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Deformation and Collapse of Microtubules on the Nanometer Scale
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We probe the local mechanical properties of microtubules at the nanometer scale by radial
indentation with a scanning force microscope tip. We find a linear elastic regime that can be described
by both thin-shell theory and finite element methods, in which microtubules are modeled as hollow
tubes. We also find a nonlinear regime and catastrophic collapse of the microtubules under large loads.
The main physics of protein shells at the nanometer scale shows simultaneously aspects of continuum
elasticity in their linear response, as well as molecular graininess in their nonlinear behavior.

DOI: 10.1103/PhysRevLett.91.098101 PACS numbers: 87.16.Ka, 87.15.La, 87.64.Dz
FIG. 1. (a) shows a typical SFM image of an MT before
performing a set of FZs. In (b) a hole can be observed at the
spot of the microtubule where the FZs where performed.
(c) shows a typical set of FZ performed on an MT. The inset
shows a histogram of the force where the nonlinear regime
established recipes [10]. MTs were polymerized, diluted begins. A peak is found at 400 pN.
Microtubules (MT) are among the principal compo-
nents of the cytoskeleton, the dynamic structural frame-
work of cells [1]. MTs are cylindrical shells of about
25 nm diameter, formed by a regular helical lattice of
�-� tubulin dimers, noncovalently joined by protein-
protein bonds. Alternatively one can view MTs as con-
structed of 13 parallel protofilaments joined laterally.
Their length can vary from tens of nanometers to hun-
dreds of microns.

The mechanical properties of MTs play a crucial role in
processes such as intracellular transport and cell division.
MT elastic properties have been studied previously by
observing the thermal fluctuations of MT shape [2], by
actively bending the MT with optical tweezers [3], and
by observing bending against membranes or hard surfaces
[4]. Bending experiments typically probe length scales
much greater than the size of the protein subunits. At this
micrometer (i.e., cellular) scale, the bending of MTs is
well described by the continuum mechanics of elastic
rods [5,6], although there remains considerable uncer-
tainty over the value of the bending rigidity. MTs have
also been modeled as elastic shells before to study GHz
acoustic excitations [7].

Here, we probe the mechanics of single MTs locally by
radial indentation with a scanning force microscope
(SFM) tip, directly observing their local, tubelike struc-
ture. SFM has been used recently to measure MTs me-
chanical properties [8]. These experiments, however,
probed only bending modes of MTs. Using the Hertz
model (valid only for solid bodies), Vinckier et al. [9]
found an apparent Young’s modulus (extrapolated to zero
glutaraldehyde concentration) of about 3 MPa, which is
substantially smaller than what we find by taking into
account the tubelike structure of MTs. Thus, in prior MT
experiments it has not been possible to probe their hollow
structure. Furthermore, it was previously found that MTs
were too fragile to withstand the interaction with the tip
and they had to be strongly cross-linked with glutaralde-
hyde. Here we were able to image and manipulate micro-
tubules without chemical cross-linking.

Tubulin was purified from porcine brain following
0031-9007=03=91(9)=098101(4)$20.00 
in the presence of taxol [11] to avoid their depolymeriza-
tion [12], and attached to glass coated with aminopropyl-
triethoxy-silane as described before [13]. To image MTs
in buffer, the SFM (NanotecTM) was operated in jump-
ing mode [14]. We used cantilevers with a spring constant
of 0:05 N=m and a tip radius of about 20 nm (OMCL-
RC-800PSA, Olympus. Japan). The minimal loading
force (50 pN) is given by the thermal noise of the canti-
lever [15].

Figure 1(a) shows a typical MT imaged with SFM at a
maximal force of 50 pN. The measured height of around
25 nm matches with the 25 nm diameter observed in
electron microscopy studies [16]. In order to investigate
the mechanical properties of MTs, the tip was positioned
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FIG. 2. (a) shows the indentation of five MTs in the linear re-
gime, with their calculated spring constants. Inset of (a) shows
the cross section of an MT based on electron microscopy data
21. In (b) the prefactor for k / Et5=2=R3=2 is plotted vs t=R. The
gray line represents the effective deformed length ‘. Both of
them are plotted from the analytical solution for a symmetri-
cally deformed tube, as sketched. (c) shows the Young’s modu-
lus versus the effective wall thickness t using Eq. (3).

P H Y S I C A L R E V I E W L E T T E R S week ending
29 AUGUST 2003VOLUME 91, NUMBER 9
on top of a single MTas judged from a directly preceding
image, and several force versus distance curves (FZ)
[black curves in Fig. 1(c)] were performed at the same
spot at a constant sampling rate and constant velocity. At
a maximum force of �1 nN the number of FZs, which
can be performed at one spot until the MT is destroyed
[Fig. 1(b)] was up to �5. Once the contact between the
MT and the tip is established [see arrow Fig. 1(c)], the FZ
curve is linear up to a certain critical force. At a force that
varies between repeated attempts and between different
microtubules over a range from �300 to �500 pN [inset
of Fig. 1(c)], the FZ curves showed catastrophic disconti-
nuities. In control experiments we found no evidence of
measurable adhesion forces between tip and microtubules
(data not shown).

