evaluations are shown and
discussed in section 3.

2 Method

A diffusion tensor D is a symmetric and positive-definite (SPD) 2nd-order tensor,
which is related to a Gaussian diffusion profile dD(k̂) by the quadratic form

dD(k̂) = k̂TDk̂, (1)

where k̂ is a unit vector defined over the unit sphere S
2. By measuring values of

dD(k̂) for different k̂, D can be determined through (1) by least square fitting.
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Fig. 1. The axial slice 24 of the DT image chosen as the template in this study. From
left to right are the trace, the FA and the color-coded principal eigenvector maps. The
latter is scaled by the FA map and the directions encoded by each color channel are
mediolateral for red, anteroposterior for green and superoinferior for blue.

Because D has six independent components, measurements from a minimum of
6 independent directions have to be acquired.

Two useful transformation-invariant scalar indices for D are its trace and
fractional anisotropy (FA). The trace is proportional to the mean diffusivity.
Because the cerebrospinal fluid (CSF) has the most freely diffusing water, it
appears the brightest in trace maps. The FA values vary from 0 for isotropic
diffusion, such as in CSF and grey matter (GM), to 1 for anisotropic diffusion,
such as in WM. Thus the WM is highlighted in FA maps. To illustrate WM fiber
bundle orientation, a popular method is to use the principal eigenvector map [10]
scaled by FA in which the orientation is encoded in terms of color. The stark
difference between FA and principal eigenvector maps is the best illustration of
the rich orientation information contained in DT images. An example of these
maps is shown in fig. 1.

When measuring the similarity of two DTs, various metrics are available.
Given no clear consensus on what the best metric may be, we have chosen to com-
pare three different metrics that are defined using the following inner products:

< D1,D2 >=

⎧
⎪⎨

⎪⎩

Tr(D1)Tr(D2) (for trace distance)

Tr(D1D2) (for Euclidean distance)

2Tr(D1D2) + Tr(D1)Tr(D2) (for L2 distance)

,

with the actual distance given by ‖D1 − D2‖ =
√

< D1 − D2,D1 − D2 >. The
trace distance (TD) between two tensors is the absolute value of the difference
of their traces and is proportional to the difference of their mean rates of diffu-
sion. The Euclidean distance (ED) is the Frobenius norm of the difference of two
tensors. The ED reflects the relative orientation of the tensors and it is shown to
perform better than the TD for DT registration [7]. The L2 distance (LD) is de-
fined in the functional space of diffusion profiles which is, generically, an infinite
dimensional Hilbert space [8]. When applied to DTs, the LD is a weighted sum
of the ED and the TD and our prior work suggests that it affords more robust
registration over small regions [8] than each of those metrics does on its own.
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2.1 Affine Registration Algorithm

The unique feature of our affine registration algorithm [8] is that the tensor
reorientation is incorporated into the analytic objective function for explicit
orientation optimization. This is accomplished by the combination of a special
way of parameterizing the affine transform and a particular tensor reorientation
strategy, which are described below.

An affine transformation F is parameterized as

F (x) = Mx + T = (QS)x + T , (2)

where M , the Jacobian matrix of F , is parameterized based on its polar decom-
position in terms of Q, an orthogonal matrix with determinant 1 representing
pure rotation, and S, a SPD matrix representing pure deformation. The matrix
Q can be represented using the 3 Euler angles, the matrix S has 6 independent
components and the translation T has 3 components. We use these 12 variables
to parametrize the affine transformation F , and denote them by vector p.

For tensor reorientation, we use the finite strain (FS) reorientation strat-
egy [6]. We choose FS over the more accurate method, the preservation of prin-
cipal directions (PPD), because the PPD method is not analytic but algorithmic,
computationally expensive, and the difference in accuracy between the two meth-
ods is minor [7]. When an orthogonal transformation Q is applied to a tensor
D, the corresponding reorientation is given by QDQT [6]. For a non-orthogonal
transformation M , the FS strategy finds the best orthogonal approximation,
QM , to M and uses it for reorientation. Our method leverages the fact that the
pure rotation component of the polar decomposition of M is precisely the best
orthogonal approximation of M . Thus, in the framework of our method, FS reori-
entation can be formulated analytically, rather than using eigen-decomposition,
as done in other methods.

The objective function of registration is then

O(p) =
∫

R3
‖Ds((QS)x + T ) − QDt(x)QT‖2 dx , (3)

where Dt and Ds are the template (fixed) and subject (moving) DT images
respectively. The derivatives of O(p) can be computed analytically; for example,
the derivative with respect to ti, the i-th component of the translation T is

∂O

∂ti
=

∫

R3
2 <

∂Ds

∂xi
,Ds((QS)x + T ) − QDt(x)QT > dx.

2.2 Piecewise Affine Algorithm

The piecewise algorithm we propose involves using our affine algorithm for
region-wise matching, enforcing the overall smoothness of the warp via smooth-
ness constraints on interfaces of regions.

We subdivide the template Dt into equal size regions denoted Ωi. In general,
each region, Ωi, has 6 neighboring regions and thus 6 different interfaces. For
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each region Ωi in the template, the goal of the piecewise algorithm is to find
an affine transformation Fi that gives the best match with the subject, under
certain smoothness constraints that are described below.

