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Abstract. In the present paper, the linear elastodynamics and fracture are simulated by using

a Lagrangian particle method. The numerical model is based on the Moving Particle Semi-

implicit Method (MPS) that was first developed to simulate the behavior of incompressible flu-

ids by Koshizuka et al. (1995). The main strategy of the MPS is to replace the differential op-

erators of the governing equations by discrete differential operators on irregular nodes, which

are derived from a model of interaction between particles. In general, as a meshless method,

it is very effective for the simulation of hydrodynamics problems involving free-surfaces, frag-

mentation and merging, and problems involving large deformation, complex shaped bodies

and moving boundaries.In the last decade, the MPS method was extended to the analysis of

elastic and elastic-plastic structures making possible the analysis of dynamic systems and the

coupling of hydrodynamics and structure analysis to investigate hydro-elasticity problems.

The implementation showed in this paper is an improved version of the simulator developed

in the Numerical Offshore Tank (TPN/USP). In case of 3D analysis, instead of Euler Angles,

the angles are determined by Hamilton’s quaternion algebra to avoid the singularities. On the

other hand, a more generic contact searching algorithm is adopted to allow the investigation

of collision and fracture amount multiple solids. The qualitative and quantitative validations

of the method are carried out herein considering static and dynamic cases subjected to differ-

ent boundary conditions by comparing the numerical results from MPS with Finite Element

Method (FEM) and analytical solutions.
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1. INTRODUCTION

The physics of elastic solid is based on classical elasticity theory, where the continuum

field is represented by a boundary value problem and a set of partial differential equations with

boundary conditions. To overcome simplified problems and solved it with exactly mathemat-

ical techniques, a set of methods have been proposed, studied and developed. The purpose
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of those methods is to provide an adequate discretization to domain and solve the partial dif-

ferential equations. The most commons methods are the Finite Difference Method (FDM),

Finite Element Method (FEM) and Boundary Element Method (BEM). Both the FEM and

FDM methods are similar as the entire solution domain needs to be discretized, and a mesh

is needed, while in the BEM method only the bounding surfaces need to be meshed [3]. The

presence of a mesh in numerical simulations can become a bottleneck in computations, there-

fore, meshfree and particle methods has been proposed to be computationally effective to

discretize a continuum by only a set of nodal points, or particles, without mesh constraints

[10]. There are various meshfree and particle methods to solve elastic solids problems, such

as Smoothed Particle Hydrodynamics (SPH) [11,12], Distinct Element Method (DEM) [5]

and Element Free Galerkin Method (EFGM) [2]. No mesh is required in meshfree particle

methods, thus they are very effective for the simulation of the hydrodynamics that involve

free-surfaces, fragmentation and merging, and problems that involve large deformation, com-

plex shaped bodies and moving boundaries, in general.

The Moving Particle Semi-Implicit Method (MPS) is one of these particle methods,

which was originally developed for incompressible flows with free surface by Koshizuka et

al. (1995) [7]. The MPS are based on Lagrangian description and the computational domain

is discretized by particles that interact among themselves and they according to the governing

equations of interest. For elastic solids, the constitutive equation characterized by the material

density, Young’s modulus and Poisson’s ratio are replaced by algebraic equations derived

from a model of interaction between particles. This results, essentially, a system of particles

connected by normal and tangential springs. The motions of translation and rotation of each

particle are calculated by numerical integration of the equation of motion.

The implementation showed in this paper is an improved version of the simulator de-

veloped in the Numerical Offshore Tank (TPN/USP), based on studies [4,8,13,14]. In case

of 3D analysis, instead of Euler Angles, the angles are determined by Hamilton’s quater-

nion algebra to avoid the singularities. On the other hand, a more generic contact searching

algorithm is proposed to allow the investigation of collision and fracture amount multiple

solids. To validate the method, the qualitative and quantitative simulations are carried out

herein considering static and dynamic cases subjected to different boundary conditions and

the comparison of numerical results from MPS with FEM and analytical solutions.

2. THEORY

2.1. Governing equations

The governing equations of the dynamic of elastic solid can be written as [14]

∂rα
∂t

= vα (1)

ρ
Dvα
Dt

=
∂

∂xβ

(2µεαβ + λεγγδαβ) + bα (2)

where rα is the position vector, vα is the velocity vector, ρ is density, εαβ and εγγ are compo-

nents of strain tensor, δαβ is the Kronecker’s delta, bα is the body force vector and α, β and γ



are the components dimensions. The Lamé’s constants µ and λ are given by Eqs. (3) and (4),

respectively.

