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Abstract

Siamese-based trackers have achieved excellent perfor-

mance on visual object tracking. However, the target tem-

plate is not updated online, and the features of the target

template and search image are computed independently in a

Siamese architecture. In this paper, we propose Deformable

Siamese Attention Networks, referred to as SiamAttn, by in-

troducing a new Siamese attention mechanism that com-

putes deformable self-attention and cross-attention. The

self-attention learns strong context information via spa-

tial attention, and selectively emphasizes interdependent

channel-wise features with channel attention. The cross-

attention is capable of aggregating rich contextual inter-

dependencies between the target template and the search

image, providing an implicit manner to adaptively update

the target template. In addition, we design a region refine-

ment module that computes depth-wise cross correlations

between the attentional features for more accurate track-

ing. We conduct experiments on six benchmarks, where our

method achieves new state-of-the-art results, outperform-

ing the strong baseline, SiamRPN++ [24], by 0.464→0.537

and 0.415→0.470 EAO on VOT 2016 and 2018.

1. Introduction

Visual object tracking aims to track a given target ob-

ject at each frame over a video sequence. It is a funda-

mental task in computer vision [17, 16, 20], and has numer-

ous practical applications, such as automatic driving [23],

human-computer interaction [28], robot sensing, etc. Re-

cent efforts have been devoted to improving the perfor-

mance of visual object trackers. However, developing a fast,

accurate and robust tracker is still highly challenging due to

the vast amount of deformations, motions and occlusions

that often occur on video objects with complex background

[38, 22, 10].

Deep learning technologies have significantly advanced

the task of visual object tracking, by providing the strong
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Figure 1: Tracking results of our deformable Siamese atten-

tion networks (SiamAttn) with three state-of-the-art track-

ers. Our results are more accurate, and are robust to appear-

ance changes, complex background and close distractors

with occlusions. Fig. 4 further shows the strong discrimi-

native features learned by our Siamese attention module.

capacity of learning powerful deep features. For example,

Bertinetto et al. [1] first introduced Siamese networks for

visual tracking. Since then, object trackers built on Siamese

networks and object detection frameworks have achieved

the state-of-the-art performance, such as SiamRPN [25],

SiamRPN++ [24], and SiamMask [36]. The Siamese-based

trackers formulate the problem of visual object tracking as

a matching problem by computing cross-correlation sim-

ilarities between a target template and a search region,

which transforms the tracking problem into finding the tar-

get object from an image region by computing the high-

est visual similarity [1, 25, 24, 36, 44]. Therefore, it

casts the tracking problem into a Region Proposal Net-

work (RPN) [13] based detection framework by leverag-

ing Siamese networks, which is the key to boost the per-

formance of recent deep trackers.

Siamese-based trackers are trained completely offline by

using massive frame pairs collected from videos, and thus
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the target template can not be updated online. This makes it

difficult to precisely track the targets with large appearance

variations, significant deformations, or occlusions, which

inevitably increase the risk of tracking drift. Furthermore,

the convolutional features of the target object and the search

image are computed independently in Siamese architec-

ture, where background context information is completely

discarded in target features, but is of great importance to

distinguish the target from close distractors and complex

backgrounds. Recent work attempted to enhance the tar-

get representation by integrating the features of previous

targets [41, 14], but the discriminative context information

from the background is ignored. Alternatively, we introduce

a new Siamese attention mechanism that encodes rich back-

ground context into the target representation by computing

cross-attention in the Siamese networks.

Recently, the attention mechanism was introduced to vi-

sual object tracking in [35, 45], which inspired the cur-

rent work. However, the attentions and deep features of

the target template and the search image are computed

separately in [35, 45], which limits the potential perfor-

mance of the Siamese architecture. In this work, we pro-

pose Deformable Siamese Attention Networks, referred as

SiamAttn, to improve the feature learning capability of

Siamese-based trackers. We present a new deformable

Siamese attention which can improve the target representa-

tion with strong robustness to large appearance variations,

and also enhance the target discriminability against distrac-

tors and complex backgrounds, resulting in more accurate

and stable tracking, as shown in Fig. 1. The main contribu-

tions of this work are:

– We introduce a new Siamese attention mechanism

that computes deformable self-attention and cross-

attention jointly. The self-attention captures rich con-

text information via spatial attention, and at the same

time, selectively enhances interdependent channel-

wise features with channel attention. The cross-

attention aggregates meaningful contextual interde-

pendencies between the target template and the search

image, which are encoded into the target template

adaptively to improve discriminability.