We will refer to the collection of Fi over all possible regions as a piecewise
affine transformation, denoted as F. Because the transformation within each re-
gion is affine, the smoothness within a region is guaranteed. The smoothness
of the piecewise affine transformation thus needs to be imposed only on region
interfaces. Following the standard approach in optical flow estimation [9], we
minimize the transformation discontinuities across interfaces, which is formu-
lated for neighboring regions Ωi and Ωj as

∫

Ωi∩Ωj

‖Fi(x) − Fj(x)‖dx. (4)

Similar to (3), analytic derivatives can be derived for (4).
If the number of regions in each dimension is n, the parameter space of

this optimization problem has a dimension of 12n3. We subdivide the template
hierarchically with n being 4, 8 and 16. At the finest subdivision level, the
dimension of the parameter space is 49152. The ability to compute derivatives
of (4) analytically allows us to take advantage of the conjugate gradient method,
which is generally more efficient than optimization techniques that do not use
derivatives, such as the Powell’s direction set.

By construction, discontinuities across interfaces in the piecewise affine trans-
formation can be minimized but not eliminated. Therefore, after the piecewise
affine approximation to the underlying trasformation is estimated at the finest
level, it is interpolated using the standard approach [11] to generate a smooth
warp field which is then used to deform the subject into the space of the template
with the PPD reorientation strategy discussed in section 2.1.

2.3 Registration Evaluation

Here we outline two voxel-based measures that are specific to DT images to
quantify the quality of image alignment. They are used to evaluate our inter-
subject registration results.

To evaluate the overall quality of matching, we compute the average overlap
of eigenvalue-eigenvector pairs (AOE) [12] of all the WM voxels (FA ≥ 0.3) in
the template and the corresponding voxels in the image to compare. The AOE
measures, on average, the extent to which two tensors at each voxel are aligned;
it is defined as

1
N

N∑

i=1

∑3
j=1 λi

jλ
′
j
i(εi

j · ε′j
i)2

∑3
j=1 λi

jλ
′
j
i

, (5)

where λi
j , εi

j and λ′
j
i, ε′j

i are the j-th eigenvalue-eigenvector pair at the i-th voxel
location in the pair of images, and N is the total number of voxel locations to
compare.

To assess the quality of local matching, we compute the average angular
separation of the principal eigenvector (AAS) [6] in a region-specific manner as
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in [13]. The AAS measures specifically how well the principal eigenvectors are
aligned; it is defined as

∑N
i=1

√
µiµ′

i arccos |εi
1 · ε′1

i|
∑N

i=1

√
µiµ′

i

, (6)

where µi, εi
1 and µ′

i, ε′1
i are the FA and the principal eigenvector at the i-th voxel

location in both images. The two regions we have chosen are the corpus callosum
(CC) and the cortico-spinal tracts (CST), which are manually segmented from
the template.

3 Results

Here we report the results of inter-subject registration of eight subjects to the
template shown in fig. 1. The DT images are of the size 128 × 128× 48, with the
voxel spacings 1.72 × 1.72 × 3.0 mm3. Each subject is registered to the template
first using our affine registration algorithm and followed by the new piecewise
affine algorithm. The transformation estimated from the affine registration is
used to initialize the following piecewise affine registration.

For visual inspection, the color-coded principal eigenvector maps of one sub-
ject after affine registration and after piecewise affine registration are shown
together with the template in fig. 2. Notice that the genu, splenium and internal
capsules are better aligned after piecewise registration. Moreover, the alignment
of the CC after piecewise registration is significantly better than after affine
registration.

Fig. 2. The color-coded principal eigenvector maps of the axial slice 24 (top row) and
the sagittal slice 64 (bottom row) of one of the subjects in this study together with the
template. From left to right are the subject after affine registration and after piecewise
affine registration, and the template.
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Fig. 3. Quantitative evaluation of registration results: In each graph, the x-axis repre-
sents the list of 8 subjects and the y-axis is some evaluated quantity. From left to right,
the quantity evaluated are the AOE of all the WM voxels, the AAS of the voxels in the
manually segmented CC, and the AAS of the voxels in the manually segmented CST.
For each subject, there are six data points in each graph that correspond to six differ-
ent registration methods, the affine (grey symbols) and piecewise affine (black symbols)
registrations with three different DT metrics: TD (inverted triangles), ED (circles) and
LD (triangles), and larger AOE or smaller AAS correspond to better alignment.

Quantitative evaluations are done as outlined in section 2.3. The results are
summarized in fig. 3. It is evident that, consistent with the observation from
visual inspection, the new piecewise algorithm outperforms its affine counterpart
consistently for all the metrics tested. The two tensor metrics perform similarly
well and they do sligntly better than the scalar metric TD.

Finally, the algorithm is computationally efficient. Running on a 3.0GHz
Pentium 4 Xeon processor, the computation time of registering each subject is
less than 10 minutes.

4 Conclusion

In conclusion, we have presented a piecewise affine algorithm that demonstrates
explicit orientation optimization required for optimal matching of DT imagery
can be accomodated in deformable registration. Morever, our novel formulation
enables fast and accurate optimization using analytic derivatives. Results from
inter-subject registration demonstrate the algorithm improves image alignment
in a region-specific manner over affine registration. Future work includes more
quantitative assessment of the algorithm using larger datasets and analyzing the
effect of smoothing of the piecewise affine transformations.
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