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Abstract The secondary breakup of liquid drops, accelerated by a constant body force, is examined for small 
density differences between the drops and the surrounding fluid. a density ratio of ten has been studied. We used 
Volume of Fluid (VOF) method to simulate the breakup. The breakup is controlled by the Eötvös number (Eo), the 
Ohnesorge number (Oh), and the viscosity and density ratios. If viscous effects are small (small Oh), the Eotvos 
number is the main controlling parameter. At a density ratio of ten, as Eo increases the drops break up in a backward 
facing bag, transient breakup, and a shear breakup mode. Similar breakup modes have been seen experimentally for 
much larger density ratios. Although a backward facing bag is seen at low Oh, where viscous effects are small, 
comparisons with simulations of inviscid flows show that the bag breakup is a viscous phenomenon, due to 
boundary layer separation and the formation of a wake. At higher Oh, where viscous effects modify the evolution, 
the simulations show that the main effect of increasing Oh is to move the boundary between the different breakup 
modes to higher Eo. The results are summarized by “breakup maps” where the different breakup modes are shown 
in the Eo–Oh plane for different values of the viscosity and the density ratios. 
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1. Introduction 
The deformation and breakup of liquid droplets is 

encounteredin a wide range of industrial applications as 
well as in natural situations. Engineering examples are 
found in diesel engines andother types of combustion 
applications, electro-sprayed paint andcosmetics, ink-jet 
printers, turbines, micro-fluidics, cooling systems, etc. In 
the case of geophysical phenomena, examples 
abound,ranging from volcanic eruption and tephra 
formation to rain phenomenon. A thorough description of 
fragmentation phenomenafor a variety of applications can 
be found in Villermaux [1]. Interfacial interaction could 
change depending on the circumstances a droplet is 
dispersed in. For example, conditions in a shock-tube 
would be different than a drop tower. The main difference 
between the two mentioned situations is the approach of 
velocity change. In contrast to step velocity change in 
shock tube tests, droplet accelerates more gradually in 
drop towers due to gravity. Here we investigate the 
behavior of a single droplet experiencing gravitational 
force. It will be demonstrated that different sorts of 
deformation take place including flattening, breakup, 
coalescence, torus formation, liquid bridges creation and 
breakup, etc. Thus, the breakup mechanism of single 
falling drops is not only helpful for direct applications 
such as rain drop investigations, but also assists to clarify 

the behavior of deformable mono-dispersed phases with 
different geometries in complex flows. 

To understand the droplet dynamics, many 
experimental, theoretical, and numerical studies have been 
performed. Pilch and Erdman [2] described the breakup 
modes separately for a single drop experiencing an 
external flow under different ranges of the Weber number. 
Basically, droplet breakup can be categorized mainly 
according to Weber and Eötvös numbers for aero-break 
and free-fall respectively, in six modes: vibrational mode, 
bag mode, bag-stamen mode, stripping mode, wave crest 
stripping mode and catastrophic breakup. O’Brian [3] and 
Burger et al. [4] (1983), studied the free-fall of oil and 
gallium drops, respectively and presented the different 
modes of breakup for liquid–liquid two-phase systems. 
According to their results, it could be understood that the 
classification described by Pilch and Erdman [5] is also 
valid for liquid–liquid systems. Besides the work of Pilch 
and Erdman [5], several experimental investigations are 
performed to classify the breakup regimes. Krzeczkowski 
[6] made a study of deformation and fragmentation of 
liquid droplets due to an external air stream. Using image 
processing, Krzeczkowski [6] introduced four main 
breakup modes in terms of Weber number consisting of 
bag, bag-jet, transition, and shear modes. He also studied 
the breakup duration and the dependency of this parameter 
on the viscosity ratio. He found that the viscosity ratio 
does not affect the mechanism and breakup period notably 
and the most dominant factor is the Weber number. Chou 
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et al. [7], Chou and Faeth [8], and Dai and Faeth [9] 
carried out a series of experimental studies on temporal 
properties of shear, bag, and multimode breakup regimes. 
Several factors such as deformation, droplet velocities, 
breakup time, critical Weber number and drag coefficient 
are systematically presented using the shadowgraph 
method. The multimode regime in the work of Daiand 
Faeth [9], is divided into two main regimes called bag-
plume and plume-shear modes. Cao et al. [10], using high 
speed camera and shadowgraphs, identified a new mode 
close to multimode regime called dual-bag breakup for a 
liquid droplet in a uniform air jet flow. The mechanism of 
this mode consists of two bag fragmentations of the main 
drop and the core drop generated in the first breakup. It 
was postulated that the dual-breakup is different from the 
observation of Krzeczkowski [6] and Dai and Faeth [9] for 
the similar Weber range obtained in shock tubes. It was 
argued that the dual-breakup mode is due to dissimilar 
kinds of disturbances made in uniform jet flow. Cao et al. 
[10] mentioned that bag or bag-stamen modes can be seen 
for the lower limit of dual-bag regime, as well as shear or 
explosive regimes for higher limit. Recently 
Guildenbecher et al. [11] reviewed the technical literature 
for experimental methods and morphology of droplet 
atomization for Newtonian and non-Newtonian fluids. 
They highlighted that ‘‘the mechanism leading to 
fragmentation of the bag is not well understood’’ while 
the study of this mode is particularly imperative because it 
ascertains the criteria for secondary atomization. They 
also report a map table as a function of Weber number for 
different breakup modes and presented a relatively 
comprehensive description on what we know about the 
mechanism of each mode. 

