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Abstract

A previously introduced boundary integral method is used

to find an approximate solution to a problem of plane, uncou-

pled thermoelasticity inside an ellipse with hump. Part of the

boundary is under a given variable pressure, while the other

part is completely fixed. The singular behavior of the solution

is put in evidence at those points where the boundary con-

ditions change. The solution is then sought for in the form

of series in Cartesian harmonics, enriched with a specially

chosen harmonic function with singular boundary behavior to

simulate the existing singularities. The results are analyzed in

detail and the functions of practical interest are represented on

the boundary and also inside the domain by three-dimensional

plots. This model may be useful in analyzing the stresses that

arise in long elastic pad supports under real conditions.
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1 Introduction

The Theory of Thermoelasticity has received considerable attention because
of its importance, not only from the point of view of Technology and Envi-
ronmental Sciences, but also for its theoretical and mathematical importance
as a subject that embodies the interaction of mechanical and thermal fields.
The monumental work of Nowacki [45] enlightens many aspects of this the-
ory. Complex models of thermoelastic media may be found in [33]. Different
mathematical methods have been used to tackle the problem of thermoelas-
ticity. Shanker and Dhaliwal [52] use integral representations for the basic
unknowns of the problem of asymmetric thermoelasticity. Singh and Dhali-
wal [53] consider mixed boundary-value problems of thermoelastostatics and
electrostatics. Abou-Dina and Ghaleb [4] propose a boundary integral method
for the solution of plane strain problems of thermoelasticity in stresses in real
functions for homogeneous isotropic media in simply connected regions. The
method is applied to a number of examples with boundary conditions of the
first, or of the second type only, but the case of mixed conditions was not
treated. Computational aspects of this method are considered in [2], and an
application for the ellipse is treated in [14]. An approach by complex analysis
may be found in [45, 26]. In this latter work, the authors present the general
solutions of two-dimensional problems under uniform heat flux and under point
source. Along the same pattern, Han and Hasebe [25] derive Green’s function
for thermal stress boundary-value problem of an infinite plane with a hole un-
der adiabatic or isothermal conditions. Meleshko [43] addresses the problem
of determining thermal stresses in a rectangle by Fourier series with examples
[43]. Seremeta [51] presents integral representations for thermoelastic Green’s
functions for Poisson’s equation with numerous examples. Thermoelasticity
with electromagnetic interactions may be found in [9, 16].

Thermoelastostatics belong to a more general class of problems, the elliptic
boundary-value problems. This vast subject relies heavily on results from the
Theory of Potential. Elements of this theory and many of its theoretical and
numerical aspects may be found in [39, 35, 31]. Properties of elliptic operators
have been studied extensively. Many problems have been solved involving
elliptic problems, mainly in the fields of thermostatics and elastostatics. The
method of fundamental solutions was used in numerous publications ([19] and
the references therein). Abou-Dina [1] treats some problems related to the
harmonic and the biharmonic operators relying on Trefftz’s method. Abou-
Dina and Ghaleb investigate the approximate solutions to some regular and
singular boundary-value problems for Laplace’s operator in rectangular regions
by a boundary Fourier expansion [6]. Read [47] uses analytic series to find
solutions to Laplacian problems with mixed boundary conditions. Problems
with mixed boundary conditions are also treated in [24, 13]. El-Dhaba’ et al.
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investigate the deformation of a rectangle by finite Fourier transform [15].

When the shape of the boundary is of complicated shape, one has to use ei-
ther purely numerical techniques or to semi-analytical methods. Among these,
the Boundary Integral Formulations are of prime importance. Such approaches
are usually linked with the well-developed theory of Fredholm integral equa-
tions. An extensive literature exists on the subject. The use of integral equa-
tion methods in potential theory and in elastostatics is illustrated in [39, 35].
Altiero and Gavazza [7] present a unified boundary integral method for linear
elastostatics. Heise [27, 28] applies boundary integral equations to treat prob-
lems of elastostatics with discontinuous boundary conditions. Koizumia et al.
[37] present a boundary integral equation analysis for thermoelastostatics us-
ing thermoelastic potential. Constanda [11, 12] applies a boundary integral
formulation to solve Dirichlet and Neumann problems of elasticity. Different
applications of integral equation methods are presented in [48, 46, 49]. A spe-
cial method of solution is treated in [57]. Elliotis et al. [17] present a boundary
integral method adapted to the biharmonic equation with crack singularities.
Li et al. [42] present a numerical solution for models of linear elastostatics
involving crack singularities. A review of boundary integral methods in the
theory of elasticity of hemitropic materials may be found in [44]. Cheng et al.
[10] investigate mechanical quadrature methods and extrapolation algorithms
for boundary integral equations with linear boundary conditions in elasticity.

