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via Vito Volterra 62, Rome, 00146, Italy

Adriano Tiribocchi

Istituto per le Applicazioni del Calcolo CNR,

via dei Taurini 19, 00185, Rome, Italy

Sauro Succi

Center for Life Nanoscience @ La Sapienza,

Istituto Italiano di Tecnologia, viale Regina Elena 295, 00161, Rome, Italy

Istituto per le Applicazioni del Calcolo CNR,

via dei Taurini 19, 00185, Rome, Italy and

Institute for Applied Computational Science,

Harvard John A. Paulson School of Engineering and Applied Sciences,

Cambridge, MA 02138, United States

(Dated: August 5, 2021)

1

ar
X

iv
:2

10
8.

01
99

3v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  4

 A
ug

 2
02

1



Abstract

In this paper we numerically investigate the breakup dynamics of droplets in an emulsion flowing

in a tapered microchannel with a narrow constriction. The mesoscale approach for multicomponent

fluids with near contact interactions is shown to capture the deformation and breakup dynamics of

droplets interacting within the constriction, in agreement with experimental evidences. In addition,

it permits to investigate in detail the hydrodynamic phenomena occurring during the breakup

stages. Finally, a suitable deformation parameter is introduced and analyzed to characterize the

state of deformation of the system by inspecting pairs of interacting droplets flowing in the narrow

channel.
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I. INTRODUCTION

In recent years droplet-based microfluidics, namely the art of manipulating, controlling

and fine-tuning the production of emulsions characterized by a high degree of structural

ordering and monodispersity [9, 19, 28], has witnessed a giant leap forward, mostly thanks

to the advancements in miniaturization processes which, in turn, paved the way to a clever

design of micron and submicron-sized channels and devices [17, 20, 33]. These technological

boosts sustained a surge of experimental [3, 5] and theoretical [21, 22, 32] activities aimed

at shedding light on the underlying mechanisms responsible for the emergence of complex

dynamical behaviors in densely packed systems evolving in strongly confined geometries.

Although both experimental and theoretical research have already driven many improve-

ments towards their understanding, the investigation of droplet-based environments poses

a steep challenge owing to i) the variety of spatial scales in play, ii) the presence of highly

non-linear behaviors, often out of reach for analytical, perturbative approaches and iii) the

presence of many local field quantities, whose detailed knowledge is of decisive importance

for a clever design of novel microfluidic devices. From this standpoint, an accurate numeri-

cal modeling of these complex, many-body, interacting systems stands as a way to inspect

in closer details a number of peculiar phenomena occurring at different spacetime scales

and to unveil a plethora of complex behaviors otherwise inaccessible neither to theoretical

nor to experimental approaches. The present work, which falls precisely within this line of

thinking, aims at presenting ab-initio hydrodynamic, mesoscale simulations of deformation

and breakup phenomena occurring in dense emulsions, namely monodisperse ensembles of

interacting droplets immersed in a bulk fluid flowing within a tapered microfluidic channel

[2, 6, 8].

Indeed, a particularly relevant phenomenon usually compromising the accuracy of the re-

sulting emulsion is the breakup of droplets, especially in dense suspensions where the volume

fraction exceeds the close-packing limit [2, 6, 29]. Experimental results of a single droplet
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under an external flow support the view that deformation and breakup are determined by

a delicate balance between viscous stress and interfacial tension, described by the Capillary

number (Ca). While the viscous stress tends to deform the drop, the interfacial tension

contrasts this effect and holds the drop in a spherical shape. Once the capillary number

overcomes a critical value, viscous stress dominates and the breakup becomes inevitable. In

concentrated emulsions, in contrast, the volume fraction of the droplet phase significantly

increases, and experiments suggest that breakup arises from droplet-droplet and droplet-wall

interactions [2, 6, 7, 11] However many questions remain open.

At variance with the aforementioned experimental works, the goal of the present work is to

pinpoint the effect of viscous dissipation over surface tension forces of individual droplets of

a concentrated emulsion flowing within a tapered channel. This target is achieved by vary-

ing the Capillary number while keeping the Reynolds number constant, in order to decouple

the effects due to inertia, surface tension and viscous forces, a task generally difficult (if not

impossible) to realize experimentally. Besides confirming the results described in Ref.[6], our

model, being capable to deliver the full hydrodynamic picture, offers a way to unveil highly

non-trivial details of the structure of the velocity field observed during the breakup stages.