Recognizing various breakup modes for droplet 
fragmentation is the basic step for analyzing the 
mechanism of breakup. However, what is seen in the 
experiments for highly unstable regions demonstrate that 
modes are combined and multi-mode-fragmentation 
happens. It means that in most cases, shear, bag, wave 
crest, and other modes are included in the entire procedure 
of the fragmentation. This occurs because of different 
local conditions related to local velocity, fragment size, 
etc. 

The overlapping of breakup modes occurs for a wide 
range of Weber numbers. This issue is especially 
remarkable for the range of 20 <We< 80, where different 
types of breakup are reported. It should be noted that the 
studies mentioned here used shock tube or wind tunnel 
experiments. In contrast to drop deformation and breakup 
in wind tunnel or shock tubes, smaller number of studies 
can be found investigating the falling droplet 
fragmentation. Reyssat et al. [12] experimentally explored 
an unstable range of water drops falling in air. They 
demonstrated an identifiable, specific class of bag breakup 
for drops with diameter much larger than capillary length. 
The distorted shape of such drops consists of a thin 
aqueous sheet surrounded by air and bounded at the 
bottom by a torus. During the falling process, as the 
instability intensifies, the sheet ruptures and a deformed 
toroidal rim comes into sight. This high-speed 
fragmentation is followed by destabilization and breakup 
of liquid bridges due to Savart–Rayleigh–Plateau 
instability (Rayleigh, [13]). In the end, a very large drop 
falling in air decays in several stable fragments of 

individual sizes maller than the capillary length. Reyssat 
et al. [12] extended their work for very large water drops, 
larger than 3 cm, and showed that multiple bags are 
formed because of Rayleigh–Taylor-like instabilities. A 
similar scenario including inflation, disintegration and 
destabilization of liquid bridges come to pass for each of 
the unstable fragments. Recently the secondary breakup of 
liquid drops, etc. has been studied by several authors [14-
20]. 

In this letter the secondary breakup of liquid drops, 
accelerated by a constant body force, is examined for 
small density differences between the drops and the 
surrounding fluid. a density ratio of ten has been studied. 
We used Volume of Fluid (VOF) method to simulate the 
breakup. The breakup is controlled by the Eötvös number 
(Eo), the Ohnesorge number (Oh), and the viscosity and 
density ratios. 

2. Numerical Method 

2.1. Governing Equations 
In the VOF method, the transport equation for the VOF 

function, α, of each phase is solved simultaneously with a 
single set of continuity and Navier–Stokes equations for 
the whole flow field. Considering the two fluids as 
Newtonian, incompressible, and immiscible, the 
governing equations can be written as: 

 0∇⋅ =U  (1) 
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Where U is the fluid velocity, p the pressure, f the 
gravitational force, and FS volumetric representation of 
the surface tension force. The bulk density ρb and viscosity 
μb are computed as the averages over the two phases, 
weighted with the VOF function α: 

 b α (1 α)d cρ ρ ρ= + −  (4) 

 b α (1 α)d dµ µµ = + −  (5) 

Where , , andd c d cµ µρ ρ  are the densities and the 
viscosities of the two phases. In the VOF method, α is 
advected by the fluids. For incompressible flows, this is 
equivalent to a conservation law for the VOF function, 
and therefore ensures the conservation of mass. 

The surface tension force, FS, is modeled as a 
volumetric force by the Continuum Surface Force (CSF) 
method [21]. It is only active in the interfacial region and 
formulated as S γκ( α)= ∇F  where γ is the interfacial 

tension and ακ ( )
α

∇
= ∇⋅

∇
 is the curvature of the interface. 