The role of mixed boundary conditions in the correct formulation of boundary-
value problems is recognized by Weaver and Sarachik [55]. The presence of
such boundary conditions adds to the difficulty of solving the problem and
requires special attention. Mixed boundary conditions are considered in [53].
Helsing [29] presents an integral equation method to solve Laplace’s equa-
tion under mixed Dirichlet and Neumann conditions on contiguous parts of
the boundary, and the problem of elastostatics under mixed conditions. The
same author proposes a fast and stable algorithm for treating singular integral
equations on piecewise smooth curves [30]. Boundary-value problems of mixed
type with applications are also considered by Khuri [36]. Gjam et al. [21]
give an approximate solution to the problem of the ellipse with half boundary
fixed and the other half under given pressure, and use expansions involving a
harmonic function with logarithmic singular behavior at the boundary.

The presence of corner boundary points, or mixed-type boundary condi-
tions introduces singular behavior of the solution. This greatly influences the
efficiency of computations. An extensive treatment of singularities exists in the
literature for the Laplacian, as well as for the elastic problems. Williams [56]
discusses stress singulariries in plates. An algorithm for plane potential solving
problems with mixed boundary conditions involving extraction of singularities
is treated in [23]. Gusenkova and Pleshchinskii [22] construct complex po-
tentials with logarithmic singulariries for elastic bodies with defect along a
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smooth arc. Abou-Dina and Ghaleb [6] introduce logarithmic singularities
on the boundary of rectangular domains for approximate solutions to Lapla-
cian boundary-value problems with mixed boundary conditions. Kotousov and
Lew [38] study stress singularities under various boundary conditions at angu-
lar corners of plates. El-Seadawy et al. [18] use boundary integrals to solve 2D
problems with mixed geometry. Helsing and Ojala [32] treat corner singulari-
ties for elliptic problems by boundary integral equation methods on domains
having a large number of corners and branching points. Mixed-type boundary
conditions at corners are treated in [6, 42, 41, 40]. Gillman et al. [20] present
simplified techniques for discretizing the boundary integral equations in 2D
domains with corners. An interesting contribution about singular solutions of
Laplace’s equation may be found in [54]

In the present paper, two problems of uncoupled thermoelasticity are solved
on a domain in the form of an ellipse with elliptical hump, and on a rectan-
gular domain. The thermal boundary condition is of Dirichlet type, i.e. the
temperature is prescribed on the boundary. As to the mechanical boundary
conditions, they are of mixed type: One part of the boundary is subjected
to a variable pressure, while the remaining part is totally fixed. Generaliz-
ing the semi-analytical scheme presented in [21], the problem is reduced to a
collection of two subproblems of uncoupled thermoelasticity having common
solution, one of type I (given stresses) and the other of type II (given dis-
placements). Each of these two subproblems has given entries on part of the
boundary, while the other part carries unknown values to be determined within
the framework of the solution. The two subproblems are then reduced to a
system of boundary integral equations following [2]. Discretization then yields
a rectangular system of linear algebraic equations. The obtained results on the
boundary clearly put in evidence the existence of a singular behavior of the
stress components at the two separation boundary points. This is simulated by
introducing a specially designed harmonic function in the cross-sectional do-
main, with singularities in the second derivatives at the two separation points.
Based on this, a solution is proposed in the bulk for the two basic harmonic
functions in the form of expansions in Cartesian harmonics, which include the
singular harmonic function as part of the stress function. The coefficients of
these expansions are then determined by the Boundary Collocation Method.
Boundary plots, as well as three-dimensional plots are provided for the func-
tions of practical interest. The results and the efficiency of the used scheme
are discussed. All figures were produced using Mathematica 9.0 Software.