µ =
E

2(1 + ν)
(3)

λ =
Eν

(1 + ν)(1− 2ν)
(4)

where E is the Young’s modulus and ν is the Poisson’s ratio.

The equation of motion Eq. (2), can be rewritten by introducing stress tensor σαβ and

isotropic pressure p as

ρ
Dvα
Dt

=
∂σαβ

∂xβ

−
∂p

∂xβ

+ bα (5)

Here,

σαβ = 2µεαβ (6)

p = −λεγγ (7)

2.2. Numerical model

In MPS method, the differential operators of the governing equations are replaced by

discrete differential operators on irregular nodes [6]. For a given particle i, the influence of a

neighbor particle j is defined by weight function w(|~rij|) given in Eq. (8).

w(|~rij|) =

{

re
|~rij |

− 1, |~rij| ≤ re
0, |~rij| > re

(8)

where re is the effective radius that limits the range of influence and ~rij is the distance between

i and j. For the cases simulated in this paper the value of re is 2.1l0, where l0 is the interval

between the adjacent two particles in the initial configuration.

As a result, for a function φ, the gradient, divergent and rotational operators are defined

in Eqs. (9), (10) and (11), respectively.

∇φi =
d

ni

∑

j 6=i

(φj − φi)

|~rj − ~ri|2
(~rj − ~ri)w(|~rij|) (9)

∇ · ~φi =
2d

ni

∑

j 6=i

~φij · (~rj − ~ri)

|~rj − ~ri|2
w(|~rij|) (10)

∇× ~φi =
d

ni

∑

j 6=i

(~φj − ~φi) · ~sij
|~rj − ~ri|

w(|~rij|) (11)

where d is the number of spatial dimensions, ~sij is a versor perpendicular to ~rij and ni is the

particle number density defined as



ni =
∑

j 6=i

w(|~rij|) (12)

2.3. Interaction between particles

Initially two particles are separated by ~r 0
ij . After the motion, the new position vector

is represented as

~rij = ~xj − ~xi (13)

where ~xi and ~xj are the positions of the particles i and j.

The displacement vector between i e j can be written as

~uij = ~rij −Rij~r
0

ij (14)

where Rij is the rotation matrix, in 2D written as

Rij =

(

cos(θij) −sen(θij)
sen(θij) cos(θij)

)

(15)

θij =
θi + θj

2
(16)

and in 3D using quaternion ~q as [1], we have

Rij =





1− 2q2y − 2q2z 2qxqy − 2sqz 2qxqz + 2sqy
2qxqy + 2sqz 1− 2q2x − 2q2z 2qyqz − 2sqx
2qxqz − 2sqy 2qyqz + 2sqx 1− 2q2x − 2q2y



 (17)

~q = [qx qy qz s] = [ηxsin(θij) ηysin(θij) ηzsin(θij) cos(θij)] (18)

where (ηx ηy ηz) is the versor ~ηij representing the axis of a rotation and defined by the average

angular velocity vector ~ωij , Eqs. (19) and (20).

~ηij =
~ωij

|~ωij|
(19)

~ωij =
~ωi + ~ωj

2
(20)

The quaternion at the next time step ~q k+1 is obtained as

~q k+1 = ~q k−1 × ~q k (21)

The displacement vector can be divided into normal ~u n
ij and shear ~u s

ij components,

Eqs. (22) and (23) , and the strain vector is calculated as Eqs. (24) and (25).



~u n
ij =

(~uij · ~rij)~rij
|~rij|2

(22)

~u s
ij = ~uij − ~u n

ij (23)

~ε n
ij =

~u n
ij

|~r 0
ij |

(24)

~ε s
ij =

~u s
ij

|~r 0
ij |

(25)

The volumetric deformation εγγ is described using the divergent of normal displace-

ment vector.

εγγ = div(~u n
ij ) =

d

n i

∑

j 6=i

u n
ij

|~r 0
ij |
w(|~rij|), (26)

Figure 1 shows the displacements and rotations between particles.

Figure 1. Displacement between particles [14].

The normal stress vector ~σ n
ij , shear stress vector ~σ s

ij and isotropic pressure pi are ob-

tained according to the deformation components.

~σ n
ij = 2µ~ε n

ij (27)

~σ s
ij = 2µ~ε s

ij (28)

pi = −λεγγ (29)

Using the divergent operator to Eq. (5), translation of particles is obtained from normal

stress vector, shear stress vector and isotropic pressure.