In addition, by tracking the circularity of hundreds of interacting droplets, we find that the

maximum deformation, before a breakup event, is independent of Ca and the number of

breakups occurring at the constriction linearly increases with Ca.

II. METHOD

In the following we briefly describe the extended mesoscale approach for multicomponent

flows with interacting interfaces developed in [23, 24]. The multicomponent system, namely

an emulsion formed by droplets immersed in a bulk fluid, is modeled via a color-gradient [10,

30] regularized Lattice Boltzmann method [4, 13, 25], which employs two sets of probability

distribution functions. Each set evolves via a sequence of streaming and collision steps

[1, 12, 31]

fk
i (x+ ci∆t, t+∆t) = fk

i (x, t) + Ωk
i (f

k
i (x, t)) + F rep

i , (1)

where fk
i (x, t) is the ith discrete probability distribution function for the kth component,

giving the probability of finding a fluid particle at position x, time t and with discrete

velocity ci. The index k is such that k = 1, 2, while i belongs to the range 0 ≤ i ≤ Nset,
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being Nset the dimension of the set of probability distribution functions. This is equal to 8

for the two-dimensional nine speeds lattice (D2Q9) adopted in this paper. The time step ∆t

is expressed in lattice units [12] and set to 1, a usual choice in the LBM [31]. Finally, F rep
i

is a force aimed at upscaling the repulsive near-contact interactions acting on scales much

smaller than the resolved ones [23].

Once the set of distribution is known at each lattice site, the macroscopic fields of interest,

namely the fluid density ρk, the linear momentum ρkuk and the pressure pK , can be obtained

by computing the relevant statistical moments:

ρk =
Nset
∑

i=0

fk
i (x, t), ρkuk =

Nset
∑

i=0

cif
k
i (x, t), pk =

ρk
3
. (2)

The total fluid density ρ and the total momentum ρu of the mixture can be obtained via

the following relations:

ρ =
2
∑

k=1

ρk, ρu =
2
∑

k=1

ρkuk. (3)

It is worth recalling that the multicomponent approach employed in this work is based on a

variant of the color-gradient LB model. By employing the standard formalism, the collision

operator can be split into three parts [15, 16]:

Ωk
i = (Ωk

i )
(3)[(Ωk

i )
(1) + (Ωk

i )
(2)]. (4)

The term (Ωk
i )

(1) is the usual single relaxation time Bhatnagar–Gross–Krook collisional

operator [31]

(Ωk
i )

(1) =
fk
i,eq(u,x, t)− fk

i (x, t)

τ
, (5)

where τ is the effective relaxation time, which depends on the viscosity ν of the emulsion

ν =

(

ρ1
ρ1 + ρ2

1

ν1
+

ρ2
ρ1 + ρ2

1

ν2

)−1

, τ = 3ν +
1

2
. (6)

Here ν1, ν2, ρ1, ρ2 are the kinematic viscosities and the densities of the two fluids in the

bulk, respectively. Also, fk
i,eq(x, t) is the ith equilibrium discrete probability distribution

function for the kth component, formally derived as a low Mach, second-order expansion of

a Maxwellian probability equilibrium distribution [31]

fk
i,eq(u,x, t) = wiρk

(

1 + 3ci · u+ 9
(ci · u)

2

2
− 3

u · u

2

)

, (7)

5



being wi the weights of the D2Q9 lattice adopted in this paper [31].