The problems under consideration model a long elastic pad support and
thereby is of practical importance. The stresses applied on one part of the
boundary represent the influence of the body resting on the foundation. The
chosen forms of the boundary involve corner points and mixed boundary con-
ditions. These factors are challenging from the computational point of view
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and the obtained results clearly indicate the efficiency of the proposed method.
The boundary shapes, as well as the chosen boundary functions, are only rep-
resentative. Other settings may be considered as well, provided the overall
equilibrium is conserved. For example adding a shear stress on the boundary
or treating a multilayer foundation [8].

2 Problem description.

This study is devoted to the uncoupled plane theory of thermoelasticity for
long cylinders made from an isotropic, homogeneous, elastic material. The
normal cross-section D of the cylinder is simply connected and bounded by a
contour C. An orthogonal system of Cartesian coordinates (x, y) with origin
O inside the domain D is used to express the necessary mathematical relations
for the problem. The lateral surface of the cylinder is acted upon by forces
and is subjected to thermal action which will cause deformation of the body.
Body forces and bulk heating are not considered for simplicity. In the case of
angular boundary points, the contour S must be properly smoothened.

The parametric representation of the contour C is:

x = x(θ), y = y(θ), (1)

where θ is the angular parameter measured from the x-axis in the usual positive
direction along the contour.
The vectors τ and n denote the unit vector tangent to C at any arbitrary
point on the contour, and the unit outwards normal at this point respectively.
One has:

τ =
ẋ

ω
i+

ẏ

ω
j and n =

ẏ

ω
i−

ẋ

ω
j, (2)

the ‘dot’ over a symbol denotes differentiation with respect to the parameter
θ, and

ω =
√

ẋ2 + ẏ2. (3)

In the particular case where the length on the curve is taken as parameter,
ω = 1.

3 Basic equations.

The basic equations governing the plane, linear uncoupled theory of Thermoe-
lasticity are listed below without proof in accordance with [4] and [2].
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3.1 Equation of thermostatics.

In the steady state, the temperature T as measured from a reference temper-
ature T0 satisfies Laplace’s equation:

∇2T = 0, (4)

This harmonic function in D is completely determined from the solution of the
heat problem, once the thermal boundary condition has been specified.

3.2 Equations of equilibrium.

In the solution by stresses and in the absence of body forces, the identically
non-vanishing stress components are defined through a stress function U by
the relations:

σxx =
∂2U

∂y2
, σxy = −

∂2U

∂x ∂y
, σyy =

∂2U

∂x2
. (5)

and this function by the compatibility condition satisfies the biharmonic equa-
tion

∇4U = 0. (6)

The generalized Hooke’s law reads:

σxx =
νE

(1 + ν) (1− 2ν)

(

∂u

∂x
+
∂v

∂y

)

+
E

(1 + ν)

∂u

∂x
−

αE

(1− 2ν)
T

σxy =
E

2(1 + ν)

(

∂u

∂y
+
∂v

∂x

)

(7)

σyy =
νE

(1 + ν)(1− 2ν)

(

∂u

∂x
+
∂v

∂y

)

+
E

(1 + ν)

∂v

∂y
−

αE

(1− 2ν)
T

where E, ν and α denote Young’s modulus, Poisson’s ratio and the coefficient of
linear thermal expansion respectively for the considered thermoelastic medium,
and u, v denote the displacement components.
The stress function U solving the equation (6) is represented through two
harmonic functions as:

U = xφ+ y φc + ψ (8)

where the superscript ‘c’ denotes the harmonic conjugate.
The stress components are expressed in terms of φ and ψ as:

σxx = x
∂2φ

∂y2
+ 2

∂φc

∂y
+ y

∂2φc

∂y2
+
∂2ψ

∂y2

σxy = −x
∂2φ

∂x ∂y
− y

∂2φc

∂x ∂y
−

∂2ψ

∂x ∂y
(9)

σyy = x
∂2φ

∂x2
+ 2

∂φ

∂x
+ y

∂2φc

∂x2
+
∂2ψ

∂x2
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One easily obtains the following representation of the Cartesian displacement
components u and v:

E

(1 + ν)
u = −

∂U

∂x
+ 4 (1− ν)φ+

E

1 + ν
uT ,

(10)

E

(1 + ν)
v = −

∂U

∂y
+ 4 (1− ν)φc +

E

1 + ν
vT

where

uT = α (1 + ν)

∫ M

M0

(T dx− T c dy),

(11)

vT = α (1 + ν)

∫ M

M0

(T c dx+ T dy)

are the temperature displacements. The integrals in (11) are noted in complex
form in ([45], p. 323).