– We design a region refinement module by computing

depth-wise cross correlations between the attentional

features. This further enhances feature representations,

leading to more accurate tracking by generating both

bounding box and mask of the object.

– Our method achieves new state-of-the-art results on six

benchmarks. It outperforms recent strong baselines,

such as SiamRPN++ [24] and SiamMask [36], by a

large margin. For example, it improves SiamRPN++

by 0.464→0.537 and 0.415→0.470 (EAO) on VOT

2016 and 2018, while keeping real-time running speed

using ResNet-50 [15].

2. Related Work

Correlation filter based trackers have been widely used

since MOSSE [3], due to their efficiency and expansibility.

However, the tracking object can be continuously improved

online, which inevitably limits the representation ability of

such trackers. Deep learning technologies provide a power-

ful tool with the ability to learn strong deep representations,

and recent work attempted to incorporate the correlation fil-

ter framework with such features learning capability, such

as MDNet [31], C-COT [8], ECO [7] and GFS-DCF [40].

There is another trend to build trackers on Siamese net-

works, by learning from massive data offline. Bertinetto et

al. [1] first introduced SiamFC for visual tracking, by using

Siamese networks to measure the similarity between target

and search image. Then Li et al. [25] applied a region pro-

posal network (RPN) [13] into Siamese networks, referred

as SiamRPN. Zhu et al. [44] extended the SiamRPN by

developing distractor-aware training. Recently, SiamDW-

RPN [43] and SiamRPN++ [24] were proposed, which al-

low the Siamese-based trackers to explore deeper networks,

while Wang et al. [36] developed a SiamMask that incor-

porates instance segmentation into tracking. Our work is

related to that of [11] where a C-RPN was developed to

progressively refine the location of target with a sequence

of RPNs, but we design a new module that only refines a

single output region, which is particularly lightweight and

can be integrated into very deep Siamese networks.

However, Siamese-based trackers can be affected by dis-

tractors with complex backgrounds. Recent work attempted

to design various strategies to update the template online, in

an effort to improve the target-discriminability of Siamese-

based trackers, such as MLT [4], UpdateNet [42] and Grad-

Net [26]. An alternative solution is to extend existing on-

line discriminative framework with deep networks for end-

to-end learning, e.g., ATOM [6] and DiMP [2]. In addition,

Zhu et al. [45] exploited motion information in Siamese net-

works to improve the feature representation.

Recently, the attention mechanism has been widely ap-

plied in various tasks. Hu et al. [18] proposed a SENet

to enhance the representational power of the networks by

modeling channel-wise relationships via attentions. Wang

et al. [37] developed a non-local operation in the space-time

dimension to guide the aggregation of contextual informa-

tion. In [12], a self-attention mechanism was introduced to

harvest the contextual information for semantic segmenta-

tion. Particularly, Wang et al. [35] proposed a RASNet by

developing an attention mechanism for Siamese trackers,

but it only utilizes the template information, which might

limit its representation ability. To better explore the poten-

tials of feature attentions in Siamese networks, we compute

both self-attention and cross-branch attention jointly with

deformable operations to enhance the discriminative repre-

sentation of target.

6729



DSA Module Siamese Region Proposal Networks Region Refinement ModuleInput

Search

127 x 127 x 3

255 x 255 x 3

BBox

Mask

co
n

v
1

co
n

v
2

_
x

co
n

v
3

_
x

co
n

v
4

_
x

co
n

v
5

_
x

co
n

v
1

co
n

v
2

_
x

co
n

v
3

_
x

co
n

v
4

_
x

co
n

v
5

_
x

Proposal

Proposal

Template

Deformable

Siamese 

Attention 

Module

Siam

RPN

Siam

RPN

Siam

RPN

Cls

Reg

Depthwise

Cross 

Correlation

Features 

Fusion 

Block

Features 

Fusion 

Block

Deformable 

ROI pooling

Deformable 

ROI pooling

BBox

Head

Mask

Head

Figure 2: An overview of the proposed Deformable Siamese Attention Networks (SiamAttn). It consists of a deformable

Siamese attention (DSA) module, Siamese region proposal networks (SiamRPN) and a region refinement module. The

features of the last three stages are extracted and then modulated by the DSA module. It generates two-stream attentional

features which are fed into SiamRPN blocks to predict a single tracking region, further refined by the refinement module.