The term (Ωk
i )

(2) is the perturbation part, which accounts for the interfacial tension, and

reads as

(Ωk
i )

(2) =
Ak

2
|∇Θ|

(

wi

(

ci · ∇Θ

|∇Θ|

)2

− Bi

)

, (8)

where Ak (k = 1, 2) and Bi (i = 0, Nset) are suitable constants defined in [23]. Θ is a scalar

phase field, defined as

Θ =
ρ1 − ρ2
ρ1 + ρ2

, (9)

assuming the value 1 in the fluid component with density ρ1 and the value −1 in the fluid

component with density ρ2. It is worth observing that the constants A1, A2 are related to

the surface tension σ by

σ =
2

9
τ(A1 + A2). (10)

Finally the third term (Ωk
i )

(3) is the recolouring operator which aims at minimizing the

mutual diffusion between the fluid components, thus favouring their separation [14]

f 1
i (x, t) =

ρ1
ρ

2
∑

k=1

f ∗k
i (x, t) + β

ρ1ρ2
ρ2

(

∇Θ · ci
|∇Θ|

)

2
∑

k=1

fk
i,eq(0,x, t), (11)

f 2
i (x, t) =

ρ2
ρ

2
∑

k=1

f ∗k
i (x, t)− β

ρ1ρ2
ρ2

(

∇Θ · ci
|∇Θ|

)

2
∑

k=1

fk
i,eq(0,x, t). (12)

Here f ∗k
i (x, t) (i = 0, Nset; k = 1, 2) are the post-collision and post-perturbation probability

distribution functions, while the coefficient β is a free parameter which tunes the width of

the interface.

By performing a multiscale Chapman–Enskog expansion, it can be shown that the hydro-

dynamic limit of Eq.(1), in the low frequency-long wavelength and low Mach number limit,

is a set of conservation laws for mass and linear momentum

∂ρ

∂t
+∇ · (ρu) = 0 (13)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · (ρν(∇(u+ uT )) + (∇σ − σ(∇ · n)n− Ahn)δI , (14)

where p =
∑2

k=1 pk is the total pressure. The last term at the right hand side of Eq.(14)

codes for the effects of the surface tension σ and for the additional, short-range, repulsive

force at the interface between the two fluid components. In Eq.(14), δI is an index function,

defined as δI = |∇Θ|/2, which localizes the force on the interface, while Ah is a parameter

controlling the strength of the repulsive force oriented as the local normal n to the interface

[23].
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FIG. 1. Panel (a): Sketch of the microchannel geometry employed in this work. Panel (b):

Snapshot of the droplets’ field flowing within the tapered channel. The droplets are continuously

injected at the inlet via an internal periodic boundary condition, as proposed in [26, 27].

III. RESULTS

In the following, after a brief description of the numerical setup employed, we discuss in

detail the deformation and breakup phenomena by tracking the evolution of the droplets

flowing within the narrow channel.

A. Numerical setup

The geometrical setup, conveniently sketched in fig.1(a), consists of a tapered geometry

with an outlet narrow channel positioned at its end. The height of the domain is Ly = 416lu

(lattice units), its length is Lx = 750lu, while the height of the constriction is h ∼ 0.75d =

45lu, being d the diameter of the droplet. Finally, the angle of the tapered geometry is set

to 30◦ as in [2, 6, 8, 29]. The emulsion, flowing within the microchannel and continuously

injected via an internal periodic boundary condition as in [26, 27], is made of a set of

monodisperse droplets of radius d/2, as shown fig.1(b). The relevant parameters employed

in the simulations are the following: kinematic viscosity ν = 0.023, droplets’ reference

velocity U = 0.018, droplet’s diameter d = 60, while the surface tension ranges between

σ = 0.006÷ 0.04.

It is worth noting that the viscosity ν (taken equal in both the dispersed and the bulk

fluid) and the inlet carrier velocity U were set to constant values in all simulations, while
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the surface tension was varied within a range of an order of magnitude. This particular

choice permits to vary the Capillary number (Ca = ρUν/σ = 0.011÷ 0.072) independently

of the Reynolds number (Re = Uh/ν), which instead was kept fixed in all simulations. By

doing so, we isolated the effects of the variations of the elongational viscous forces versus

the surface tension forces, regardless of the inertia.

B. Deformation dynamics of interacting droplets within a constriction

Firstly, we start with a brief description of the salient dynamical features emerging during

the interaction of a pair of flowing droplets. With reference to fig.2 (showing two sequences of

droplets interacting within the microchannel), once the droplets approach the constriction,

they start to deform under the effect of the confinement, which is caused by i) the walls of

the constriction and ii) the presence of the neighboring droplet. As evidenced in fig.2, two

possible outcomes may occur once two droplets concur to enter within the narrow channel.