Rewritten in terms of φ and ψ, relations (10) yield:

2µu = (3− 4 ν)φ− x
∂φ

∂x
− y

∂φc

∂x
−
∂ψ

∂x
+ 2µuT ,

(12)

2µ v = (3− 4 ν)φc − x
∂φ

∂y
− y

∂φc

∂y
−
∂ψ

∂y
+ 2µ vT

where µ = E
2(1+ν)

is the modulus of rigidity of the elastic material.

4 Necessary closure conditions

For a unique solution to the considered problem, the basic field equations
are complemented by boundary conditions, the conditions for removal of rigid
body motion, and other conditions which have no physical insight.

4.1 Boundary conditions

• Heat problem
In what follows, only the Robin problem will be considered.
◦ The Dirichlet Problem
In this type of problem, the temperature function is given on the boundary C
of the domain D by a relation of the form:

T (s) = g(s), (13)
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by using the boundary integral representation of harmonic function one gets:

T (s)− g(s) =
1

π

∮

C

(

T (s′)
∂ lnR

∂n′
−
∂T (s′)

n′
lnR

)

ds′ − g(s) = 0., (14)

• Mechanical problem
◦ The first fundamental problem of elasticity
Assuming that the density of the given distribution of the total external surface
forces is:

f = fxi+ fyj = σnxi+ σnyj,

the boundary conditions take the form:

fx = (xφyy + 2φc
y + yφc

yy + ψyy)
ẏ

ω
+ (xφxy + yφc

xy + ψxy)
ẋ

ω
,

(15)

fy = −(xφxy + yφc
xy + ψxy)

ẏ

ω
− (xφxx + 2φc

x + yφc
xx + ψxx)

ẋ

ω
.

◦ The second fundamental problem of elasticity
Assuming that the displacement vector is

d = dxi+ dy j = dnn+ dττ ,

the boundary conditions take the form:

2µ dx = (3− 4 ν)φ− xφx − y φc
x − ψx + 2µuT ,

2µ dy = (3− 4 ν)φc − xφy − y φc
y − ψy + 2µ vT .

4.2 Elimination of rigid body motion

This is applied for the first fundamental problem of elasticity in order to get rid
of the rigid body motion in this case. It requires that the displacement and the
rotation vectors vanish at an arbitrary chosen point (a, b) inside D. Keeping
in mind our choice of the coordinate system, one may write these conditions
at the origin for the rigid body motion. For the second fundamental problem
of elasticity, this is secured by the nature of the boundary conditions.
◦ Eliminating the rigid body translation
This condition is expressed at the origin by:

(3− 4ν)φ(0, 0)− ψx(0, 0) + 2µuT (0, 0) = 0

(16)

(3− 4ν)φc(0, 0)− ψy(0, 0) + 2µ vT (0, 0) = 0
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◦ Eliminating the rigid body rotation
This condition is expressed at the origin by:

∂u

∂y
(0, 0)−

∂υ

∂x
(0, 0) = 4 (1− ν)φy(0, 0)− 2µα (1 + ν)T c(0, 0) = 0 (17)

In setting any of the closure conditions, the first and the second derivatives
of any harmonic function f with respect to x and y on the boundary may be
calculated as in Appendix (B).

4.3 Additional simplifying conditions

The following supplementary purely mathematical conditions are adopted for
simplicity at the point of the boundary where θ = 0:

x(0)φ(0) + y(0)φc(0) + ψ(0) = 0

x(0)φc(0)− y(0)φ(0) + ψc(0) = 0

x(0)φx(0) + φ(0) + y(0)φc
x(0) + ψx(0) = 0

(18)

x(0)φy(0) + φc(0) + y(0)φc
y(0) + ψy(0) = 0

T c(0, 0) = 0

T (0, 0) = 0

All the above mentioned mechanical equations and conditions can be trans-
formed into boundary integral equations by using the boundary integral rep-
resentation of the basic harmonic functions φ and ψ (and their conjugates),
together with the Cauchy-Riemann relations. For details, the reader is referred
to [4] and [2].