2.2. Interface Sharpening 
In OpenFOAM, the fluid interface is sharpened by 

introducing the artificial compression term 
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( )( )rα 1 α−∇ ⋅ − U  into Eq. (3). Thus, the VOF equation 
(Eq. (3)) becomes: 

 ( ) ( )( )r
α α α 1 α 0
t

∂
+∇ ⋅ −∇ ⋅ − =

∂
U U  (6) 

The artificial compression velocity Ur is given by: 
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Where nf is the normal vector of the cell surface, ϕ is 
the mass flux, Sf is the cell surface area, and Cγ is an 
adjustable coefficient, the value of which can be set 
between 0 and 4. Physically, we can interpret Ur as a 
relative velocity between the two fluids, which arises from 
the density and viscosity change across the fluid interface. 

By taking the divergence of the compression velocity 
Ur, the conservation of the VOF function is guaranteed. 
[22] The term ( )α 1 α−  ensures that this artifact is only 
active in the interfacial area where 0<α <1. The level of 
compression depends on the value of Cγ: there is no 
compression with C 1γ = , a moderate compression with 

C 1γ ≤ , and an enhanced compression with 1 C 4γ< ≤  
[23,24]. 

2.3. VOF Smoothing 
In the VOF method, the fluid interface is implicitly 

represented by the VOF function, the value of which 
sharply changes over a thin region. This abrupt change of 
the VOF function creates errors in calculating the normal 
vectors and the curvature of the interface, which are used 
to evaluate the interfacial forces. These errors induce non-
physical parasitic currents in the interfacial region [25]. 
An easy way to suppress these artifacts is to compute the 
interface curvature κ from a smoothed VOF function α , 
which is calculated from the VOF function α by 
smoothing it over a finite region around the fluid interface 
[25]. Thus, the curvature of the fluid interface is: 

 κ α
α

 ∇
= ∇ ⋅  ∇ 
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
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Whereas in all other equations, the non-smoothed VOF 
function α is used. 

In this study we applied the smoother proposed by 
Lafaurieet al. [26], namely a Laplacian filter that 
transforms the VOF function α into a smoother function 
α : 
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Where the subscript Pdenotes the cell index and f 
denotes the face index. The interpolated value αf at the 
face center is calculated using linear interpolation. The 
application of this filter can be repeated times to get a 
smoothed field. It should be stressed that smoothing tends 
to level out high curvature regions and should therefore be 
applied only up to the level that is strictly necessary to 
sufficiently suppress parasitic currents. 

2.4. Numerical Setup and Discretization 
Our numerical simulations were performed with the 

finite-volume-based code OpenFOAM on co-located grids. 
The PISO (pressure-implicit with splitting of operators) 
scheme is applied for pressure–velocity coupling [27]. The 
transient terms are discretized using a first order implicit 
Euler scheme, controlling the time step by setting the 
maximum Courant number to 0.3. Higher Courant 
numbers were found to lead to a distortion of the interface 
due to increased parasitic currents. We also examined the 
performance of a second order implicit backward time 
integration scheme for one of the test cases on droplet 
breakup described in Section 3.3. Since the difference in 
breakup time was less than 1%, we used first order Euler 
schemes throughout this work. For spatial discretization, a 
second order TVD scheme with van Leerlimiter was used. 
To ensure the boundedness of the VOF function, we used 
a special discretization scheme developed by 
OpenCFDLtd., interface Compression, with the MULES 
(Multidimensional Universal Limiter with Explicit 
Solution) explicit solver [28]. 

The flow domains were meshed with hexahedral cells 
using Blockmesh, an internal mesh generator of 
OpenFOAM. At the channel walls, no-slip and zero 
contact angle boundary conditions were specified. This 
contact angle boundary condition is used to correct the 
surface normal vector, and therefore adjusts the curvature 
of the interface in the vicinity of the wall. A uniform 
velocity and zero-gradient for pressure and VOF function 
α were applied at the inlet. At the outlet, we imposed a 
fixed-valued (atmospheric) pressure boundary condition 
and zero-gradient for velocity and VOF function α. 

3. Non-dimensional Numbers 
In the case of a falling droplet in a motionless media the 

acceleration due to gravity, surface tension between the 
fluids, viscosity of fluids, initial diameter of the droplet 
and density of fluids are the main parameters. Considering 
these parameters, different non-dimensional groups 
governing the behavior of the droplet are proposed by 
researchers. A list of important dimensionless numbers for 
this study is as follows: 

Eotvos number: 
2( )d cg D
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1
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properties): 1
2( )

c
c

c

µ
Oh

Dρ σ
=  

Density ratio: * d

c

ρ
ρ

ρ
=  

Viscosity ratio: * d

c

µ
µ

µ
=  

where, g is the gravitational acceleration, D is the initial 
diameter of the drop, dρ  and dµ  are density and 
viscosity of the droplet, andc cµρ  are density and 
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viscosity of the continuous phase, respectively. And σ is 
surface tension coefficient. 