3. Deformable Siamese Attention Networks

We describe the details of our Deformable Siamese

Attention Networks (SiamAttn). As shown in Fig. 2, it

consists of three main components: a deformable Siamese

attention (DSA) module, Siamese region proposal networks

(Siamese RPN), and a region refinement module.

Overview. We use a five-stage ResNet-50 as the backbone

of Siamese networks, which computes increasingly high-

level features as the layers become deeper. The features of

the last three stages on both Siamese branches can be mod-

ulated and enhanced by the proposed DSA module, gener-

ating two-stream attentional features. Then we apply three

Siamese RPN blocks described in [24] to the attentional fea-

tures, generating dense response maps, which are further

processed by a classification head and a bounding box re-

gression head to predict a single tracking region. Finally,

the generated tracking region is further refined by a region

refinement module, where depth-wise cross correlations are

computed on the two-stream attentional features. The cor-

related features are further fused and enhanced, and then are

used for refining the tracking region via joint bounding box

regression and target mask prediction.

3.1. Siamese­based Trackers

Bertinetto et al. [1] introduced Siamese networks for vi-

sual object tracking, which formulates visual object track-

ing as a similarity learning problem. Siamese networks con-

sist of a pair of CNN branches with sharing parameters φ,

which are used to project the target image (z) and the search

image (x) into a common embedding space, where a sim-

ilarity metric g can be computed to measure the similar-

ity between them, g(φ(x), φ(z)). Li et al. [25] applied re-

gion proposal networks (RPN) [13] with Siamese networks

for visual object tracking (referred as SiamRPN), where

the computed features φ(x) and φ(z) are fed into the RPN

framework using an up-channel cross-correlation operation.

This generates dense response maps where RPN-based de-

tection can be implemented, leading to significant perfor-

mance improvements.

SiamRPN++. In [24], SiamRPN++ was introduced to im-

prove the performance of SiamRPN, by exploring the power

of deeper networks. A spatial aware sampling strategy was

developed to address a key limitation of the Siamese-based

trackers, allowing them to benefit from a deeper backbone

likes ResNet-50. Furthermore, SiamRPN++ adopts a depth-

wise cross correlation to replace the up-channel cross corre-

lation, which reduces the number of parameters and accel-

erates the training process. Moreover, it aggregates multi-

layer features to predict the target more accurately. Simi-

larly, we use ResNet-50 as backbone, with depth-wise cross

correlation and multi-layer aggregation strategy, by follow-

ing SiamRPN++ [24]. But we introduce a new Siamese

attention module that enhances the learned discriminative

representations of the target object and the search image,

which is the key to improve the tracking performance on

both accuracy and robustness.
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Figure 3: The proposed Deformable Siamese Attention (DSA) module, which consists of two sub-modules: self-attention

sub-module and cross-attention sub-module. It takes template features and search features as inputs, and computes corre-

sponding attentional features. The self-attention can learn strong context information via spatial attention, and at the same

time, selectively emphasizes interdependent channel-wise features with channel attention. The cross-attention aggregates

rich contextual interdependencies between the target template and the search image.

3.2. Deformable Siamese Attention Module

As illustrated in Fig. 3, the proposed DSA module takes a

pair of convolutional features computed from Siamese net-

works as inputs, and outputs the modulated features by ap-

plying the Siamese attention mechanism. The DSA module

consists of two sub-modules: a self-attention sub-module

and a cross-attention sub-module. We denote the feature

maps of the target and the search image as Z and X, with

feature shapes of C × h× w and C ×H ×W .

Self-Attention. Inspired by [12], our self-attention sub-

module attends to two aspects, namely channels and spe-

cial positions. Unlike the classification or detection task

where object classes are pre-defined, visual object tracking

is a class-agnostic task and the class of object is fixed dur-

ing the whole tracking process. As observed in [24], each

channel map of the high-level convolutional features usu-

ally responses for a specific object class. Equally treating

the features across all channels will hinder the representa-

tion ability. Similarly, as limited by receptive fields, the fea-

tures computed at each spatial position of the maps can only

capture the information from a local patch. Therefore, it is

crucial to learn the global context from the whole image.