5 Calculation of the harmonic functions at in-

ternal points

We write down expansions of the four harmonic functions involved in the cal-
culations in terms of some adequately chosen basis. The expansion coefficients
may then be determined via the well-known Boundary Collocation Method
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(BCM). These expansions are taken as follows:

φ(x, y) = A+ a0x+
∞
∑

n=1

an cos(nx) cosh(ny) +
∞
∑

n=1

bn sin(nx) cosh(ny),

φc(x, y) = B + a0 y −

∞
∑

n=1

an sin(nx) sinh(ny) +
∞
∑

n=1

bn cos(nx) sinh(ny),

ψ(x, y) = F + d0x+
∞
∑

n=1

dn cos(nx) cosh(ny) +
∞
∑

n=1

en sin(nx) cosh(ny) + ψs(x, y),

T (x, y) = H + j0x+
∞
∑

n=1

jn cos(nx) cosh(ny) +
∞
∑

n=1

kn sin(nx) cosh(ny),

T c(x, y) = L+ j0y −

∞
∑

n=1

jn sin(nx) sinh(ny)−
∞
∑

n=1

kn sin(nx) cosh(ny).

where ψs(x, y) is defined in Appendix (C).

6 Numerical treatment

In order to write down the discretized form of the basic equations and con-
ditions, the complete angle 2π is uniformly divided into a sufficiently large
number of sections, p. Consequently, the contour C is approximated to a bro-
ken closed contour with unequal side lengths. Any contour integration on D
will be approximated by a finite sum as usual. Derivatives of functions on C
are also approximated in a proper way. Details of the calculations may be
found in [2, 5, 21]. After discretization of all the basic equations and condi-
tions, a linear rectangular algebraic system of equations is obtained for the
boundary values of the unknown functions.

7 The ellipse with elliptical hump.

Consider a normal cross-section in the form of an ellipse with hump as shown
on Fig.(1). This is obtained from the intersection of two identical ellipses
with semi-major and semi-minor axes lengths a1 = b2 = 1 and b1 = a2 = 0.5
respectively. The origin of coordinates O is taken at the common center of
the two ellipses, the x-axis being directed along the major axis of the elliptical
hump.

For an efficient application of the method, the cross-sectional contour must
be properly smoothened. Figure (1) shows the original contour, the smoothed
contour, and the comparison. The smoothed boundary is formed by curve
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fitting using sines and cosines of multiples of the angular parameter. The
parametric equations for the original contour are given in Appendix C.

Figure 1: Ellipse with elliptical hump. Original and smoothed boundaries.

The boundary of the domain is subjected to the following conditions:

• Dirichlet thermal condition

T (θ) = h1 cos 2θ, h1 = 0.05.

• The right half of the boundary is subjected to a pressure p with intensity

p(θ) = h2 sin(θ1 − θ) sin(θ2 − θ), 0 ≤ θ < θ1 ∧ θ2 < θ ≤ 2π,

and we have taken h2 = 0.05. This choice makes the pressure distribution
tend to zero smoothly enough at both ends of its interval of definition.

• The left half of the boundary is completely fixed,

u = 0, v = 0, θ1 ≤ θ ≤ θ2, (19)

where

θ1 = 1.5719547718343965 ≈
π

2
, θ2 = 4.71123053534519 ≈

3 π

2
.

Once the solution for temperature has been obtained, the mechanical problem
is replaced by two subproblems, one of type I and the other of type II, having
a common solution (Cf. [21]). For each of these two subproblems, the bound-
ary conditions are given on one part of the boundary and complemented with
unknown values on the other part, to be determined within the solution of the
problem. Following the scheme presented in [3, 5], the equations for each of
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these two subproblems are reduced to a system of boundary integral equations
which are then discretized as explained above. The singular behavior of the
stress components at the two separation boundary points is put in evidence.
Accordingly, a harmonic function with singular boundary behavior is proposed
and added to the basic harmonic function ψ in order to obtain the solution
in the bulk. It is worth noting that this function gives rise to the same type
of behavior of the two stress components σxx and σyy. If this is not the case,
then suitable singular terms have to be added to the functions φ and φc. The
coefficients in the expansions given above are determined by the Boundary Col-
location Method. Plots are provided for the boundary values of the unknown
functions, and three-dimensional plots for the solution in the bulk. The effi-
ciency of the used numerical scheme is discussed. All figures were produced
using Mathematica 9.0 Software. The following figures were obtained with a
number of nodal points p = 155. A further increase in the value of p caused
a deterioration of the results. The expansions for the unknown functions were
truncated to 4 terms for the temperature, and to 12 for the other functions.
The Least Squares method was used to solve all the resulting systems of equa-
tions. After a solution is obtained, it is substituted back into the equations for
error analysis. For the boundary analysis, the errors did not exceed 7.8×10−4.
For the determination of the expansion coefficients, the error did not exceed
3.1× 10−2.