We will first focus on the quantitative interpretation of
the linear elastic regime. The cantilever deflection [ver-
tical axis in Fig. 1(c)] is related to the force exerted by the
tip via the known cantilever stiffness of 0:05 N=m. The
signal reporting the cantilever deflection is calibrated by
performing an FZ on glass [gray curve in Fig. 1(c)]. The
indentation depth 	z [Fig. 1(c)] is calculated from the z
difference between the MTand the glass curves at a given
force. A number of averaged indentation curves in the
linear regime from five MTs and a linear regression are
shown in Fig. 2(a), demonstrating a linear elastic regime
up to an indentation of �4 nm. The effective spring
constant is k � 0:100� 0:005 N=m. Indentation of a
semi-infinite solid object is commonly described by the
Hertz model [17], which due to geometry, has no linear
response. The geometry in our case is different, and the
Hertz model is not applicable because the MT is a hollow
cylindrical shell that can bend, buckle, and collapse,
which a solid object cannot do. In the present case a
linear dependence of the force on the indentation depth
is expected for deformations of the order of the shell
thickness [5,18].

The linear elastic deformation of curved shells in
general involves coupling of out-of-plane bending with
in-plane compression [5,18]. An exceptional case is that
of a hollow cylinder that can flatten under a extended
radial load, by bending without compression. For a uni-
form cylindrical shell of thickness t this deformation
is governed by a bending modulus given by � �
Et3=�12�1� 
2��, where 
 is the Poisson ratio and E is
theYoung’s modulus [5]. Apart from a geometric prefactor
of order unity, �d=R2� measures the deviation of the local
curvature away from the equilibrium cylindrical shape
(radius R), where d is the indentation depth. The bending
energy therefore scales as Et3�d=R2�2R per unit length of
the tube.

As the cylinder becomes longer the total bending en-
ergy, assuming homogeneous flattening, grows without
limit. Under a point load, the cylinder will therefore
return to its undistorted shape at a certain distance from
the point of loading. For long, thin-walled cylinders (i.e.,
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to leading order in t=R) the zone of deformation extends a
distance ‘ > R along the axis from the point of force
application, as can be quantitatively determined from the
analytic solution [Fig. 2(b)]. In a scaling approach, we
can illustrate the essential physics and estimate the rele-
vant length scales by minimizing the total elastic energy
associated with the deformation. Given a nonuniform
indentation along the cylinder axis, there is a longitu-
dinal, in-plane displacement u along the axis of the
cylinder that is proportional to the indentation d, but
also must decrease with increasing ‘=R. In fact, analytic
results [19] show that u 	 Rd=‘, and hence the strain is of
order Rd=‘2. This results in an approximate, combined
elastic energy

Utot � Et3�d=R2�2R‘
 Et�Rd=‘2�2R‘: (1)

Minimization of Utot leads to ‘ 	 R
��������
R=t

p
. Thus, the

dominant or softest mode of deformation of the cylinder
surface extends along the axis far away from the point of
force application. The local flattening of the cylinder
extends thus roughly R

��������
R=t

p
along the axis and R in the

other direction.We expect from this result that our experi-
ments will not be very sensitive to the SFM tip radius, so
long as it is comparable to the MT radius.

Since Utot is harmonic in the indentation d, we obtain
an effective spring constant given by Et5=2=R3=2, apart
from a prefactor of order unity. From the complete ana-
lytic solution obtained within the classical theory of
shells [18,19], we calculate that the spring constant kS
098101-2
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FIG. 3. The indentation curve of a single FZ is plotted in the
inset, showing two jumps. The MT is indented for positive
values of the x axis. The histogram of 23 indentation curves
performed on five MTs is showing four different peaks, corre-
sponding to the different deformation states of the MT.
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for the case of equal and opposite point forces f is about

kS � f=d � 1:37Et5=2=R3=2 (2)

to within 1% over the range 0:002< t=R< 0:1 [Fig. 2(b)].
This does not exactly correspond to the experimental
situation where the tip applies a force f from one side
while the MT is supported by a flat surface from the other
side, and where the observed change in height 	z [inset of
Fig. 2(c)] is an apparent change in diameter of the cylin-
der. The deformations and forces are computed for finite-
length cylindrical sections in the correct experimental
geometry using finite element methods (CADRE,
cadrepro4.2TM). The model based on a 3D tube consists
of 12 609 plates, each of which is treated within a thin-
shell approximation with a Poisson ratio of 0.3. For small
displacements we confirm the scaling behavior of Eq. (2)
up to about t=R 	 0:1 (appropriate for MTs), but with a
somewhat different prefactor,

kS � f=	z � 1:18Et5=2=R3=2: (3)

This corresponds to a stiffer spring, taking into account
the fact that the height change 	z should be compared
with 2d. It is interesting to consider the corresponding
expression for spherical surfaces [5], where kS 	 Et2=R.
The effective spring constant for the indentation of cyl-
inders is weaker by a factor of

��������
t=R

p
< 1, because of the

ability of the cylinder to flatten without much in-plane
compression. The additional rigidity of spherical surfaces
is related to a classical theorem due to Jellett [20] that
says that closed spherical (or more generally, ellipsoidal)
surfaces are completely rigid if they are inextensible.