Specifically, self-attention is computed separately on the

target branch and the search branch, and both channel self-

attention and spatial self-attention are calculated at each

branch. Taking the spatial self-attention for example. Sup-

pose the input features are X ∈ R
C×H×W , we first apply

two separate convolution layers with 1 × 1 kernels on X

to generate query features Q and key features K respec-

tively, where Q,K ∈ R
C′

×H×W and C ′ = 1

8
C is the re-

duced channel number. The two features are then reshaped

to Q̄, K̄ ∈ R
C′

×N where N = H ×W . We can generate a

spatial self-attention map As
s ∈ R

N×N via matrix multipli-

cation and column-wise softmax operations as,

As
s = softmaxcol(Q̄

T
K̄) ∈ R

N×N . (1)

Meanwhile, a 1×1 convolution layer with a reshape opera-

tion is applied to the features X to generate value features

V̄ ∈ R
C×N , which are multiplied with the attention map

and then are added to the reshaped features X̄ ∈ R
C×N

with a residual connection as,

X̄
s
s = αV̄As

s + X̄ ∈ R
C×N . (2)

where α is a scalar parameter. The outputs are then re-

shaped back to the original size as Xs
s ∈ R

C×H×W .

We can compute channel self-attention As
c and the

channel-wise attentional features Xs
c in a similar manner.

Notice that on computing the channel self-attention and the

corresponding attentional features, the query, key and value

features are the original convolutional features computed

directly from the Siamese networks, without implementing
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Search Image w/ DSA Modulew/o DSA Module

Figure 4: Visualization of confidence maps. The 1st col-

umn: search images, the 2nd column: confidence maps

without our DSA module, and the 3rd column: confidence

maps with DSA module which enhances target-background

discriminability in the computed attentional features.

1 × 1 convolutions. The final self-attentional features

Xs are generated by simply combining the spatial and

channel-wise attentional features using element-wise sum.

Cross-Attention. Siamese networks usually make predic-

tions in the last stage, while the features from two branches

are computed separately, but may compensate each other. It

is common that multiple objects appear at the same time,

even with occlusions during tracking. Therefore, it is of

great importance for the search branch to learn the target

information, which enables it to generate a more discrim-

inative representation that helps identify the target more

accurately. Meanwhile, the target representation can be

more meaningful when the contextual information from

the search image is encoded. To this end, we propose a

cross-attention sub-module to learn such mutual informa-

tion from two Siamese branches, which in turn allows the

two branches to work more collaboratively.

Specifically, we use Z ∈ R
C×h×w and X ∈ R

C×H×W

to denote template features and search features, respec-

tively. Taking the search branch for example, we first re-

shape the target features Z to Z̄ ∈ R
C×n where n = h×w.

Then we compute the cross-attention from the target branch

by performing similar operations as channel self-attention,

Ac = softmaxrow(Z̄Z̄
T
) ∈ R

C×C . (3)

where row-wise softmax is implemented on the computed

matrix. Then the cross-attention computed from the target

branch is encoded into the search features X as,

X̄
c
= γAcX̄ + X̄ ∈ R

C×N . (4)

where γ is a scalar parameter, and the reshaped features

Xc ∈ R
C×H×W are the output of the sub-module.

Finally, the self-attentional features Xs and the cross-

attentional features Xc are simply combined with an

element-wise sum, generating the attentional features for

the search image. The attentional features for target image

can be computed in a similar manner.

Deformable Attention. The building units in CNNs, such

as convolution or pooling units, often have fixed geomet-

ric structures, by assuming the objects are rigid. For object

tracking, it is of importance to model complex geometric

transformations because the tracking objects usually have

large deformations due to various factors, such as view-

point, pose, occlusion and so on. The proposed attention

mechanism can handle such challenges to some extent. We

further introduce deformable attention to enhance the capa-

bility for handling such geometric transformations.

The deformable attention can sample the input feature

maps at variable locations instead of the fixed ones, making

them attend to the content of objects with deformations.