Fig.(2) expresses the boundary displacement due to temperature only. Such
displacement does not satisfy any boundary conditions. The obtained results
seem to be compatible with the heat exchange on the boundary.

Figure 2: Temperature displacements uT and vT on the boundary.

The plots given on Fig.(3), (4), (5), (6), (7) and (8) show the values of the
unknown functions as obtained from the boundary analysis (dotted curves),
together with the values calculated from the expansions (line curves) for com-
parison. While the boundary curves of the basic harmonic functions and the
stress function seem smooth enough, the fluctuations increase for the displace-
ment components which include first derivatives, and increase even more for
the stress components which involve the second derivatives of these functions.
One also notices the discontinuities occurring in the stress components at the
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boundary separation points. Based on these observations, we have enriched
the above expansion of the harmonic function ψ with a harmonic function that
has a singular boundary behavior at the separation points. The way to build
such a function is explained in detail in Appendix (D). The stresses resulting
from this function considered as stress function are shown on Fig.(28).

Figure 3: Temperature T on the boundary.

Figure 4: The harmonic functions on the boundary

Figure 5: Stress function on the boundary

Figure 6: Displacement on the boundary
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Figure 7: Components of the stress tensor on the boundary

Figure 8: Tangential and normal components of the stress tensor on C

The deformed contour is shown on Fig.(9). It represents the combined
action of external mechanical and thermal factors. The same figure contains
the boundary displacement due to temperature alone.

Figure 9: Total displacement (left) and temperature displacement (right), each
compared with the original boundary (dashed curve).

The stress vector distribution on the boundary is shown on Fig.(10). It
permits to appreciate the direction of this vector, as well as its magnitude as
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compared with the applied pressure. It is interesting to note that this vector
is directed inwards everywhere on the boundary, except at two locations on
the fixed part, close to the separation points. It is at these two points that
a debonding can potentially take place. These two emplacements correspond
to two humps with positive values on the curve for σnn on Fig.(28). One
also notices the larger stresses on the central part of the fixed boundary, just
opposite to the given larger stresses on the hump.

Figure 10: Stress vector distribution on the boundary.

The bulk distributions of functions of practical interest are shown on Fig-
ures. (11), (12), (13) and (14). The cross-sectional domain is also shown for
convenience. The larger displacements along the x-axis takes place around the
tip of the hump, as expected, while the larger displacements along the y-axis
occur around the points of intersection of the two ellipses.

Figure 11: T (x, y), uT (x, y) and vT (x, y)
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Figure 12: U(x, y)

Figure 13: u(x, y) and v(x, y)

Figure 14: σxx(x, y), σxy(x, y) and σyy(x, y)

8 The rectangle.

Consider an infinitely long cylinder of rectangular normal cross-section from
an isotropic, homogeneous, elastic material. A system of orthogonal Cartesian
coordinates is used, with origin 0 at the center of the rectangle, x−axis as
shown on Fig.(15). The portion of the rectangular boundary lying in the first
quadrant (0 ≤ θ ≤ π

2
) may be expressed parametrically as follows:
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x(θ) =

{

a 0 ≤ θ ≤ Θ,

b cot θ Θ ≤ θ ≤ π
2
,

and

y(θ) =

{

a tan θ 0 ≤ θ ≤ Θ,

b Θ ≤ θ ≤ π
2
,

with Θ = tan−1( b
a
). Here, 2a and 2b are respectively the length and width

of the rectangle, while θ denotes the polar angle of a general point on the
rectangle. For dimension analysis purposes, the half-length of the major axis
is taken to be the characteristic length, i.e. a is taken to be equal to unity,
a = 1. Also, we take b = 0.7 for definiteness.
As for the previous problem, the cross-sectional contour must be properly
smoothened. Fig.(15) shows the original contour, the smoothed contour, and
the comparison. The smoothed boundary is again formed by replacing sections
around the corners by smooth curves, then by curve fitting using sines and
cosines of multiples of the angular parameter.