4. Numerical Validation 
To make sure that the surface tension effect is properly 

implemented in this model, two test cases are considered. 
First it has been checked an initial square drop in a 2D 
domain can freely deform to a circular drop and secondly 
the coalescence of two static drops that merge to become a 
single circular drop is simulated. In the first test, physical 
setup is a square drop with a length of 8 cm which is 
placed in the middle of the 16 cm* 16 cm computational 
domain. In the second test, physical setup is two circular 
drops with radius 1 cm which is placed in the 8 cm * 8 cm 
computational domain. 

In all simulations in this paper we used, 31000d
kg
m

ρ = , 

3100c
kg
m

ρ = , 55.437*10d pa sν −= ⋅ , 

41.719*10c pa sν −= ⋅  and 0.07 N
m

σ = . 

Figure 1 and Figure 2 show the results. Both cases 
show deformation to the final circular drop, indicating that 
the surface tension effect is correctly implemented. 

 
Figure 1. Free deformation of a static droplet from a square initial shape 
a circular finale shape 

 
Figure 2. coalescence of two identical circular droplets and free 
deformation to one circular 

5. Results and Discussions 

5.1. Effect of Eo at Small Oh 
When Oh is small and surface tension is much more 

important than viscous stresses, Oh has little influence on 
the breakup and Eo is the only controlling parameter. Here, 
we present results for different Eo when Oh is small. 
When a drop is set into motion by a constant body force, 
the hydrodynamic pressure is higher at the poles and 
lower at the equator and the drop deforms into an oblate 
ellipsoid. This deformation is opposed by the surface 
tension. Depending on the relative strength of the pressure 
forces and the surface tension, measured by Eo, different 
breakup modes are observed. 

 

Figure 3. Effect of Eoon the deformation of drops. The boundaries of the 
column do not indicate the actual boundaries of thecomputational 
domain. The gap between two successive drops in each column 
represents the distance the drop travels at a fixed time interval and the 
last interface is plotted at t = a) 1.15s, b) 0.88s, c) 0.69s, d) 0.56s, e) 
0.49s, f) 0.41s , g) 0.36s 

In Figure 3, the effect of Eo is presented for density 
ratio of 10 and 0.05d cOh Oh= = . The simulations are 
done using a moving coordinate system where the origin 
is fixed at the centroid of the drop. The domain has 
dimensions of five and thirty times the initial drop 
diameter in the radial and axial directions, respectively. 
The centroid of the drop is fixed at aposition three times 
the initial drop diameter below the top boundary. The 
evolution of the drop is shown for seven different values 
of Eo. In each column, the drop interface is plotted at 
fixed time intervals. The separation between two 
successive drops is equal to the distance that the drop 
travels during the time interval. 

In (a), the drop is shown for Eo = 9. As the drop starts 
falling, the back side becomes flat while the front side 
retains a rounded shape. Then the drop deformation gets 
more pronounced and the back of the drop becomes 
increasingly more convex and eventually the drop deforms 
into a thin disk-like shape that moves at a nearly steady 
state. The drop shown in (b) for Eo = 15 evolves in the 
same way until it has deformed into a disk-like shape. 
Then the thickness of the drop near the symmetry axis 
continues to decrease, and most of the drop fluid moves 
outward toward the edge of the drop. Finally, the center of 
the front surface is pushed upward, forming a backward-
facing bag. At this stage, most of the drop fluid is 
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contained in the annular-shaped rim. As time progresses, 
the bag expands both radially outward and vertically 
upward. Experimental evidence indicates that the drop 
will eventually break into small drops. When Eo is further 
increased to 39 in (c), a different mode of breakup is 
observed. The initial deformation is not very different 
from the previous cases, and an indentation develops on 
the back surface, but instead of deforming into a disk-like 
shape, the drop remains relatively thick near the symmetry 
axis and the edge of the drop is swept back in the 
downstream direction. A large wave then develops on the 
drop interface and as this wave propagates, the drop 
deforms in an erratic manner. The evolution of the drop 
shown in (f) for Eo = 60 reveals another mode of 
deformation. The initial evolution is similar to the 
previous cases, but the results are different at later times. 
As the indentation at the top progressively deepens, the 
drop does not deform into a thin disk-like shape. Instead, 
the edge of the drop is deflected in the downstream 
direction and the drop starts to break into small drops 
from its edge. By increasing Eo as we see in (e), (f) and (g) 
the similar behavior is observed but the intensity and 
speed of the breakup increases. 