Therefore, it is particularly suitable for object tracking,

where the visual appearance of a target can be changed

significantly over time. Specifically, a 3 × 3 deformable

convolution [5] is further applied to the computed atten-

tional features, generating the final attentional features

which are more accurate, discriminative and robust. As

shown in Fig. 4, with our DSA module, the confidence

maps of the attentional features focus more accurately on

the interested objects, making the objects more discrimina-

tive against distractors and background.

Region Proposals. The DSA module outputs Siamese at-

tentional features for both target image and search image.

Then we apply three Siamese RPN blocks on the attentional

features for generating a set of target proposals, with cor-

responding bounding boxes and class scores, as shown in

Fig. 2. Specifically, a Siamese RPN block is a combination

of multiple fully convolutional layers, depth-wise cross cor-

relation, with a regression head and a classification head on

top, as described in [25]. It takes a pair of convolutional fea-

tures computed from the two branches of Siamese networks,

and outputs dense prediction maps. By following [24], we

apply three Siamese RPN blocks for the Siamese features

computed from the last three stages, generating three pre-

diction maps which are further combined by a weighted

sum. Each spatial position of the combined maps predicts

a set of region proposals, corresponding to the pre-defined

anchors. Then the predicted proposal with the highest clas-

sification score is selected as the output tracking region.
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3.3. Region Refinement Module

We further develop a region refinement module to im-

prove the localization accuracy of the predicted target re-

gion. We first apply depth-wise cross correlations between

the two attentional features across multiple stages, generat-

ing multiple correlation maps. Then the correlation maps

are fed into a fusion block, where the feature maps with

different sizes are aligned in both spatial and channel do-

mains, e.g., by using up-sampling or down-sampling, with

1 × 1 convolution. Then the aligned features are further

fused (with element-wise sum) for predicting both bound-

ing box and mask of the target. Besides, we further per-

form two additional operations: (1) we combine the convo-

lutional features of the first two-stages into the fused fea-

tures, which encodes richer local detailed information for

mask prediction; (2) a deformable RoI pooling [5] is ap-

plied to compute target features more accurately. Bounding

box regression and mask prediction often require different

levels of convolutional features. Thus we generate the con-

volutional features with spatial resolutions of 64 × 64 for

mask prediction and 25× 25 for bounding box regression.

Notice that the classification head is not applied since

visual object tracking is a class-agnostic task. The input

resolution for the bounding box head is 4 × 4. By using

two fully-connected layers with 512 dimensions, the bound-

ing box head predicts a 4-tuple t = (tx, ty, tw, th). Simi-

larly, the input of mask prediction head has a spatial reso-

lution of 16 × 16. By using four convolutional layers and

a de-convolutional layer, the mask head predicts a class-

agnostic binary mask with 64 × 64 for the tracking object.

Compared to ATOM [6] and SiamMask [36] which predict

bounding boxes and masks densely, our refinement module

uses light-weight convolutional heads to predict a bounding

box and a mask for a single tracking region, which is much

more computationally efficient.

3.4. Training Loss

Our model is trained in an end-to-end fashion, where the

training loss is a weighted combination of multiple func-

tions from Siamese RPN and region refinement module:

L =Lrpn-cls + λ1Lrpn-reg+

λ2Lrefine-box + λ3Lrefine-mask.
(5)

where Lrpn-cls and Lrpn-reg refer to a classification loss

and a regression loss in Siamese RPN. We employ a neg-

ative log-likelihood loss and a smooth L1 loss correspond-

ingly. Similarly, Lrefine-box and Lrefine-mask indicate a

smooth L1 loss for bounding box regression and a binary

cross-entropy loss for mask segmentation in region refine-

ment module. The weight parameters λ1, λ2 and λ3 are

used to balance different tasks, which are empirically set to

0.2, 0.2 and 0.1 in our implementation.

4. Experiments and Results

We conduct extensive experiments on six benchmark

databases: OTB-2015 [38], UAV123 [29], VOT2016 [21],

VOT2018 [22], LaSOT [10] and TrackingNet [30] datasets

and provide ablation study to verify the effects of each pro-

posed component.

4.1. Datasets

OTB-2015 [38]. OTB-2015 is one of the most commonly

used benchmarks for visual object tracking. It has 100 fully

annotated video sequences using two evaluation metrics,

a precision score and an area under curve (AUC) of suc-

cess plot. The precision score is the percentage of frames

in which the distance between the center of tracking re-

sults and ground-truth is under 20 pixels. The success plot

shows the ratios of successfully tracked frames with various

thresholds.