Figure 15: Rectangle. Original and smoothed boundaries.

The boundary of the domain is subjected to a prescribed heat flux and is
fixed on one half, while the other half is under given variable pressure. Such
conditions may take place in parts of electrical instruments:

• Dirichlet thermal condition

T (θ) = h1 (1 + cos 2θ), h1 = 0.05.

• The right half of the boundary is subjected to a pressure p with intensity

p(θ) = h2 cos θ, 0 ≤ θ < θ1 ∧ θ2 < θ ≤ 2π,

and we have taken h2 = 0.05. This choice makes the pressure distribution
tend to zero smoothly enough at both ends of its interval of definition.
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• The left half of the boundary is completely fixed,

u = 0, v = 0, θ1 ≤ θ ≤ θ2, (20)

where

θ1 =
π

2
, θ2 =

3 π

2
.

The solution proceeds exactly as for the first problem. A singular solution is
added to the basic harmonic function ψ in order to obtain the solution in the
bulk as series expansions in Cartesian harmonics. The coefficients in these ex-
pansions are determined by Boundary Collocation Method. Plots are provided
for the boundary values of the unknown functions, and three-dimensional plots
for the solution in the bulk. The efficiency of the used numerical scheme is
discussed, as well as the obtained results.

Figure 16: T (x, y) and T c(x, y) in C

Figure 17: The harmonic function in C

Figure 18: Stress function in C
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Figure 19: Displacement in C

Figure 20: Components of the stress tensor in C

Figure 21: Tangential and normal components of the stress tensor on C

The plots on the Figs.(16), (17), (18), (19), (20) and (21) show the val-
ues of the unknown functions as obtained from the boundary analysis (dotted
curves), together with the values calculated from the expansions (line curves).
The boundary distribution of temperature is seen to be in accordance with the
given heat flux. While the boundary curves of the basic harmonic functions
seem smooth enough, the fluctuations increase for the displacement compo-
nents which include first derivatives, and increase even more for the stress
components which involve the second derivatives. The calculation of the sec-
ond derivatives on the boundary is a major source of error in the proposed
method. Different methods of calculations were used. The present results cor-
respond to calculations involving the nearest 15 points from both sides of the
considered node. One notices the discontinuities occurring in the stress com-
ponents at the boundary transition points. Based on these observations, we
have enriched the expansion of the basic harmonic function ψ with a harmonic
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function that has a singular boundary behavior at the separation points. De-
tails are presented in Appendix (D). The stresses resulting from this singular
function taken as stress function are shown on Fig.(28).

The deformed contour is shown on Fig.(22). It represents the combined
action of external mechanical and thermal factors.

Figure 22: Total displacement (left) and temperature displacement (right),
each compared with the original boundary (dashed curve).

The stress vector distribution on the boundary is shown on Fig.(23). It
permits to appreciate the direction of this vector, as well as its magnitude
as compared with the applied pressure. It is clearly seen that this vector
is directed inwards everywhere on the boundary, except at two locations on
the fixed part, close to the transition points. It is at these two points that
debonding can potentially take place. These two emplacements correspond to
two humps with positive values on the curve for σnn on Fig.(28). The stresses
are relatively lower around the transition points, and tend to increase on that
part of the boundary facing the applied pressure.

Figure 23: Stress vector distribution on the boundary.

The bulk distributions of functions of practical interest are shown on Fig-
ures (11), (25) (26) and (27). The cross-sectional domain is also shown for
convenience.
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The obtained results may be of interest in evaluating the displacements
and stresses occurring in long thermoelastic pad supports, in those cases when
heat effects cannot be neglected.