ρ

(

∂~vi
∂t

)

n

=
2d

ni

∑

j 6=i

~σ n
ij

|~r 0
ij |
w(|~rij|) (30)

ρ

(

∂~vi
∂t

)

s

=
2d

ni

∑

j 6=i

~σ s
ij

|~r 0
ij |
w(|~rij|) (31)



ρ

(

∂~vi
∂t

)

p

=
2d

ni

∑

j 6=i

pij
|~r 0

ij |
2
~rijw(|~rij|) (32)

where pij is the average pressure, Eq. (33).

pij =
pi + pj

2
(33)

The shear stress vector also influence in the rotation of particles, where the force is

calculated as Eq. (34) and the moment can be written as Eq. (35).

~Fij =
2d ld0
ni

~σ s
ij

|~r 0
ij |
w(|~rij|) (34)

~Mij =
(~rj − ~ri)

2
× ~Fij (35)

If the moment of inertia Ii is constant along the time, the angular acceleration vector

of particles is calculated as

Ii
∂~ωi

∂t
= −

1

2

∑

j 6=i

~Mij (36)

2.4. Velocity and position

New velocity ~v k+1

i and position ~r k+1

i are calculated by using a explicit Euler method,

Eqs. (37) and (38).

~v k+1

i = ~v k
i +∆t

(

∂~vi
∂t

)k

(37)

~r k+1

i = ~r k
i +∆t~v k+1

i (38)

Also by the explicit Euler method, new angular velocity ~w k+1

i and rotation ~θ k+1

i can

be calculated as

~ω k+1

i = ~ω k
i +∆t

(

∂~ωi

∂t

)k

(39)

~θ k+1

i = ~θ k
i +∆t~ω k+1

i (40)

where ∆t is the time step.

2.5. Fracture

In order to simulate multi-body dynamics with fracture, a more generic algorithm for

the detection of contact is proposed herein.

Initially the particles of solids are divided into surface particles and internal particles.

Similar the condition of free surface for fluid [9], the particle number density ni is used as



criterion. If the value of ni is lower than a certain value, Eq. (41), the particle is set to surface

particle.

ni < nmax
i − nc (41)

where nmax
i is the maximum value of particle number density and nc is a constant value. In

the present work is used nc = 0.5.

When the solids move closer each other, the surface particles detected different solids

and the range of influence re is set equal to initial particle distance l0. With the range of

influence delimited by initial particle distance, the interaction between surface particles occurs

only when they are in compression and thus only repulsive forces acting between surface

particles to avoid the overlapping of particles. In case of fracture, the occurrence of fracture

is detected when the strain εij between particles i and j is greater than a critical distance

of fracture εmax. In this situation, the weight function is set to zero for the particles i and

j subjected to fracture, Eq. (42), and they are set to surface particles. This will make the

particles i and j ready for detection of contact for the next time step. Figure 2 gives an

example of fracture of an elastic body and the change of internal particles to surface particles

during fracture.

εij > εmax =⇒ w(|~rij|) = 0 (42)

Figure 2. Surface particles (blue) and internal particles (orange) during fracture.

3. RESULTS/VALIDATION

Three cases are simulated and compared to verify the model implemented. First a

static case, obtained by gravity imposed gradually, is simulated and the displacements of a

fixed-free beam are compared with analytical results. A dynamic case involving the motion of

a fixed-supported beam is simulated and the maximum deflection, the natural frequency and

the period of vibration obtained from MPS are compared to analytical and numerical results.

Finally a collision case shows fracture with contact detection proposed in this paper.

3.1. Static case

Figure 3 shows a fixed-free beam of length 1.0 m and square cross section of 0.2

x 0.2 m subjected to self-weight along longitudinal axis. The transversal displacements dx

and dy are given by Eqs. (43) and (44), respectively, and the longitudinal displacement is

given by Eq. (45). The material properties are density ρ = 1000 kg/m3, Young’s modulus



E = 10 MPa and Poisson’s ratio ν = 0.3. The simulation parameters are particle distance

dp = 0.025 m and time step ∆t = 10−5 s.

Figure 3. Fixed beam.

dx = −
νρg

E
x (l − z) (43)

dy = −
νρg

E
y(l − z) (44)

dz = −
ρg

2E
z2 +

νρg

2E

(

x2 + y2
)

(45)

To compare the results from MPS, which is implemented for dynamic analysis, to ana-

lytical results, wich is applied to static cases, a function given by Eq. (46) is imposed gradually

simulating the gravity acting in the beam, as shown in figure (4). Thus, the comparison can

be made when the steady state is reached.

g(t) =

{

G
[

0.5− 0.5cos
(

5π t
T

)]

, t ≤ 0.2T
G, t > 0.2T

(46)

where G is the gravity magnitude = 9.81 m/s2.