Based on these results, the evolution of drops with 
density ratio of 10 at a small Oh can be classified into four 
categories in order of increasing Eo: steady deformation, 
formation of a backward-facing bag, transient breakup 
with a complex shape, and stripping or shearing of a film 
from the edge of the drop. It is evident from Figure 3 that 
drops breaking up in the backward-facing mode travel a 
much longer distance than those breaking up in the shear 
breakup mode. Also note that for the same breakup mode, 
the rate of drop deformation increases as Eo increases. 

 

Figure 4. Centroid velocity versus time for the drops shown in Figure 3. 
The results are presented for Eo = 9, 15, 39, 60, 78, 96 and 132. Ohd = 
Oho = 0.05 

Figure 4 shows the centroid velocity of the drop Vc 
plotted versust for the drops shown in Figure 3 By 
increasing the Eo the rate of acceleration of falling droplet 
increases thus droplet falls with higher speed and deforms 
sooner. The lowest Eo drop (Eo = 9) asymptotically 
reaches a steady state velocity, but the other drops all slow 
down as they start deforming. The Eo = 15 drop also 
reaches a steady velocity. The drops that undergo bag 
breakup first behave like the Eo = 9 drop, but as the bag 

forms, the drops slow down rapidly. The rest of the drops 
all slow down rapidly as they are stretched perpendicular 
to the flow, and all speed up again as the edges strip. 

5.2. Effect of Oh 
Figure 5 - Figure 6 illustrate the effect of the Ohnesorge 

number the (non-dimensional viscosity) for drops with a 
finite density ratio of 10. The drops are shown at several 
times. 

In the Figure 5 Ohd = Oho = 0.05, 0.125, and 0.25, from 
left to right, and Eo = 15. The Oh = 0.05 case (a) has 
already been shown in Figure 3(b), but is included here for 
comparison. The initial deformation of all three drops is 
similar, but whereas the Oh = 0.05 drop (a) deforms into a 
backward-facing bag, the other two drops almost reach a 
steady state shape. Of those, the less viscous drop (b) is 
flatter. 

 

Figure 5. Effect of Oh on deformation of drops with Eo = 15. Time steps 
are fixed and end time is 0.88s. 

In the Figure 6 Eo is increased to 132 and the evolution 
of the drops is presented for the same three values of Oh 
as the Figure 5 In (a), the drop is already shown in Figure 
3 (g) is included for reference. This drop undergoes a so-
called shear (or boundary stripping) breakup. The Oh = 
0.125 drop (b) shows a similar evolution as the drop in (a), 
although the rate of deformation is reduced slightly. The 
center portion of the drop still contains a significant 
amount of drop fluid and formation of a backward-facing 
bag, which requires the formation of a very thin film of 
fluid near the symmetry axis, does not occur. 

Based on the results shown in Figure 5 and Figure 6, it 
is clear that increasing both Oho and Ohd simultaneously 
results in a translation of the boundaries between the 
breakup modes to higher Eo. 
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Figure 6. Effect of Oh on deformation of drops with Eo = 132. Time 
steps are fixed and end time is 0.36s 

6. Conclusion 
The deformation and breakup of axisymmetric drops, 

accelerated by a constant body force, have been studied by 
numerical simulations. Results are presented for density 
ratio of 10. For low Ohnesorge numbers, the Eotvos 
number and the density ratio are the main controlling 
parameters. At low density ratios the drop deforms, but 
does not break up for Eo less than about 10. For 
10<Eo<22 (approximately), the drop breaks up by the 
formation of a backward facing bag. For Eo larger than 
about 40, the drop evolves into a forward-facing bag. 

The formation of a forward-facing bag takes place very 
quickly (the drop has moved only 3–4 times its initial 
diameter when the bag is formed) and is essentially an 
inviscid phenomenon. The formation of a backward-
facing bag, on the other hand, takes significantly longer 
(the drop has moved 8–10 times its initial diameter). A 
comparison with results obtained by an inviscid vortex 
method shows that the backward-facing bag is a viscous 
phenomenon, due to the formation of a low pressure wake 

behind the drop. Furthermore, the surface area of the drop 
increases at a faster rate in the forward-facing bag mode. 

As Oh is increased, the effect of the viscosity reduces 
the rate of deformation. At low Eo, while the drop flattens, 
its center does not drain completely and a backward-
facing bag does not form. As Eo becomes larger, the edges 
of the drop are pulled outward and sheared off, leading to 
a “skirted” drop. 
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