VOT2016 [21] & VOT2018 [22]. VOT2016 and VOT2018

are widely-used benchmarks for visual object tracking.

VOT2016 contains 60 sequences with various challenging

factors while VOT2018 has 10 different sequences with

VOT2016. The two datasets are annotated with the rotated

bounding boxes, and a reset-based methodology is applied

for evaluation. For both benchmarks, trackers are measured

in terms of accuracy (A), robustness (R), and expected av-

erage overlap (EAO).

UAV123 [29]. UAV123 contains 123 sequences captured

from low-altitude UAVs. Unlike other tracking datasets, the

viewpoint of UAV123 is aerial and the targets to be tracked

are usually small.

LaSOT [10]. LaSOT is a large-scale dataset with 1400 se-

quences in total, and 280 sequences in test set. high-quality

dense annotations are provided, and deformation and oc-

clusion are very common in LaSOT. The average sequence

length of LaSOT is 2500 frames, demonstrating long-term

performance of the evaluated trackers.

TrackingNet [30]. TrackingNet contains 30000 sequences

with 14 million dense annotations and 511 sequences in the

test set. It covers diverse object classes and scenes, requir-

ing trackers to have both discriminative and generative ca-

pabilities.

4.2. Implementation Details

We use ResNet-50, pre-trained on ImageNet [9], as the

backbone, and the whole networks are then fine-tuned on

the training sets of COCO [27], YouTube-VOS [39], La-

SOT [10] and TrackingNet [30]. We apply stochastic gra-

dient descent (SGD) with a momentum of 0.9 and a weight

decay of 10−5 for optimization. By following SiamFC [1],

we adopt an exemplar image of 127× 127 and a search im-

age of 255× 255 for training and testing.

Our model is trained for 20 epochs. By following

SiamRPN++ [24], we use a warm-up learning rate of 10−3
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Figure 5: Comparisons with state-of-the-art methods on

success and precision plots on OTB-2015 dataset.

for the first 5 epochs which decays exponentially from

5×10−3 to 5×10−4 for the last 15 epochs. The weights of

backbone are frozen for the first 10 epochs, then the whole

networks are trained end-to-end for the last 10 epochs. In

particular, the learning rate of backbone is 20 times smaller

than the other parts. Batch size is set to 12. Our anchor

boxes have 5 aspect ratios, [0.33, 0.5, 1, 2, 3]. In Siamese-

RPN blocks, an anchor box is labelled as positive when it

has an IoU> 0.6, or as negative when IoU< 0.3. Other

patches whose IoU overlap falls in between are ignored.

In addition, we sample 16 regions from each image with

IoU> 0.5 for training our region refinement module.

For the backbone networks, we employ dilated convolu-

tions for the last two blocks to increase the receptive fields,

and the effective strides at these two blocks are reduced

from 16 or 32 pixels to 8 pixels. We also reduce the num-

ber of feature channels to 256 for the last three blocks of

the backbone networks via a 1 × 1 convolution layer. Dur-

ing inference, cosine window penalty, scale change penalty

and linear interpolation update strategy [25] are applied.

Only one single region with the highest score predicted by

Siamese RPN blocks is fed into our region refinement mod-

ule. Our method is implemented using PyTorch, and we use

NVIDIA GeForce RTX 2080Ti GPU.

4.3. Comparisons with the State­of­the­art

On OTB-2015. Fig. 5 shows quantitative results on OTB-

2015 dataset. Our tracker achieves the best AUC and pre-

cision score among all methods for this widely studied

dataset. Specifically, we obtain a precision of 0.712 and

an AUC of 0.926 which surpass that of SiamRPN++ [24]

by 1.6% and 1.2%, respectively.