In the first one (panel (a)), the leading edge of a droplet undergoes a fast expansion which

favors its escape towards the outlet of the constriction. In this case the droplets align

horizontally within the narrow channel and no breakup occurs. In the second one (panel

(b)), two droplets stretch under the effect of the viscous forces acting at the interface level,

until one of them attains a critical deformation beyond which surface tension forces are not

able to withstand the elongational forces, thus causing the split of the droplet in two. It

is interesting to note that, although the volume fraction of the droplets in our simulation

is evidently lower than that of the experiments reported in [6] (left rows in panel (a) and

(b)), the overall deformation and breakup dynamics are still well captured by the mesoscale

approach employed herewith.

To gain a more quantitative insight on the deformation and breakup of the droplets, we

compared the deformation history, between experiments and simulations (bottom panels

of fig.2), for the cases reported in figure. Interestingly, the agreement between the two

is remarkable, since our model captures the time evolution of the deformation parameter

(defined as P

2
√
πA

following Ref.[6], where P and A are the perimeter and the area of the

droplet) and correctly predicts the value of its maximum deformation.
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FIG. 2. Droplets’ deformation and breakup in the narrow constriction at Ca = 0.043. Left columns

report experimental results [6], while the right columns show the simulations. Two possible out-

comes may occur once the droplets concur to enter the narrow channel. In the first one (panel(a)),

the droplet undergoes a fast expansion which favors its escape towards the outlet of the constric-

tion. In the second one (panel (b)), the two droplets stretch under the effect of the viscous forces

acting at the interface level until one breaks. Bottom panels. Comparison between experiments[6]

(solid line) and simulations (open circles) of the deformation history.

C. Structure of the velocity field

Since the LB approach grants the access to local hydrodynamic quantities not accessible

to experiments, it is worthwhile inspecting the characteristics of the fluid flow developed

during the breakup stages, to shed light on the complex hydrodynamic phenomena emerging

in the rupture process. To this aim, in fig.3 (a-d) we show the velocity field during a breakup
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(a) (b)

(c) (d)

(e)

FIG. 3. (a-d) Sequence of the velocity field during a breakup event at Ca = 0.043. The color

map represents the magnitude of the velocity field divided by its maximum value in the narrow

channel, while the arrows denote the local direction of the flow field. Panel (e) shows a zoom of

the area highlighted in panel (c).

sequence at Ca = 0.043, where the color map represents the magnitude of the velocity and

the arrows denote the local direction of the flow field. As one can see, in an early stage

(panel(a)), the leading edge of the lower droplet moves faster than its neighbor. This causes

the head of the lower droplet to be quickly squeezed into the constriction by the upper

one (see panel (b)). Consequently, the leading edge of the upper droplet enters the narrow

channel and, due to the effect of the confinement, starts to accelerate, as evidenced by the

magnitude of the flow field (see panel (c)). Afterwards, a high speed area develops at the

droplet’s neck (see panel (e) which shows a close-up view of the region enclosed by the

rectangle in panel(c)), determining an increase of the shear between the interfaces in close

contact, thus leading to the pinch-off of the neck of the lower droplet (panel (d)).

To further elucidate the complex fluid dynamics involved in the breakup process, we
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FIG. 4. (a-e) Flow field during the pinching and breakup stages, computed on a frame of reference

moving with the droplets. During the pinching stage, a recirculation forms in the upstream region,

opposes to the fluid flux crossing the neck of the droplet and augments in size as the droplet moves

forward and deforms. The color map denotes the magnitude of the velocity (made dimensionless

since divided to the maximum value of the velocity UM ), while the arrows indicate the direction of

the velocity field. The arrow in the pinching region indicates the direction of the fast flow through

the droplet’s neck 11



inspected the flow field during the pinching and breakup stages in a relative frame of reference

moving at the average speed on each section. As shown in fig.4, during the pinching stage

a recirculation forms in the upstream region, opposes to the fluid flux crossing the neck of

the droplet and increases in size as the droplet moves forward and deforms (panels b-b1 and

c-c1). This means that a “fluid particle” trapped in the upstream vortex would take a time,

in order to advance towards the exit of the channel, longer than the one needed by a particle

flowing through the pinch. Note also that the size of the fluid recirculation increases as the

droplet squeezes during its passage through the constriction, becoming comparable with the

length of the upstream part of the droplet when it breaks. It is precisely this “momentum

unbalance” mechanism (recurring at each breakup event) that produces the stretching of

the droplet followed by its rupture.