Figure 4. Function gravity.

Figure 5 shows the results of the displacements dx and dz in x and z directions, re-

spectively. The displacement dx is measured at x = 0.1 m of the cross section and dz is

measured at x = 0.1, y = 0.0 m of the cross section. Horizontal axis of figure 5 is the po-

sition z of the cross section and vertical axis is the displacement. The results shows that the



computed dx agrees very well with the analytical ones. The error for dz is slightly larger, but

in general agrees well with analytical solution.

Figure 5. Displacement.

3.2. Dynamic case

As a simple dynamic case, the first mode shape of a fixed-supported beam of length

1.0 m with square cross section of 0.225 x 0.225 m, as shown in figure 6, is considered. The

results from MPS are compared to FEM and analytical results. The first mode shape is excited

with gravity and the motion amplitudes is given in Eq. (47).

Figure 6. Fixed supported beam.

∆max =
γl4

185EI
(47)

where γ is the own weight and l the length.

The natural frequency and period of vibration of the beam are given as Eqs. (48) and

(49), respectively. The material properties are density ρ = 1000 kg/m3, Young’s modulus

E = 6 MPa and Poisson’s ratio ν = 0.3. The simulation parameters of MPS are particle

distance dp = 0.025 m and time step ∆t = 10−5 s and in FEM analysis the 8-node linear

brick element 0.014 x 0.014 x 0.017 m is used.

f =
15.4

2πl2

√

EI

m
(48)

T =
1

f
(49)



The plotted results of deflection can be seen in the graphic presented in figure 7. Table

1 shows the results of natural period, frequency and amplitude for the first mode shape.

Figure 7. Maximum deflection.

Table 1. First mode results

Model Natural period (s) Frequency (Hz) Maximum deflection (m)

MPS 0.090 11.11 - 0.050

FEM 0.095 10.53 - 0.056

Analytical 0.081 12.35 - 0.042

The natural period obtained from MPS presents a small discrepancy if compared to

the result from FEM and a considerable difference if compared to analytical result, where

the relative error is about 11.11%. The maximum deflection is closer to the analytical re-

sult with relative error about 10.71%, while the relative error between MPS and analytical is

slightly larger, about 19.02%. The results show good agreement despite deviations that can be

considered as numeric errors and simplifying assumptions.

3.3. Fracture case

Figure 8 shows initial conditions of the case of collision between two elastic solids

involving fracture. Figure 9 gives the snapshots of the simulation. The left column shows

fracture without contact detection and the right column shows fracture with contact detection.

A cube (salmon) 0.5 x 0.5 x 0.5 m with an initial velocity vy = −5 m/s collide into a

block (blue) 1.0 x 0.25 x 2.0 m initially stopped. The material properties of cube are density

ρ = 1000 kg/m3, Young’s modulus E = 6 MPa and Poisson’s ratio ν = 0.3 and the

material properties of block are density ρ = 1000 kg/m3, Young’s modulus E = 10 MPa

and Poisson’s ratio ν = 0.3. The simulation parameters are particle distance dp = 0.05 m

and time step ∆t = 10−6 s. The critical distance of fracture is εmax = 0.2.



Figure 8. Initial conditions of the case of collision.

The collision of two elastic solids occur at 0.07 s. After the fracture occurs in the left

side of the block at 0.60 s, the collision between particles of the fractured surfaces is detected

at 0.70 s. The repulsion due to collision between particles of fractured surface is visible in

the case with contact detection at 1.00 s. As a result, the parts of block move away due the

collision at 0.70 s. On the other hand, as shown in the left column of figure 9, if detection

between the surface created by fracture is not detected, a new and stronger collision occurs at

1.70 s and the simulation stopped owing to the overlap of the particles.

4. CONCLUSION

A computer code to simulate the dynamics of elastic solids has been implemented.

Simulations are carried out for classic examples of beams and the results from MPS are con-

sistent with the numerical and analytical results. A detection condition is proposed to avoid

overlapping of particles due the contact between the fractured surfaces. A simulation of col-

lision involving fracture shows problems if the detection of particles is neglected in fracture

case.
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Figure 9. Left: without contact detection, Right: with contact detection.
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