We now explore the implications of the model for our
experimental data. We expect that the indentation re-
sponse reveals a different aspect of microtubule mechan-
ics from prior bending experiments. Microtubules are
rather structured and far from being homogeneous shells.
The structure of MTs is known to atomic resolution from
electron microscopy [inset of Fig. 2(a)]. One evident
feature is the existence of deep grooves between the
protofilaments, while the inside surface as well as the
top of an individual protofilament is rather flat [21]. Given
this complex structure, it is clear that indenting experi-
ments are testing very different properties than bending
experiments. Flexural rigidity is determined by the full
thickness of the protofilament and the overall tube di-
ameter, while indentation is primarily sensitive to the
thin bridges between the protofilaments where the strain
will be concentrated. In order to compare our results to
bending experiments we estimate an effective Young’s
modulus of the microtubule wall from our data. To apply
our model, we have to assume an effective wall thickness
somewhere between the radially averaged wall thickness
and the thickness of the bridges between the protofila-
ments [inset of Fig. 2(a)]. In Fig. 2(c) the Young’s modu-
lus, calculated from the experimental spring constant k
using expression (3), is plotted versus the assumed effec-
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tive wall thickness running from 1.1 to 2.6 nm and was
found to be �1 Gpa.

In order to refine our result, we carried out a finite
element calculation for a cylindrical tube reinforced with
longitudinal beams, mimicking the protofilaments [19],
and introducing anisotropy in a homogeneous tube. Using
the experimental k � 0:1 N=m, the calculation results in
a Young’s modulus of about �0:8 GPa. This value corre-
sponds to an effective wall thickness of �1:6 nm [close to
the 1.1 nm bridge thickness shown in Fig. 2(a)] in the
homogenous tube model [Fig. 2(c)]. This confirms that the
bridges dominate the elastic response. Even though we
examine a different mode of deformation and do so at the
nanometer scale, the Young’s modulus we derive, given
the known geometry of the MT, is consistent with the
results from prior bending experiments [6].

In the following we discuss the nonlinear regime of the
measured elastic response [Fig. 1(c)]. The sudden decrease
of force is likely caused by either one of two processes:
slipping off of the tip from the MTonto the glass substrate
or MT collapse. The force necessary to make the tip slip is
difficult to estimate since it would depend on the exact
position of the tip over the MT and on the attachment of
the MT to the substrate. The vertical distance moved
should in that case, however, account for the full diameter
of the MT. For a collapsed MT, in contrast, some material
would be present between the tip and the glass. The inset
of Fig. 3 shows a typical indentation curve. Given the
variation in these individual indentation curves, we also
show an indentation histogram of 23 such curves on five
different MTs (all at the same approach velocity and
sampling rate). This histogram demonstrates a clear pat-
tern of stages in the indentation. The peak (i) represents
the linear regime of indentation. Since the distance
098101-3
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moved between the point of first contact and the peak (ii)
is �15 nm, which is about the inner diameter of a 13
protofilaments MT [Fig. 2(a)], the peak (ii) most likely
reflects a collapsed double layer of tubulin between the tip
and the glass. We also expect to see two other possible
indentations: (1) corresponding to a single layer of tubu-
lin, and (2) to bare glass. There is evidence for these in the
peaks on the right of the histogram [(iii) and (iv)]. No
indentations beyond 25 nm from contact were observed.
In the histogram is evident that the full indentation of
25 nm was rarely seen, indicating that slip off or complete
breakthrough were rare.

In conclusion, we have used the nanometer sized SFM
tip to indent microtubules, and found a linear elastic
response with an apparent spring constant k � 0:1 N=m
up to a deformation of about 4 nm, comparable to the shell
thickness [22]. The elastic response is well described by
models of the MTs as isotropic cylindrical shells made
from a homogeneous material. Taking into account the
deeply grooved structure of MTs, we estimate a Young’s
modulus of 0.8 GPa. Characteristically for cylindrical
shells and in contrast with spherical shells, these micro-
tubules are expected to flatten under a point load over a
large length of order R

��������
R=t

p
, which is large compared

with the cylinder radius of order 10 nm. Indentation
probes locally the protein structure of MTs in a very
different way from bending experiments. Radial inden-
tation is very sensitive to the circumferential corruga-
tions of the shell, and therefore complements bending
experiments that mainly depend on axial structure
formed by the protofilaments.While we have here focused
on the physical properties of MTs, we are also strongly
interested in the biological functional implications of
these material properties. The forces needed to deform
locally MTs are only about an order of magnitude larger
than the force a single motor protein can exert, and are
thus in the range of biologically relevant forces.
Interestingly, the radial stiffness of MTs will also be a
sensitive function of the binding of microtubule associ-
ated proteins, particularly the ones that bind in the
grooves between the protofilaments [23].
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