On VOT2016 & VOT2018. The results on VOT2016

and VOT2018 are compared in Tab. 1. Our tracker

achieves 0.68 accuracy, 0.14 robustness and 0.537 EAO on

VOT2016, outperforming the state-of-the-art methods un-

der all metrics. Compared with recent SiamRPN++ [24]

and SiamMask [36], our method has significant improve-

ments of 7.3% and 9.5% on EAO respectively. On

Tracker
VOT2016 VOT2018

A↑ R↓ EAO↑ A↑ R↓ EAO↑

SiamFC [1] 0.53 0.46 0.235 0.50 0.59 0.188

MDNet [31] 0.54 0.34 0.257 - - -

C-COT [8] 0.54 0.24 0.331 0.49 0.32 0.267

FlowTrack [45] 0.58 0.24 0.334 - - -

SiamRPN [25] 0.56 0.26 0.344 - - -

C-RPN [11] 0.59 - 0.363 - - -

ECO [7] 0.55 0.20 0.375 0.48 0.28 0.276

DaSiamRPN [44] 0.61 0.22 0.411 0.59 0.28 0.383

SPM [34] 0.62 0.21 0.434 - - -

SiamMask-Opt [36] 0.67 0.23 0.442 0.64 0.30 0.387

UpdateNet [42] 0.61 0.21 0.481 - - 0.393

GFS-DCF [40] - - - 0.51 0.14 0.397

ATOM [6] - - - 0.59 0.20 0.401

SiamRPN++ [24] 0.64 0.20 0.464 0.60 0.23 0.415

Dimp-50 [2] - - - 0.60 0.15 0.440

Ours 0.68 0.14 0.537 0.63 0.16 0.470

Table 1: Results on VOT2016 and VOT2018, with accuracy

(A), robustness (R) and expected average overlap (EAO).

ARCF ECO SiamRPN DaSiam- SiamRPN++ ATOM Dimp-50 Ours

[19] [7] [25] RPN [44] [24] [6] [2]

AUC 0.47 0.525 0.527 0.586 0.613 0.644 0.654 0.650

Pr 0.67 0.741 0.748 0.796 0.807 - - 0.845

Table 2: Results on UAV123.

VOT2018, our method achieves the top EAO score while

having competitive accuracy and robustness with other

state-of-the-art methods. SiamMask-Opt [36] attains the

best accuracy by finding the optimal rotated rectangle from

a binary mask, which however increases the computational

cost significantly, and reduces its fps to 5. Our method only

uses a single rotated minimum bounding rectangle from the

predicted mask, which achieves a comparable accuracy of

0.63, but has a large improvement on EAO, 0.387→0.470,

with a real-time running speed at 33 fps. Compared with

SiamRPN++ and recent leading tracker Dimp-50 [2], our

tracker obtains a clear performance gain of 5.5% and 3.0%

respectively in terms of EAO, demonstrating the efficiency

of the proposed Siamese attention and refinement module.

On UAV123. As shown in Tab. 2, SiamAttn attains the

best precision, improving the closest one: SiamRPN++,

from 0.807 to 0.845, while having a comparable AUC with

DiMP-50 which did not report the precision score.

On LaSOT. Tab. 3 shows the comparison results on LaSOT

with long sequences. Our method attains the best normal-

ized precision, outperforming SiamRPN++ considerably by

56.9%→64.8% (with 49.5%→56.0% on success). Again,

our method has a comparable success score with DiMP-50,

while attaining a higher normalized precision.

On TrackingNet. We further evaluate SiamAttn on the

large-scale TrackingNet. As illustrated in Tab. 4, it outper-
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MLT MDNet DaSiam- Update- SiamRPN++ ATOM Dimp-50 Ours

[4] [31] RPN [44] Net [42] [24] [6] [2]

Success(%) 34.5 39.7 41.5 47.5 49.5 51.5 56.9 56.0

Norm.Pr(%) - 46.0 49.6 56.0 56.9 57.6 64.3 64.8

Table 3: Results on LaSOT.

GFS- DaSiam- Update- ATOM SPM SiamRPN++ Dimp-50 Ours

DCF [40] RPN [44] Net [42] [6] [34] [24] [2]

Success(%) 60.9 63.8 67.7 70.3 71.2 73.3 74.0 75.2

Norm.Pr(%) 71.2 73.3 75.2 77.1 77.8 80.0 80.1 81.7

Table 4: Results on TrackingNet.