To conclude this part, we would like to point out that, in each simulation, the droplets’

diameter were set to ∼ 60 lattice units, which means having a Cahn number of the order

of ∼ 0.05, a typical value in simulating the physics of resolved, complex interfaces (see, for

instance, [18]). Moreover, compressibility effects are negligible since the maximum values of

the velocity reached in our simulations are of order 10−2 (lattice units over step), delivering a

Mach number of the same order. These values ensure that our approach is adequate to cap-

ture, indeed with remarkable accuracy, the correct physics observed in droplet microfluidics

and that the provided fluid dynamics picture is not affected by spurious numerical artifacts.

At this point, several questions naturally arise: What is the effect of the Capillary number,

the main parameter governing the processes detailed above, on the breakup statistics? Is

there a maximum deformation over which the droplet inevitably breaks? And, if the latter

exists, does it depend on the flow characteristics? In the next sections we try to address

these issues by introducing suitable observables which help to put the phenomenon under

scrutiny on a more quantitative ground.

D. Breakup statistics: Circularity, Breakup rates and Critical Deformation

As introduced at the end of section IIIC, it is now of interest to investigate the behavior

of the flowing emulsion from a statistical perspective, to pinpoint the effect of the governing

parameters on shape deformation and breakup.

To do so, we introduce the circularity χ, a dimensionless parameter assessing the defor-
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mation of the droplets flowing within the constriction. It is defined as

χ =
4πA

P 2
(15)

and it ranges between 1 (circular shape) and 0 (needle-like geometry); thus monitoring

its evolution allows to evaluate the departure of the droplet from its circular shape. The

observations are carried out by tracking the deformation and breakup events occurring within

an Eulerian volume of control, coinciding with the narrow channel. Also, to gain significant

statistics over the number of such events occurring in the channel, each simulation was run

for 106 steps.

In fig.5 we report the plot of circularity vs time for each doublet flowing within the

constriction and for each value of the Capillary number inspected. In each plot, the red

points denote the minimum value of circularity (i.e. the maximum droplet’s deformation)

reached just before a breakup event. An interesting feature is that the ratio between the

number of droplets which break and the total number of considered events steadily increases

with Ca, in agreement with previous experimental data [6]. This fact is clearly supported

by the increasing number of red dots, from panel (a) to box (f). Moreover, as the Capillary

number increases, the distribution of points in the plots of fig.5 appears more uniform, thus

suggesting the two following observations:

i) the probability that two droplets simultaneously arrive to the constriction and compete

to enter it, depends on Ca.

ii) when two droplets concur to enter the constriction, for low values of Ca the surface

tension forces prevail over the viscous (extensional) ones, thus favoring faster expansions of

the droplets and preventing their breakup.

A second aspect is that the minimum circularity reached by the droplets before the

breakup is approximately independent of the Capillary number and roughly equal to χmin ∼

0.22. This observation is further confirmed in fig.6(a), which shows the plot of the pdf(χ)

obtained by collecting the values of χmin for each breakup event. As clearly visible, the pdf

follows a Gaussian trend, centered on χmin ∼ 0.22 with a rather small standard deviation,

std ∼ 0.026. From the above, it seems reasonable to conclude that, at least for the setup

under investigation and in the limit of laminar flow, the maximum deformation attained

by the droplets before their breakup is independent of the flow details, being a universal

characteristics of the phenomenon in play.
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FIG. 5. Circularity versus time for different Capillary numbers. (a) Ca = 0.011. (b) Ca = 0.022.

(c) Ca = 0.029. (d) Ca = 0.043. (e) Ca = 0.054. (f) Ca = 0.072. Red spots indicate the minimum

value of χ, achieved before a breakup event occurs.