Figure 24: T (x, y), UT (x, y) and VT (x, y)

Figure 25: U(x, y)

Figure 26: u(x, y) and v(x, y)
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Figure 27: σxx(x, y), σxy(x, y) and σyy(x, y)

9 Conclusions.

Two plane problems of linear, uncoupled thermoelasticity for an isotropic and
homogeneous medium filling a long cylinder has been solved by a boundary
integral method. The boundary of the normal cross-section is in the form of an
ellipse with hump, or a rectangle, and is subjected to a prescribed temperature
and to mixed mechanical boundary conditions. The displacements and stresses
were obtained on the boundary and in the bulk. The computational difficul-
ties encountered at the boundary transition points have been largely overcome
by introducing a specially built harmonic function in the cross-sectional area,
with singular behavior at the transition points. An efficient application of the
method requires smoothening of the boundary. This has been achieved by
replacement of sections around the corners by smooth curves and by curve fit-
ting. A careful calculation of the derivatives along the boundary of unknown
functions is necessary for an efficient application of the method. After dis-
cretization, for a given boundary point, this has been carried out using 15
neighbouring nodes on each side of it. This procedure leads to a smoothening
of the finite jumps occurring in the second derivatives of some boundary func-
tions due to the mixed nature of the boundary conditions. The final outcome of
the boundary analysis produces errors in satisfying the solved linear algebraic
systems of equations which do not exceed 10−3. For the unknown functions in
the bulk, expansions in harmonic functions have been used. The coefficients
in these expansions have been determined by Boundary Collocation Method.
The errors here did not exceed 0.02. The form of the deformed boundary is
shown for each problem. The obtained results express the fact that debonding
of the fixed part of the boundary may occur near the transition points. Other
types of thermal or mechanical boundary conditions may be treated by the
same method. The singular function, however, may vary from case to case.
The results may be of interest in evaluating the stresses arising in long pad
supports in those cases, when thermal effects are important.
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10 Future work.

The present research will be extended to the case when the cylinder is an elec-
trical conductor carrying a steady, axial current. This is thermo-magnetoelasticity
which is expected to have several applications in the electrical industry. In this
case, the basic equations are enriched with the equations of Magnetostatics, in-
side and outside the conductor. The unique component of the magnetic vector
potential is along the cylinder’s generators and yields a harmonic part. Thus,
the number of harmonic unknown functions rises from 3 in thermoelasticity to
5. Another application will involve the case of no electric current, when the
material is magnetizable.
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Appendices

A Boundary representation of harmonic func-

tions.

For an arbitrary point (x, y) ∈ D, the boundary integral representation of
harmonic functions reads:

f(x, y) =
1

2π

∮

C

(

f
∂ lnR

∂n′
− lnR

∂f

∂n′

)

ds′.

Here R is the distance between the point (x, y) and the current integration
point. When the point (x, y) tends to a boundary point, this relation trans-
forms into an integral equation for the boundary values of the function f .
Using integration by parts, this may be rewritten as:

f(x, y) =
1

π

∮

C

(

f(x′, y′)
∂ lnR

∂n′
+ (f c(x′, y′)− f c(x, y))

∂ lnR

∂τ ′

)

ds′,

where (x′, y′) is the current integration point.
This last equation contains removable singularities which can be treated as

explained in [3].

B The first and second derivatives of harmonic

functions with respect to x and y on the

boundary.

For a general harmonic function f in the cross-section, the following formulae
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(ḟ c
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(ḟi ẏi − ḟ c
i ẋi)
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where f stands for any one of the used harmonic functions, and

ρi = αi γi + βi δi,

̺i = αi δi − βi γi,

with

αi = ẏ2i − ẋ2i ,

βi = 2 ẋi ẏi,

γi = ẋi ÿi − ẏi ẍi,

δi = ẋi ẍi + ẏi ÿi.

C Treating the singularities.

In order to simulate the singular behavior of stresses at the two truncation
point, we consider the following harmonic function defined on the upper half-
space, with singular behavior at the origin:

f(x, y) =
1

2π

[

y + 2Re

(

i c21
2
ec1 E1(c1)

)]

.

where

E1(z) = −γ − ln(z)−
∞
∑

n=1

(−1)n zn

nn!
(C.1)

is the integral exponential function defined in ([34], P.62) and γ = 0.5772156649
is the well-known Euler constant.
The obtained function will now be centered at each of the two boundary trun-
cation points in order to simulate the behavior of stresses there. The sum
of the resulting two functions is now added to the function ψ in the above
formulation, and will be denoted ψS. The following three-dimensional plots
on Fig.(28) show the harmonic function with singular boundary behavior, and
the singular stresses as calculated from it as stress function.
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Figure 28: Singular stresses