Method A↑ R↓ EAO↑ ∆EAO

Baseline 0.64 0.20 0.464 -

Baseline+ML 0.66 0.21 0.477 +1.3%

Baseline+RR 0.67 0.19 0.486 +2.2%

Baseline+RR+SA 0.66 0.16 0.511 +4.7%

Baseline+RR+CA 0.67 0.15 0.513 +4.9%

Baseline+RR+CA+SA (Ours) 0.68 0.14 0.537 +7.3%

Table 5: Ablation study on VOT2016. SiamRPN++ is base-

line. ML: Mask Learning, RR: Region Refinement (includ-

ing ML), SA: Self-Attention, and CA: Cross-Attention.

forms all previous methods consistently. Compared with the

most recent DiMP-50, SiamAttn has improvements of 1.2%

on success, and 1.6% on normalized precision, demonstrat-

ing its ability to handle diverse objects over complex scenes.

4.4. Ablation Study

We study the impact of individual components in

SiamAttn, and conduct ablation study on VOT2016.

Model Architecture. We use SiamRPN++ [24] as

baseline. As shown in Tab. 5, SiamRPN++ achieves

an EAO of 0.464. By adding mask learning layers to

SiamRPN++, the EAO can be improved to 0.477. With

our region refinement module, the EAO score is further

increased by +2.2%. Compared with the baseline, the

accuracy score improves from 0.64 to 0.67, with com-

parable robustness. Our Siamese attention consists of

both self-attention and cross-attention, each of which can

further improve the EAO by +4.7% or +4.9% respectively.

This suggests that the proposed cross-attention is critical

to the tracking results, and even has a more significant

impact than the self-attention. Jointly exploring both self-

attention and cross-attention makes our method not only

robust, but also more accurate. This results in a high EAO

of 0.537, surpassing the baseline by a large margin of 7.3%.

Deformable Layers. In this study, we evaluate the

impact of deformable operations by replacing them with

a regular convolution. As shown in Tab. 6, this results

in slight performance drops, e.g., 0.537→0.520 EAO

with deformable convolution and 0.537→0.531 EAO with

Deformable convolution Deformable Pooling A↑ R↓ EAO↑

# # 0.67 0.15 0.516

# X 0.67 0.15 0.520

X # 0.68 0.15 0.531

X X 0.68 0.14 0.537

Table 6: The impact of deformable layers on VOT2016.

Method Training set A↑ R↓ EAO↑

SiamAttn VID, YTB-BB, COCO, DET, YTB-VOS 0.68 0.15 0.525

SiamAttn COCO, YTB -VOS, LaSOT, TrackingNet 0.68 0.14 0.537

Table 7: Results on VOT2016 with training sets as listed.

deformable pooling. By removing all deformable layers,

our model can still achieve an EAO of 0.516, compared

favorably against SiamRPN++ with 0.464, suggesting that

the proposed Siamese attention and refinement modules are

the primary contributors to the performance boost.

On Training Data. In this study, we investigate the

impact of training with different training sets. Our current

results are achieved by using a combination of multiple

training sets from recent LaSOT [10] and TrackingNet [30],

with COCO [27] and YouTube-VOS [39], mainly fol-

lowing [6] with an additional YouTube-VOS [39] for

providing mask annotations. We also report the results

on a different training combination applied by [36],

including COCO [27], YouTube-VOS [39], YouTube-

BoundingBox [32], ImageNet-VID, and ImageNet-

Det [33]. Results are reported in Tab. 7. Using the recent

large-scale tracking datasets can improve the results with

1.2% EAO on VOT2016, while our approach can still

achieve the state-of-the-art performance using a different

choice of the training sets.

Speed Analysis. On OTB-2015, UAV, LaSOT and Track-

ingNet benchmarks, our model predicts axis-aligned bound-

ing box, without mask head. It can achieve an inference

speed of 45 fps. On VOT benchmarks, our model generates

the rotated boxes from the predicted masks, which reduces

the inference speed to 33 fps.

5. Conclusion

We have presented new Deformable Siamese Attention

Networks for visual object tracking. We introduce a de-

formable Siamese attention mechanism consisting of both

self-attention and cross-attention. The new Siamese atten-

tion can strongly enhance target discriminability, and at the

same time, improve the robustness against large appearance

variations, complex backgrounds and distractors. Addition-

ally, a region refinement module is designed to further in-

crease the tracking accuracy. Extensive experiments are

conducted on six benchmarks, where our method obtains

new state-of-the-art results, with real-time running speed.
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