On the contrary the breakup rates steadily increase as Ca augments. This effect is

described in fig.6(b), which reports the frequency of the breakup events N∗, defined as the

ratio of the number of breakups over the number of time steps, versus Ca. The breakup rate

scales roughly proportional with Ca in the range 0.011 ≤ Ca ≤ 0.054, while it saturates

for Ca > 0.054. This fact can be explained as follows. In the first region of the plot

(Ca-bounded), the number of breakup events is limited by the Capillary number which,

as shown before, governs the deformation dynamics of the droplets concurring to enter

the constriction. For low values of Ca, two droplets approaching the inlet of the narrow

channel have a smaller probability to deform and break, since the surface tension forces

dominate over the extensional actions of the viscous ones. As Ca increases, the effect of the

viscous forces grows accordingly and the droplets are more prone to break. By contrast,

for Ca larger than a critical value (φ-bounded region) the number of breakup events is

14
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FIG. 6. Panel(a): probability density function of χmin. Panel(b): frequency of breakup events (i.e.

number of breakup events versus the total simulation time) versus Ca. The colored regions denote

the Capillary bounded (Ca-bounded) and the droplets’ volume fraction ((φ-bounded)) bounded

regions.

limited by the number of doublets competing to enter the narrow channel. In other words,

for Ca ≥ Casat (Casat ∼ 0.05), the number of breakup events becomes independent of the

Capillary number, attaining a saturation value which depends only on the volume fraction of

the emulsion. This observation is consistent with the fact that the droplet breakup in a dense

emulsion is due to droplet-droplet interactions, whose number is expected to considerably

decrease when the volume fraction diminishes, as discussed in Ref.[6] for a dilute emulsion.

It is thus reasonable to speculate that the critical value of the Capillary number depends on

the droplet volume fraction of the emulsion.

To conclude, it is interesting to observe that the linear relationship between the number

of breakup events and the Capillary number (within the Capillary bounded region) can be

deduced by calling on simple energetic arguments. Firstly, the work per unit time done by

the viscous stresses within the droplet L̇v can be written as

L̇v = 2ρν
∫

A
D : DdA ≈ 2ρν

(

π
U

P

)2

A, (16)

where D is the symmetric part of the velocity gradient (D = ∇u+∇u
T

2
), whose order of

magnitude has been estimated as O(D) ≈ πU/P with P and A perimeter and area of the

15



droplet, respectively. Moreover, it is straightforward to express L̇v in terms of the circularity

L̇v ≈
1

2
ρνU2χ. (17)

On the other hand, the work per unit time done by the surface tension on the droplet’s

surface is proportional to L̇st ≈ σU .

By taking the ratio between L̇v, L̇st we can introduce a non-dimensional group Nvst

Nvst =
1

2

ρνU

σ
χ =

1

2
Caχ, (18)

which, interestingly, depends linearly on both Ca and χ. As observed before, when a

breakup occurs, the minimum circularity is independent of the Capillary number and can

be considered constant while Nvst (the ratio between extensional viscous and surface tension

works per unit time) scales linearly with the Capillary number.

IV. CONCLUSIONS

In this work we have numerically investigated, using a lattice Boltzmann approach for

multicomponent fluids augmented with disjoining near contact interactions, the deformation

and breakup dynamics of droplets flowing within a tapered channel with a constriction. The

built-in hydrodynamic features of such mesoscale approach allow us to study in details the

fluid dynamics emerging at the interface level during the breakup phenomena. In particular,

our simulations confirm the experimental observation reported in [6], by reproducing the pe-

culiar behaviors observed during the deformation and breakup stages of doublets interacting

within the narrow constriction. Moreover, the introduction of a suitable parameter allows

for a quantitative assessment of the deformation state of the system. We find that i) the

maximum deformation reached by the droplets before breakup is independent of Ca and ii)

the number of breakup events linearly depends on Ca until a critical value is attained. This

one is likely to have a strong dependence on the packing fraction of the emulsion.

As a perspective, the present model, properly extended, could be potentially employed

in a number of biological applications, one for all hemodynamics. In this respect, an all-

mesoscale approach capable of modelling the coupled evolution of plasma and red blood cells

could pave the way to large scale hemodynamic simulations with unprecedented resolution

and computational efficiency.
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